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Abstract: This study concentrates on a fixed-time distributed optimization problem for multi-agent
systems (MASs) with input delay and external disturbances. First, by adopting the Artstein model
reduction technique, the time-delay system is first transformed into a delay-free one, and external dis-
turbances are then effectively eliminated by using an integral sliding mode control strategy. Second,
a new centralized optimization mechanism is developed that allows all agents to reach the same state
in a fixed time and then converge to the optimal value of the global objective function. Meanwhile,
the optimization problem is extended to switching topologies. Moreover, as the gradient information
of the global objective function is difficult to obtain in advance, we construct a decentralized opti-
mization protocol that enables all agents to acquire the same state in a certain amount of time while
also optimizing the global optimization problem. Finally, two numerical simulations are presented to
validate the effectiveness and reliability of the developed control strategy.

Keywords: distributed optimization; multi-agent systems; fixed-time consensus; external distur-
bances; input delays
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1. Introduction

The distributed control of multi-agent systems (MASs) has garnered increasing interest
as it can describe many complicated problems in industrial domains, such as sensor
networks [1], formation control, machine learning, intelligent transportation systems,
and so on [2–5]. Consensus is a fundamental problem of distributed control, which refers
that a group of agents achieving agreement upon certain quantities of interest under some
distributed protocols [6]. However, in many practical applications, including resource
allocation [7], economic dispatch of power systems [8], and smart grids [9], they not only
require agents to solve problems cooperatively but also to achieve optimal performance.
Therefore, the distributed optimization issue has been one of the hottest subjects recently.
The purpose of a distributed optimization problem is to establish some viable protocols such
that all agents cooperatively minimize the sum of their cost functions [10,11]. On general
cooperation and consensus mechanisms in MASs, the goal of minimizing the sum of costs
is not always assumed because of the nature of fairness or difficulties of summingup the
costs of different stakeholders. In this paper, we focus on the issues that we can assume it
is possible to sum up their cost functions. Further discussions regarding the difficulties of
summingup the cost functions can be found in [12].

Numerous studies have yielded positive outcomes on distributed optimization prob-
lems [13–18]. Depending on whether a system is discrete or continuous, the majority of
existing distributed algorithms fall into one of two groups: the discrete-time distributed
algorithm and the continuous-time one. The subgradient method was used in discrete
systems to seek the optimal solution of a distributed optimization issue in [19]. To achieve a
faster convergence rate, several novel algorithms were proposed, such as the gradient-free
distributed algorithm [20], Newton–Raphson algorithm [21], and so on. Additionally, given
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the constraining factor of real life, the primal-dual perturbation approach was put forth to
handle the optimization problem with constraints in [22,23]. It should be mentioned that
the above research focuses on discrete MASs. However, the state of the physical system
is continuously changing in some applications. As a result, some control algorithms with
regard to continuous-time MASs [24–28] were proposed based on the developed Lyapunov
stability theory. In [24], the distributed optimization problem was explored using the
zero-gradient-sum framework. Furthermore, the distributed optimization problem with
communication delays and sampled-data delays was further studied by utilizing the linear
matrix inequality (LMI) technique in [25,26], respectively. From the perspective of conver-
gence time, the aforementioned works [24–26] were discussed in infinite time. Following
that, the finite-time distributed optimization issue was considered in [27]. However, the es-
timation of convergence time is dependent on the initial values of the system. To overcome
this disadvantage, the fixed-time continuous optimization protocol was introduced in [28].

To the best of our knowledge, the communication bandwidth and agent speed limi-
tations in MASs frequently result in time delays. Furthermore, in real-world applications
involving distributed optimization problems, communication delays have a significant
impact on the stability of systems. To conserve communication capacity and energy supply,
the event-triggered control method was developed to resolve the optimization problem of
MASs with communication delays and sampled-data delays in [29]. On the other hand,
ambient noise and measurement inaccuracies will impact agent dynamics, leading to agents
failing to precisely attain the optimal value in an optimization problem. Therefore, effective
approaches to reject external disturbances have been found in several research findings.
Convex analysis and the internal model technique, for instance, were used to analyze
the distributed optimization problem for a class of nonlinear MASs with external distur-
bances [30]. Likewise, the disturbance observer and integral sliding mode control approach
also were applied to the distributed optimization problem of MASs in the presence of vari-
ous external disturbances [31,32]. Notably, the existing works [25,29–32] only addressed
either time delays or external disturbances. The fact that these two influencing elements
always coexist in a real system motivates us to explore this study.

