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Abstract: Social media platforms such as Twitter are a vital source of information during major
events, such as natural disasters. Studies attempting to automatically detect textual communications
have mostly focused on machine learning and deep learning algorithms. Recent evidence shows
improvement in disaster detection models with the use of contextual word embedding techniques (i.e.,
transformers) that take the context of a word into consideration, unlike the traditional context-free
techniques; however, studies regarding this model are scant. To this end, this paper investigates a
selection of ensemble learning models by merging transformers with deep neural network algorithms
to assess their performance in detecting informative and non-informative disaster-related Twitter
communications. A total of 7613 tweets were used to train and test the models. Results indicate
that the ensemble models consistently yield good performance results, with F-score values ranging
between 76% and 80%. Simpler transformer variants, such as ELECTRA and Talking-Heads Attention,
yielded comparable and superior results compared to the computationally expensive BERT, with
F-scores ranging from 80% to 84%, especially when merged with Bi-LSTM. Our findings show that the
newer and simpler transformers can be used effectively, with less computational costs, in detecting
disaster-related Twitter communications.

Keywords: disaster; Twitter; deep neural network; transformers; ensemble
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1. Introduction

Social media has become a common place for people to seek information and help
during emergencies and major crises, particularly during natural disasters such as storms,
tsunamis, earthquakes, flood, etc., by sharing posts in the forms of images, texts, and
videos [1,2]. The platforms have a developing role in how people communicate and
respond to disasters, providing a network to seek help; gain information, guidance and
reassurance; and respond to help requests. For instance, social media posts requesting aid
and support were found to have superseded the emergency (911) phone system during the
9/11 American “natural disaster” [3]. Similarly, “#SOSHarvey” and “#HelpHouston” were
found to be trending during Hurricane Harvey and were used to flag people who needed
help/rescue [3].

Twitter, in particular, has been shown to be popular in generating disaster-related
content, with users tweeting information about affected people and infrastructure damage
that are sometimes very useful for aid and rescue teams, government, and private disaster
relief organizations rendering assistance to those in need. The social media platform is
known for its ability to communicate quickly across space supporting victims and disaster
response, directing resources, and highlighting what the affected community prioritizes in
a disaster [2–6]. As a matter of fact, Twitter is regarded as the ‘most useful social media
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tool’, particularly for natural disasters [2,6,7]. Despite its popularity, tweets are limited in
terms of their length, and thus tend to be more challenging (e.g., sparse, more abbreviations,
etc.), thus making it difficult to differentiate if a specific communication (i.e., tweet) is
related to a disaster or not.

Social Media and Disaster Detection

Although the data generated by social media platforms such as Twitter are ubiquitous,
extracting useful and relevant information is not only a tedious task, but nearly impossible
due to their enormous volume and velocity, thus making automatic disaster detection and
classification models feasible solutions [2,7–9]. With the advent of artificial intelligence
(AI), evidence exists showing that approaches such as machine and deep learning can be
effectively used to detect information related to natural disasters, based on social media
communications [7]. A search of the literature on the application of AI and social media in
disaster-related events revealed several aspects investigated by research scholars, including
damage assessments [10,11], enhancing or promoting situational awareness [5,6], using
sentiment for disaster predictions [8,12,13], and disaster classification/detection models
focusing on differentiating informative and non-informative content [2,8,9,14], the latter
of which is the focus of the present study. For example, the authors of [10] used a semi-
supervised approach to evaluate the damage extent indicated by Twitter communication
during the Hong Kong and Macau typhoons in 2017, whereas the authors of [12] used
a big data driven approach for disaster response through sentiment analysis, with the
results indicating a lexicon-based approach to be more suitable in analyzing the needs of
the people during a disaster.