This work focuses on the fixed-time distributed optimization problem for multi-
agent systems both with input delays and external disturbances, which is inspired by the
aforementioned discussions. Prior to designing the protocol, the Artstein model reduction
method is introduced to cope with the time delay caused by the control input. Then,
utilizing the integral sliding mode term, a centralized fixed-time optimization protocol
and a distributed one are devised. These control protocols ensure that all agents enter
the sliding surface and reach the same states in a fixed time, and then asymptotically
converge to the optimal value of the global objective function. The following are the main
contributions of this paper.

(1) In previous works [25,29–32], only one aspect of input delay or external disturbance
was considered. However, these two factors tend to coexist in the system. Therefore,
the distributed optimization problem of MASs with both input time delay and external
disturbance is considered in this paper. Both the fixed and switching topologies
are discussed.

(2) To solve the influences of time delay and external disturbance on optimization problem,
we combine the Artstein model reduction technique and the integral sliding mode
control strategy in the design of control protocols, which was rarely used in the
existing works.

(3) Although distributed optimization problems were taken into account in the previous
works [15–20,29–32], the optimization algorithms were asymptotically or finite-time
convergent. In this article, we propose two kinds of fixed-time optimization algo-
rithms, which have fast convergence rate, and the estimation of convergence time is
independent of the initial value of the system.
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The structure of the rest of this paper is as follows. In Section 2, the problem state-
ment is provided together with a basic introduction to graph theory. Section 3 provides
a distributed optimization algorithm and a centralized optimization control protocol.
In Section 4, two simulation examples are used to demonstrate the viability of two dif-
ferent types of algorithms. Section 5 concludes the entire paper.

Notation 1. Let R and R+ be real number set and positive real number set. For a matrix A,
the terms λmax(A) and λmin(A) stand for the largest and smallest eigenvalues, respectively, In
represents n× n identity matrix. The x = [x1, x2, · · · , xn]T represents an n-dimensional column
vector, sign(x) is the sign function, and diag(·) denotes the diagonal matrix. Let ‖ · ‖ and present
the Euclidean norm. ∇ f represents the gradient of f .

2. Preliminaries
2.1. Graph Theory

In this subsection, we introduce some basic concepts in graph theory that will be used
throughout this paper. More information is available in reference [33].

Let graph G = (V , E ,A) be communication topology formed by N agents, where
V = {1, 2, ..., N} denotes a nodal set and E ⊆ V × V represents an edge set. An edge of G is
defined as a pair of nodes (j, i) ∈ E such that agent j can receive information from agent
i. A = [aij] ∈ RN×N represents the adjacency matrix with aij = 1, if (j, i) ∈ E and aij = 0
otherwise. G is connected if there is a path between any pair of different nodes. The degree
matrix is D = diag{d1, d2, · · · , dN} with di = ∑N

j=1 aij. The Laplacian matrix of graph G is
L = D −A = [lij] ∈ RN×N .

2.2. Useful Lemma

Consider the equation as follows{
Ż(t) = H(Z(t), t)
Z(0) = Z0,

(1)

where Z ∈ R,H : R× R+ → R is a nonlinear function.

Lemma 1 ([34]). For any solution of (1), if there exists a Lyapunov functionW(Z(t)) such that

Ẇ(Z(t)) ≤ −ς1Wµ(Z(t))− ς2Wv(Z(t)) (2)

for ς1, ς2 > 0, µ ∈ (0, 1), v ∈ (1, ∞), the origin of the system (1) is fixed-time stable and upper
bound of the setting time T satisfies

T ≤ Tmax =
1

ς1(1− µ)
+

1
ς2(v− 1)

. (3)

Lemma 2 ([6]). Suppose G is an undirected and connected graph, and L is its Laplacian matrix.
The eigenvalues of L are 0 ≤ λ2 ≤ · · · ≤ λN . If 1Tx = 0, then xTLx ≥ λ2xTx.

Lemma 3 ([35]). Let θ1, θ2, · · · , θN ≥ 0. Then, it has

Nϕ(p)(1−p)(
N

∑
i=1

θi)
p ≤

N

∑
i=1

θ
p
i ,

where ϕ(p) =
{

0, 0 < p < 1;
1, p > 1.
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2.3. Problem Statement

Inspired by reference [36], we consider a MAS with both input delays and external
disturbances, in which the dynamics of agents are described as follows

ẋi(t) = ui(t− τ) + ωi(t), i = 1, 2, · · · , N (4)

where xi(t) ∈ R, ui(t) ∈ R and ωi(t) ∈ R are the position state, the input control and
the unknown disturbance of the ith agent, respectively, τ > 0 represents the input delay.
Suppose that each agent i has a local objective function fi(·), then the minimum value
problem of the global objective function is given as

min F(x) =
N

∑
i=1

fi(x), (5)

where F(·) represents the global objective function, and x ∈ R is the decision variable.

Remark 1. In the existing studies [20,21], the optimization problem was solved for MASs without
input delay. Furthermore, the exponential or asymptotic consensus problems were also solved in the
works [3,5,21], which were completed in infinite time. However, the fixed-time optimization problem
is investigated for MASs with input delays and external disturbances in this study. Especially,
when τ = 0, the optimization problem is similar to the existing one.

The main goal of this research is to build a suitable controller ui(t) such that all agents
cooperatively solve the optimization problem (5). In light of the fact that the problem can be
viewed as an optimization problem of MASs involving N identical agents, the problem (5)
can be rewritten as

min F(x(t)) =
N

∑
i=1

fi(xi(t))

s.t. lim
t→T

(xi(t)− xj(t)) = 0 ∀i, j = 1, 2, · · · , N
(6)

where x(t) = [x1(t), x2(t), · · · , xN(t)]T .

Remark 2. It is worth noting that the state variables do not need to reach consensus in general
optimization problems such as distributed resource allocation [7] and economic dispatch in power
grids [8]. In this research, the optimization problem (5) can be converted into (6). Therefore, all
agents need to reach same state value and commonly solve the optimization problem in (6). It can be
regarded as consensus optimization problem. Additionally, it achieves the perfect integration of the
consensus problem and optimization problem theoretically. This combination can resolve several
problems in realistic applications and demonstrates the close connection between consensus and
optimization challenges.

Before designing the control protocol, the following general assumptions are given.

Assumption 1. The communication topological graph G is connected and undirected.

Assumption 2. The external disturbance ωi(t) is bounded, that is |ωi(t)| ≤ ρi, where ρi is a
positive constant.

Assumption 3. The local objective function fi(·) is twice continuous differentiable, and the global
objective function F(·) is convex.
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3. Main Result
3.1. Centralized Optimization Protocol

This section puts forward the centralized fixed-time optimization algorithm. The
fixed topology situation is thought of first, and then the switching topology case is also
considered. The following lists the specific design concepts.

A Fixed Topology

The time-delay system (4) needs to be improved before an optimization algorithm can
be designed. Drawing inspiration from work [36], the Artstein model reduction method is
introduced as follows:{

ζi(t) = zi(t)− z̄(t),
zi(t) = xi(t) +

∫ t
t−τ ui(v)dv, i = 1, 2, · · · , N,

(7)

where z̄(t) = (1/N)∑N
j=1 zj(t). Using a straightforward computation, we can determine

żi(t) = ui(t) + ωi(t). (8)

Remark 3. It is noted that the fixed-time convergence analysis is challenging for MASs with time
delay. The Artstein model reduction approach is employed, which can convert the delay system (4)
into a delay-free system (8). Additionally, using the fixed-time convergence analysis method, we can
resolve the fixed-time distributed optimization problem for MASs with time delay in this study.