Numerous studies were found to have used the traditional machine learning algo-
rithms, such as support vector machine (SVM), naïve Bayes, decision tree, and logistic
regression, etc., with promising results [15–18]. More recent studies utilized deep learning
algorithms such as the convolutional neural network (CNN) and the recurrent neural
network (RNN) [19–21]; however, most of them were based on the context-free word em-
bedding techniques, such as Word2Vec. In this technique, the context in which a word is
used is disregarded. For example, “#RockingBand, fire and smoke on stage, having a blast at
this concert!!!” indicates that the user is having a great time at a concert despite the use
of words such as “fire,” “smoke,” and “blast.” The tweet is not disaster-related; however,
a context-free word embedding technique will likely classify the tweet as such, due to
the occurrence of these words. To address this issue, some studies refined the models’
performance using a contextual or transformer-based word embedding technique, that
is, bidirectional encoder representations from transformers (BERT) [8,9,22–25]. However,
studies exploring these transformers, including BERT variants such as RoBERTa, AlBERT,
and ELECTRA, for example, are scant, despite the growing popularity of these contextual
word embedding techniques and their positive results [22,26].

To close this gap and to further extend the current literature, we aim to explore
several well-known deep learning algorithms, especially neural network (NN) models and
transformer-based word embedding techniques, to identify the best/optimal ensemble
solutions in detecting Twitter disaster-related communications. The main contributions of
this study are as follows:

- We explore, implement, and compare the transformer-based embedding techniques,
including the base model and its simpler variants, in detecting disaster using a real-life
Twitter dataset;

- We implement the various transformers with several well-known NN models, and
identify the best/optimal combination in detecting disasters via Twitter.

From the above-mentioned comparisons and analyses, the study offers evidence
and support to alternative solutions, including the use of the simpler and more cost-
effective transformer variants in effectively detecting disaster-related communication on
social media.
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The remainder of the paper is structured as follows: related studies employing deep
learning approaches, using both context-free and contextual based techniques, are reviewed
in Section 2, followed by the methods adopted to achieve the main objective of this study.
Section 4 provides the results and a discussion, and the conclusion is provided in Section 5,
along with limitations and ideas for future directions.

2. Related Work

Deep learning models are generally based on supervised models requiring large
amounts of labeled data, often yielding more accurate results, albeit being computationally
expensive [14,26]. Popular examples of deep NN models include CNN, RNN, and long
short-term memory (LSTM), among others. A search of the literature revealed several
studies exploring and proposing deep learning models to detect social media-based disaster
identification. For example, Yu et al. [19] found their CNN model to yield the best F-score
(i.e., 80%) based on experiments conducted using three datasets, namely, Hurricane Harvey,
Hurricane Sandy, and Hurricane Irma. A similar study using CNN was done by the authors
of [20], who extracted location references from emergency tweets, with findings indicating
an F-score of 96%. The authors further extended their work by incorporating a multi-modal
technique using LSTM and found the combination of both text and images to produce the
best F-score (i.e., 93%) compared to using only text (i.e., 92%) [21]. Another study based on
the CrisisLexT26 dataset containing tweets related to 26 disasters, trained and tested using
Bi-directional Gated Recurrent Units (GRU) and LSTM learning models, reported that both
the models detected disaster-related tweets, with F-score values of 79% and 82% for LSTM
and Bi-GRU, respectively.

Others explored conventional word embedding techniques, such as the authors of [2],
who proposed a hybrid CNN model combining character and word embedding techniques
(i.e., FastText) to detect disaster tweets using datasets related to hurricanes, floods, and
wildfires. They found that character-based CNN performed the best across all the datasets,
with an average F-score of 71%. Conversely, the authors of [27] proposed a multilayer
perceptron model, which is a feed forward NN using Word2Vec embedding, to classify
disasters using two earthquake datasets for training. The authors tested their model using
a COVID-19 dataset and reported a weighted F-score of 85%. Although often reported
to yield improved detection results, these conventional word embedding techniques are
context-free; hence, the word “fire” would be assumed to have the same meaning, regardless
of its use in a sentence [9,26]. To address this issue, the contextual embedding learning
model BERT was proposed by Devlin et al. [28].

BERT is a pretrained transformer bidirectional training model developed to resolve
language modeling and next sentence prediction in tasks involving natural language
processing (NLP) [28]. Unlike the conventional word embedding techniques, such as
FastText, GloVE, and Word2Vec, BERT evaluates text in two directions (i.e., left to right
and vice-versa). Disaster-based studies incorporating BERT often reported improved
classifications; for instance, a series of experiments using seven different catastrophic
event datasets based on a multi-modal technique combining BERT and DenseNet yielded
promising F-scores ranging from 66% to 88% [22]. The authors of [9] compared BERT-Bi-
LSTM with traditional context-free embedding techniques using a Twitter dataset, and
found the former exhibited the best results in prediction, with an F-score of 83%. The
authors of [9] further extended their analysis to include more embedding techniques, such
as GloVe, Skip-Gram, FastText, and other DNN models (RNN, CNN). Results generally
indicate that BERT-based modeling yields the best results for disaster-prediction tasks [25].
Other studies implementing BERT include the detection of tweets linked to the Jakarta flood
in 2020 [29], COVID-19 crisis communications [24], public datasets, such as crisisLexT26
and crisisNLP [23], etc.

Although BERT often yields good results on NLP tasks, it is, however, resource
intensive [30]. Therefore, researchers began to explore simpler versions of BERT (or its
variants) such as RoBERTa, TinyBERT, ELECTRA, and AlBERT, among others. However,
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a search of the disaster detection studies revealed very few studies that have utilized
these variants. For instance, the authors of [14] proposed an ensemble-based strategy by
combining RoBERTa, BERTweet, and CT-BERT models to detect COVID-19 related tweets
and found their approach to produce the best F-score of 91%, outperforming the traditional
machine learning and deep learning algorithms. The authors of [8], on the other hand,
proposed a sentiment-aware contextual model named SentiBERT-BiLSTM-CNN for tweet-
based disaster detection, with SentiBERT specifically used to extract sentimental contextual
embeddings from a given tweet. The authors found their proposed model to outperform
the rest of the models, with an F-score of 92.7%.

Table 1 provides the review of deep learning studies discussed in this section. In
summary, the review shows that the majority of the studies on Twitter disaster detection
were based on the traditional context-free embedding techniques, whereas those exploring
the more robust transformer-based techniques were scant. Further, it can be observed
that BERT remains to be largely explored in this regard, despite the promising results
and performance of its variants [8,14]. The review, therefore, provides an insight into the
gaps of AI-based Twitter disaster detection and helps to guide this study in exploring the
transformers through deep learning models.

Table 1. Summary of deep learning studies in detecting tweets related to disasters.

References Disaster Algorithm Word
Embedding

F-Score
(%)

[19] Hurricane CNN Word2Vec 80

[20] Earthquake CNN Bag-of-words,
GloVe 96

[21] Hurricane, wildfire,
earthquake, flood LSTM, CNN GloVe 93

[31] 26 disasters
LSTM,

bi-directional
GRU

WordNet 79–82

[2] Hurricane, flood, wildfire CNN GloVe, FastText 71

[27] Earthquake MLP Word2vec 85

[24] Earthquake, wildfire,
flood CNN BERT, DenseNet 66–88

[8] General (i.e., flood, fire,
earthquake) Bi-LSTM–CNN SentiBERT 92.7

[23] 26 disasters LSTM, CNN BERT 71.86

[9] General (i.e., flood, fire,
earthquake) Bi-LSTM BERT 83.16

[14] COVID-19 related disaster -
RoBERTa,
BERTweet,
CT-BERT

91

CNN: Convolutional Neural Network; LSTM: Long Short-Term Memory; MLP: Multilayer Perceptron.

3. Materials and Method

Figure 1 depicts a general overview of the pipeline for disaster detection with several
consecutive modules.