The control protocol is considered below

ui(t) = u1
i (t) + u2

i (t) i = 1, 2, · · · , N, (9)

u1
i (t) =



0, 0 ≤ t ≤ T1;

−ι1

N

∑
j=1

aijΩ
µ
ij(t)− ι2

N

∑
j=1

aijΩij(t)− ι3
N

∑
j=1

aijsign(Ωij(t)), T1 < t ≤ T2;

−δ∇
N

∑
j=1

f j(zj(t)), t > T2;

(10)

u2
i (t) = −γ1(si(t))µ − γ2si(t)− γ3sign(si(t)), (11)

si(t) = zi(t)− zi(0)−
∫ t

0
u1

i (v)dv, (12)

where ι1, ι2, ι3, γ1, γ2 and δ are positive constants, and γ3 > ρ where ρ = max
1≤i≤N

{ρi}.

Ωij(t) = zi(t)− zj(t) and µ > 1 is the proportion of positive odd numbers. T1 and T2 are
positive constants to be determined latter.

Theorem 1. If Assumptions 1–3 hold, then the consensus can be achieved in a fixed-time T2 for
MAS (4), and problem (6) can be resolved under the optimization algorithm (9–12). Moreover, the
settling time T2 satisfies

T2 ≤ T1 +
2

ι3λ2(L2)
+

4

ι1N1−µ(4λ2(L
2

µ+1 ))
µ+1

2 (µ− 1)
, (13)
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where T1 = τ +
√

2
γ3−ρ + 2

2
µ+1

2 γ1(µ−1)
, L

2
µ+1 is Laplacian matrix of graph G

2
µ+1 with adjacency

matrix A
2

µ+1 = [(aij)
2

µ+1 ]N×N .

Proof. The proof includes three steps. The first step is to verify that all agents’ states reach
the sliding plane in fixed time, that is, lim

t→T1
si(t) = ṡi(t) = 0. Then we need to prove that

all agents achieve consensus in a fixed-time T2, which means that lim
t→T2

(zi(t)− z̄(t)) = 0

where z̄(t) = (1/N)∑N
j=1 zj(t). Finally, we need to prove that z̄(t) converges to the optimal

value z∗(t) of the optimization problem (6).
Step 1. Take into account the following Lyapunov candidate function

V1(t) =
1
2

N

∑
i=1

s2
i (t). (14)

We take the derivative of V1(t) based on the Equation (12), there is

V̇1(t) =
N

∑
i=1

si(t)(żi(t)− u1
i (t))

=
N

∑
i=1

si(t)(−γ1(si(t))µ − γ2si(t)− γ3sign(si(t)) + ωi(t))

≤ −γ1

N

∑
i=1

(si(t))µ+1 − γ2

N

∑
i=1

(si(t))2 − (γ3 − ρi)
N

∑
i=1
|si(t)|. (15)

By applying Lemma 3, one has

V̇1(t) ≤ −γ1(
N

∑
i=1

s2
i (t))

u+1
2 − (γ3 − ρ)(

N

∑
i=1

s2
i (t))

1
2

= −γ1(2V1(t))
u+1

2 − (γ3 − ρ)(2V1(t))
1
2 , (16)

where ρ = max{ρ1, ρ2, · · · , ρN}. According to Lemma 1, it is easy to obtain that limt→T0 si(t)
= ṡi(t) = 0, and T0 is estimated as

T0 ≤
√

2
γ3 − ρ

+
2

2
u+1

2 γ1(u− 1)
. (17)

Let T1 = T0 + τ, since the sliding mode surface si(t) = ṡi(t) = 0 will be achieved for
t ≥ T0, so u2

i (t) = 0 for T0 < t ≤ T1. Further, we can obtain that
∫ T1
T0

ui(s)ds = 0, that is
zi(t) = xi(t).