The pre-processed tweets act as input to the transformers, where contextual word
embedding takes place. The output of the transformers are then fitted to a deep NN
algorithm to form ensemble models, specifically NN, CNN, LSTM, and Bi-LSTM. The
ensemble combination of the transformer and NN models then makes the final prediction,
that is, whether a tweet is disaster or non-disaster related. These modules are elaborated in
the subsequent sections.
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Figure 1. Disaster detection pipeline.

3.1. Twitter Dataset

A Twitter dataset available on Kaggle (https://www.kaggle.com/c/nlp-getting-start
ed/data?select=train.csv, accessed on 23 December 2021) containing 7613 tweets regarding
disasters was used in this study. The metadata included ID, keyword (i.e., unique words
from the tweet), location (i.e., origin of tweet), and the actual text. The dataset also contained
human labels identifying if the tweet pertains to a disaster or otherwise (i.e., binary labels).
Specifically, the tweets were classified as 1 (i.e., disaster) or 0 (i.e., not a disaster), with
examples of disasters communicated in the dataset including floods, storms, earthquakes,
and fires. Table 2 provides some examples for both the disaster and non-disaster tweets.
The dataset has been used by the authors of [8,9,25], as stated in Section 2.

Table 2. Sample tweets from the Kaggle disaster dataset (1—Disaster; 0—Non-disaster).

Original Tweets Label

Our Deeds are the Reason of this #earthquake May ALLAH Forgive us all 1

#Flood in Bago Myanmar #We arrived Bago 1

Forest fire near La Ronge Sask. Canada 1

I love fruits 0

My car is so fast 0

Summer is lovely 0

A simple exploratory data analysis revealed the dataset to be balanced, that is, 42.9%
(n = 3271) and 57.1% (n = 4342) for disaster and non-disaster, respectively. The average
length of tweets was 12.5 words, with most of the disaster and non-disaster tweets ranging
between 10 and 20 words. Analysis also shows that the disaster tweets are relatively longer
than the non-disaster tweets [8]. Figure 2 shows an overview of the top words associated
with the two labels. It can be observed that most of the disaster-related words, such as
fire, storm, death, and flood, were found in the disaster tweets, while the other tweets
contain more commonly used words, such as going, love, new, etc. Some disaster-related
words, such as fire, burning, and blown, were found in both the labels, albeit with different
frequencies. This clearly indicates the possibility of the words having different contextual
meanings, hence, the importance of understanding them through the use of contextual
word embedding techniques.

3.2. Data Pre-Processing

The next stage involved pre-processing the tweets in order to reduce the “noise” in
the social media data. This included the removal of hashtags, punctuation marks, special
characters, and stop words, among others. Further, all upper-cases were converted into
lower-cases, similar to the methods used in [8,9,25]. The pre-processed tweets served as
an input to the data modeling stage (see Figure 1), specifically, for the contextual word
embedding (i.e., transformers).

https://www.kaggle.com/c/nlp-getting-started/data?select=train.csv
https://www.kaggle.com/c/nlp-getting-started/data?select=train.csv
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3.3. Contextual Word Embedding (Transformers)

Six transformer-based contextual word embedding techniques were examined in the
current study, including BERT (both the base/small and large variants), ELECTRA, Bert
Expert, Talking-Heads Attention, and TN-Bert. The BERT is the original transformer, and
is a base model (i.e., other variants were extended/modified from this) (see Figure 3).
There are two main variants in BERT, BERT-base/small and BERT-large, consisting of 12
and 24 transformer blocks, respectively. BERT is a multi-head attention-based (i.e., each
head performs separate computations that are aggregated at the end) language model
that employs the transformer encoders and decoders to learn the contextual relationships
between words [28]. The encoder reads the text input, while the decoder produces a
prediction. In BERT, the bidirectional transformer NN acts as the encoder, converting each
tokenized word into its numerical vector in order to translate words that are semantically
related to embedding that is numerically close [8]. It specifically uses the Wordpiece
embedding input for tokens, along with positional (i.e., the position of each token in a
given sequence) and segment (i.e., when sentence pairs are used as input) embedding
for each token. The final embedding is usually the sum of all the embedding (i.e., token,
positional, and segment). BERT uses the masked language modeling (MLM) approach, in
which tokens are randomly replaced with [MASK], and a model is trained to reconstruct
the tokens that have been replaced. The embedded numerical vectors are then fed into
the Softmax, which makes a final prediction. In this study, however, the Softmax layer
is replaced with a deep NN model that makes the final prediction, in line with previous
studies [9,22]. Although BERT has been shown to produce good results on NLP tasks,
it is however, impractical for use on resource-limited devices, as it is computationally
expensive [26,30]. This resulted in the emergence of BERT variants, such as TN-Bert, which
is a compressed version of the original BERT architecture, using tensor networks. Previous
experiments have shown the variant to be 37% smaller and 22% faster than BERT-base [32].

On the other hand, ELECTRA is identical to BERT, except there has an additional
linear layer between the embedding layer and encoder. Unlike other models that are based
on MLM pre-training, ELECTRA is a discriminator that replaces random tokens with fake
tokens, akin to the technique adopted in the generative adversarial network (GAN), in
which a generator is optimized to train the discriminator [30]. This approach is considered
less costly and more efficient. In fact, ELECTRA is often touted to be one of the best variants,
performing with a fraction of the computing power of BERT [30].

Other lesser-known variants include Talking Head, or Talking-Heads Attention, which
is a new variation on the multi-head attention used in BERT, using linear projections across
the attention-heads, before and after the Softmax operation. This variant has been shown to
have better performance in MLM tasks, as well as question/answer tasks, despite having a
small number of additional parameters and computation ability [33]. On the other hand,
the BertExpert was developed using a fine-tuned collection of BERTs that are trained on
eight different datasets, comprising six Wikipedia and BooksCorpus datasets and two
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PubMed datasets, to improve its performance in the NLP [28]. The pre-trained word
embedding produced by the transformers is then used as input to the NN pipeline for
disaster detection.
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It is worth noting that since the variants were based on the BERT-base model, the
word embedding technique does not differ from the base model; instead, the variants
mainly differ in terms of simplicity (e.g., reduced number of layers). For example, the only
difference regarding ELECTRA is the separation of the embedding size and the hidden
size, compared to BERT [30].

3.4. Disaster Modeling

As the main focus of this paper is on the contextual word embedding techniques, this
section presents only a brief overview of the DNN algorithms used. NN refers to a network
in which all neurons in a layer are fully connected by weighted links to other neurons in
the next layers. Inspired by the biological nervous system, NN generally has three layers,
namely, input (i.e., receives and presents input pattern to the network), hidden (optional)
(i.e., transforms input inside the network), and output (i.e., returns value corresponding
to the prediction of the response variable). Activation functions define how the weighted
sum of the input is transformed into an output, with popular functions, including Rectified
Linear Activation (ReLU), Sigmoid, and Tanh, for the hidden layer, and Sigmoid and
Softmax for the output layer. In this paper, the output of the transformer (e.g., BERT)
encoders are fitted to NN with the following sequence of layers: a layer of 32 neurons,
a dropout layer, and an output layer, with Sigmoid as the activation function [34–36].
It is worth noting that the NN model was used as a baseline for comparison with the
DNN models.

CNN consists of convolution layers, a pooling layer, and fully connected output layers.
The convolution layers apply filters with a specific kernel size to learn features from a given
dataset, whereas the pooling layer serves as an intermediate layer to reduce the dimensions
of the convolution layers output. The output layer contains activation functions to predict
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the final class of the input dataset [37]. We used a convolution layer with 256 filters and
a window size of 3, 4, and 5-word vectors, with a kernel regularizer that applies an L1
regularization penalty with a value of 0.01, along with ReLU as the activation function, a
pooling layer with max pooling (i.e., pool size = 4), and an output layer using Sigmoid.