Step 2. Prove that lim
t→T2

(zi(t)− z̄(t)) = 0. For T1 ≤ t ≤ T2, ṡi(t) = 0, we have

żi(t) = −ι1

N

∑
j=1

aijΩ
µ
ij(t)− ι2

N

∑
j=1

aijΩij(t)− ι3
N

∑
j=1

aijsign(Ωij(t)). (18)

Choosing the following appropriate Lyapunov function candidate

V2(t) =
1
2

N

∑
i=1

ζ2
i (t). (19)
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Similarly, we take the derivative of V2(t) along with (8) and (9–12), and one has

V̇2(t) =
N

∑
i=1

ζi(t)ζ̇i(t)

=
N

∑
i=1

ζi(t)(żi(t)− ˙̄z(t))

=
N

∑
i=1

ζi(t)
(
− ι1

N

∑
j=1

aijΩ
µ
ij(t)− ι2

N

∑
j=1

aijΩij(t)− ι3
N

∑
j=1

aijsign(Ωij(t))
)

−
N

∑
i=1

ζi(t) ˙̄z(t). (20)

According to the definition of ζi in the (7), we have
N

∑
i=1

ζi(t) = 0. Then, one has

V̇2(t) =
N

∑
i=1

ζi(t)
(
− ι1

N

∑
j=1

aijΩ
µ
ij(t)− ι2

N

∑
j=1

aijΩij(t)− ι3
N

∑
j=1

aijsign(Ωij(t))
)

In light of the property aij = aji of the adjacency matrix of the undirected graph, we have
∑N

i=1 ∑N
j=1 aijζi(ζi − ζ j) =

1
2 ∑N

i=1 ∑N
j=1 aij(ζi − ζ j)

2. Therefore, the derivative of V2(t) can
be rewritten as

V̇2(t) = −
1
2

ι1

N

∑
i=1

N

∑
j=1

aijΦ
µ+1
ij (t)− 1

2
ι2

N

∑
i=1

N

∑
j=1

aijΦ2
ij(t)−

1
2

ι3
N

∑
i=1

N

∑
j=1

aijΦij(t)sign(Φij(t))

≤ −1
2

ι1N1−µ

( N

∑
i=1

N

∑
j=1

a
2

µ+1
ij |Φij(t)|2

) µ+1
2

− 1
2

ι3

( N

∑
i=1

N

∑
j=1

a2
ij|Φij(t)|2

) 1
2

, (21)

where Φij(t) = ζi(t)− ζ j(t). On the other hand, owing to

N

∑
i=1

N

∑
j=1

aijΦ2
ij(t) = 2ζT(t)Lζ(t),

where ζ(t) = [ζ1(t), ζ2(t), · · · , ζN(t)]T . Let G2 and G
2

µ+1 represent two new network

topologies, in which the corresponding adjacency matrixes are A2 = [a2
ij]N×N and A

2
µ+1 =

[a
2

µ+1
ij ]N×N , and the corresponding Laplacian matrices are L2 and L

2
µ+1 . It yields

N

∑
i=1

N

∑
j=1

a2
ij|Φij(t)|2 ≥ 4λ2(L2)V(t), (22)

N

∑
i=1

N

∑
j=1

a
2

µ+1
ij |Φij(t)|2 ≥ 4λ2(L

2
µ+1 )V(t). (23)

In a combination with (22) and (23), the inequality (21) is rewritten as

V̇2(t) ≤ −
1
2

ι1N1−µ

(
4λ2(L

2
µ+1 )V2(t)

) µ+1
2

− ι3λ2(L2)V
1
2

2 (t)

≤ −ς1V
1
2

2 (t)− ς2V
µ+1

2
2 (t), (24)
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where ς1 = ι3λ2(L2) and ς2 = (1/2)ι1N1−µ(4λ2(L
2

µ+1 ))(µ+1)/(2). It follows that limt→T̄2

V2(t) = 0 based on Lemma 1, and the settling time T̄2 is estimated as T̄2 ≤ T1 +
2
ς1
+ 2

ς2(µ−1) .