On the other hand, LSTM can be viewed as an improvised version of RNN, consisting
of a set of recurrently connected blocks (i.e., memory blocks) with three gates, that is, an
input gate, a forget gate, and an output gate [38]. It is capable of learning order-dependence
in sequence-prediction problems. We used an LSTM layer with 256 units and ReLU as
the activation function. Sigmoid, on the other hand was used as the activation function
for the output layer. The Bi-LSTM is similar to the LSTM; however, it processes input
data in forward and backward directions [38]. The Bi-LSTM layer consists of 128 neurons,
whereas the dense layer consists of 64 neurons. Tanh and ReLU were used as the activation
functions for these two layers, respectively. Sigmoid was used for the output layer. All the
NN models were executed using Adam as the optimizer, with a learning rate of 0.00003, and
binary cross entropy as the loss function. Sigmoid was selected as the activation function
for all the models, considering that the final prediction is based on binary labels. Table 3
shows the parameter setups used for all the models.

Table 3. Parameter setups for DNN models.

Models Setup Parameters

NN Layers 3 (Neurons = 32)

Dropout rate 0.1 *

Activation Function ReLU (Hidden) & Sigmoid (Output)

CNN Layers 3 (Filters = 256; Kernel: 3–5)

Dropout rate 0.3

Activation Function ReLU (Hidden) & Sigmoid (Output)

LSTM Layers 3 (Neuron = 256)

Dropout rate 0.3

Activation Function Tanh (Hidden) & Sigmoid (Output)

Bi-LSTM Layers
LSTM(units = 128, activation = “tanh”)
Dense (units = 64, activation = “ReLU”)
Dense(units = 1, activation = “sigmoid”)

Dropout rate 0.3

Activation Function Tanh (LSTM), ReLU & Sigmoid
* Note: All the dropout rates were determined using the grid search approach, hence, the dissimilarity between
NN and the rest of the models.

3.5. Evaluation and Experiments

Considering that Twitter disaster detection is a classification problem (i.e., disaster
versus non-disaster), standard classification metrics were used to assess the effectiveness
of the proposed models’ performance [8,9,25]. These include precision, recall, F-score,
accuracy and area under curve (AUC). As per the tweet labels that are binary in nature,
a disaster (i.e., 1) is deemed as a positive class, while a non-disaster is a negative class.
Therefore, true positive (TP) refers to the actual disaster tweets predicted as disasters,
whereas false positive (FP) refers to tweets that are actually false, but predicted as true.
A similar implication applies to true negative (TN) and false negative (FN). Using these
notations, accuracy refers to the number of correctly predicted tweets among all of the
tweets, and can be denoted using Equation (1) below:

Accuracy (Acc) =
TP + TN

TP + FN + TN + FP
(1)
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where TP—true positive; TN—true negative; FN—false negative; TN—true negative.
Precision reflects the proportion of TP over the total sample, whereas recall is the

number of positive classes missed (i.e., proportion of the correctly identified TP over the
sample predicted as positive by the model) [8,9]. Both these metrics can be determined
using Equations (2) and (3) below.

Precision (P) =
TP

TP + FP
(2)

Recall (R) =
TP

TP + TN
(3)

F-score refers to the harmonic mean of recall and precision, and determined using
Equation (4) below.

F − score =
2· Precision·Recall

Precision·Recall
(4)

Finally, AUC provides an indication as to how well a model is capable of distinguishing
between classes, with higher scores meaning the model works better at predicting positive
classes as 1 (disaster) and negative classes as 0 (non-disaster). It can be determined using
Equation (5), as given below:

AUC =
Sp −

np(nn+1)
2

npnn
(5)

where Sp indicates the sum of all positive samples, np indicates the number of positive
examples, and nn indicates the number of negative samples.

All five metrics return a score between 0 and 1, with a higher score indicating a better
detection/classification performance.

The training and testing were accomplished using an 80–20 split. Table 4 below depicts
the descriptive statistics for the split data used for training (i.e., 80% = 6090). The average
length of tweets was 14.9, while 7273 words have frequency >1. Figure 4 shows the word
length distribution for disaster and non-disaster tweets. It can be observed that the disaster
tweets are generally longer than non-disaster tweets, although most of them are between a
word length of 10 to 20.

Table 4. Descriptive statistics for 80% training data.

Characteristics n

Total training data 6090

Total positive data (or disaster tweets) 2617

Total unique words 27,083

Total unique words with frequency >1 7253

Avg. length of tweets 14.9

Median length of tweets 15.0

Maximum length of tweets 31

Minimum length of tweets 1

All the experiments and modeling were accomplished using Python 3.7.12 (with
sklearn library) and TensorFlow 2.7.0, with a GPU NVIDIA Tesla P100.
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4. Results and Discussion

Table 5 depicts the results of the experiments for each of the ensemble models.

Table 5. Ensemble model performance results.

Model Transformers Accuracy Precision Recall F-Score AUC

NN BERTLarge 0.82 0.83 0.73 0.78 0.86

BERTSmall 0.82 0.81 0.76 0.78 0.88

ELECTRA 0.83 0.80 0.79 0.79 0.89

TN-BERT 0.82 0.87 0.69 0.77 0.88

BERT Expert 0.83 0.81 0.77 0.79 0.89

Talking Head 0.83 0.86 0.71 0.78 0.88

LSTM BERTLarge 0.82 0.88 0.67 0.76 0.88

BERTSmall 0.81 0.87 0.67 0.76 0.88

ELECTRA 0.83 0.85 0.74 0.79 0.89

TN-BERT 0.82 0.88 0.67 0.76 0.87

BERT Expert 0.81 0.76 0.81 0.79 0.89

Talking Head 0.82 0.84 0.72 0.77 0.88

CNN BERTLarge 0.83 0.89 0.68 0.77 0.88

BERTSmall 0.79 0.72 0.83 0.77 0.88

ELECTRA 0.82 0.78 0.82 0.80 0.89

TN-BERT 0.82 0.92 0.64 0.75 0.87

BERT Expert 0.84 0.91 0.69 0.78 0.89

Talking Head 0.83 0.87 0.72 0.79 0.88
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Table 5. Cont.

Model Transformers Accuracy Precision Recall F-Score AUC

BiLSTM BERTLarge 0.83 0.87 0.70 0.78 0.88

BERTSmall 0.80 0.79 0.74 0.76 0.88

ELECTRA 0.82 0.79 0.81 0.80 0.90

TN-BERT 0.83 0.84 0.74 0.79 0.88

BERT Expert 0.81 0.75 0.83 0.79 0.89

Talking Head 0.84 0.87 0.74 0.80 0.89

The results generally indicate that all the models consistently perform well, with
F-scores ranging from 76% to 80%, and accuracy scores from 79% to 83%. A similar
observation was noted for AUC, which ranged between 86% and 90%. This supports
previous findings showing that transformer-based contextual word embedding techniques
improve disaster detection on social media [8,9,14,23–25]. This is probably due to the
nature of the transformers, that is, the techniques take context of words into consideration,
hence their ability to interpret ambiguous words in a sentence supersede the context-free
embedding techniques, such as Word2Vec and GloVe [2,19,21].

Although the performance scores are only marginally different, an overall comparison
between the ensembles revealed Bi-LSTM to yield the best performance across all five
metrics, with scores ranging from 70% to 90%. Bi-LSTM is deemed to be an improvement
over the previous DNN models, including LSTM (which is an improvement of RNN).
Although this does not necessarily result in better detection performance, the bidirectional
text processing employed by Bi-LSTM may also have contributed to its good performance,
akin to BERT and its variants. A similar pattern was reflected by the authors of [9], who
worked on the same dataset using BERT-small, for which the authors reported a slightly
better performance with an F-score of 83% and accuracy of 85.6%.

Interestingly, the simpler and less complicated BERT variants are observed to yield
comparable, and even superior results, to the original BERT (i.e., BERTLarge and BERTSmall).
The top two variants that yielded consistently good performance across all the metrics and
NN models include ELECTRA and Talking Head, with the best performance noted in com-
bination with Bi-LSTM (F-scoreELECTRA = 80%; AccuracyELECTRA = 82%; F-scoreTalkingHead
= 80%; AccuracyTalkingHead = 84%). Table 6 provides a few sample tweets and the classifi-
cation results for both of these models. To the best of our knowledge, these variants have
yet to be explored by other researchers, including those focusing on disaster detection and
management. Nevertheless, our findings, support the results reported by the respective
developers, in which the variants were notably found to outperform most of the transform-
ers, including the original BERT [29,32]. This finding is deemed novel, and promises to
offer a feasible and cost-effective solution in detecting disasters via social media, without
requiring intensive and expensive resources.

Table 6. Sample detection results for Bi-LSTM.

Sample Tweets

Prediction
True LabelTalking

Head ELECTRA

The summer program I worked for went the city pool we had to evacuate because one
of my kids left a surprise. @jimmyfallon #WorstSummerJob 1 0 0

You are the avalanche. One world away. My make believing. While I’m wide awake. 0 0 0

Dorman 917-033 Ignition Knock (Detonation) Sensor Connector
http://t.co/WxCes39ZTe http://t.co/PyGKSSSCFR 0 0 1

http://t.co/WxCes39ZTe
http://t.co/PyGKSSSCFR
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Table 6. Cont.

Sample Tweets

Prediction
True LabelTalking

Head ELECTRA

Christian Attacked by Muslims at the Temple Mount after Waving Israeli Flag via
Pamela Geller- . . . http://t.co/wGWiQmICL1 1 1 1

70 Years After Atomic Bombs Japan Still Struggles With War Past: The anniversary of
the devastation wrought b . . . http://t.co/vFCtrzaOk2 1 1 1

You are equally as scared cause this somehow started to heal you fill your wounds
that you once thought were permanent. 0 0 0

@abcnews UK scandal of 2009 caused major upheaval to Parliamentary expenses with
subsequent sackings and prison. What are we waiting for? 0 0 0

Expect gusty winds heavy downpours and lightning moving northeast toward VA
now. http://t.co/jyxafD4knK 1 1 1

August 5: Your daily horoscope: A relationship upheaval over the next few months
may be disruptive but in the . . . http://t.co/gk4uNPZNhN 0 0 0

@BattleRoyaleMod when they die they just get teleported into somewhere middle of
ocean and stays trapped in there unless they decides 2/6 0 0 0

5. Conclusions, Limitation and Future Direction

This study explored the use of transformer-based contextual word embedding with
deep NN models to detect disaster-related communication on Twitter. The popular BERT
model, along with its lesser-known variants, were explored by combining them with CNN,
NN, LSTM, and Bi-LSTM. Experimental results show all the ensemble models to yield
consistently good results, with F-scores ranging from 76% to 80%. Although only marginally
different, ELECTRA and Talking Head variants produced the best results when combined
with Bi-LSTM. Our results added value to the existing literature, as we showed that disaster
detection is effective and efficient with the use of simpler and less complicated variants.

This study only used a single Twitter dataset (n = 7613). Additional experiments and
analyses involving a larger dataset, and comparisons with similar datasets, including those
from other social media platforms, such as Facebook, would be beneficial. This will help
to establish the performance of the variants and NN models in detecting disaster through
textual communications. Further, the study is also limited to communications in English.
Social media platform users are diversified, with communication taking place in various
languages, including Chinese, Hindi, and French, among others. Transformers, such as
BERT, provide support in processing multi-language texts; hence, future studies should
explore the performance of these techniques by using datasets that are not limited to English.
Finally, the study is also limited by using a single modality (i.e., text). Communications on
social media platforms often include images and videos as well; therefore, future studies
can explore detecting disaster-related communication using a multi-modal input.
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