Assuming that T2 = T̄2 + τ, because the states of agents satisfy zi(t) = zj(t) for t ≥ T̄2,

then u1
i (t) = 0 for T̄2 < t ≤ T2. Further, we can obtain

∫ T2
T̄2

ui(s)ds = 0, which means that
all agents will achieve consensus for t ≥ T2.

Step 3. For t > T2, according to the above analysis, one has

d
dt

N

∑
i=1

fi(x̄i(t)) =
N

∑
i=1
∇ fi(x̄i(t))

dx̄i(t)
dt

=
N

∑
i=1
∇ fi(zi(t))

dzi(t)
dt

=
N

∑
i=1
∇ fi(zi(t))u1

i (t)

=
N

∑
i=1
∇ fi(z(t))(−δ

N

∑
j=1
∇ f j(zj(t))). (25)

From Equation (25), we can get

d
dt

N

∑
i=1

fi(x̄(t)) = −δ

( N

∑
i=1
∇ fi(z(t))

)2

≤ 0.

(26)

Because ∑N
i=1 fi(x̄(t)) is bounded, one can obtain that limt→∞∇∑N

i=1 fi(x̄(t)) = 0. Then
the optimization problem is solved. The proof is completed.

Remark 4. To solve the optimization problem (6) for MASs with input delays and external distur-
bances, the optimization algorithm is proposed by using an integral mode scheme in (11) and (12).
The protocol (9–12) is inspired by [32,37]. In [32], the external disturbance can be effectively
eliminated by the super twisting-based integral sliding mode controller in finite time. In this paper,
we propose a centralized optimization protocol for MASs with time delays, which can ensure all
agents’ states converge to the same value in a fixed time. In [37], the authors address the average
consensus problem of MASs subject to input delay and external disturbances. However, in our paper,
the optimization protocols that contain the consensus term and optimization term are designed to
solve the optimization problem (6).

B Switching Topologies

In the practical system, some agents may reconstruct new network topologies due to
the instability of network connections. We take into account the switching communication
topologies.

Denote σ(t) : [0,+∞) → Γ as a switching signal, where Γ = {1, 2, · · · , M} is a
finite set and M is a positive integer. t0, t1, · · · , tk, · · · is the switching time sequence. Let
Gγ = (V , E ,Aσ(t)) be an undirected graph set. If the communication topology is fixed
during the time interval [tj, tj+1), i.e., σ(t) ∈ Γ for t ∈ [tj, tj+1) and switches at the time tj,
then Gσ(t) ∈ Gγ is the corresponding graph at time t. The Laplacian matrix of the switching
topology Gσ(t) is represented as Lσ(t). In the sequel, the fixed-time distributed optimization
problem will be resolved under switching topology.
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Theorem 2. If Assumptions 2–3 hold and the switching topologies Gσ(t) are connected, the fixed-
time consensus can be achieved for MAS (4) with switching topologies Gσ(t), and the optimization
problem (6) is also resolved under the algorithm (9–12). Moreover, the settling time T ′2 satisfies

T ′2 ≤ T1 +
2

ι3λmin
2 (L2)

+
4

ι1N1−µ(4λmin
2 (L

2
µ+1 ))

µ+1
2 (µ + 1)

, (27)

where T1 =
√

2
γ3−ρ + 2

2
µ+1

2 γ1(µ−1)
+ τ, λmin

2 (L2) = min{λ2(L2
σ(t0)

), λ2(L2
σ(t1)

), · · · } and

λmin
2 (L

2
µ+1 ) = min{λmin

2 (L
2

µ+1

σ(t0)
), λmin

2 (L
2

µ+1

σ(t1)
), · · · }. The related Laplacian matrices at time

t for graphs G2 and G
2

µ+1 are L2
σ(t) and L

2
µ+1

σ(t)(t), respectively.

Proof. The proof is also divided into three steps. The first step is to prove that lim
t→T1

si(t) =

ṡi(t) = 0. Furthermore, we need to prove that all agents achieve consensus in a fixed-time
T ′2 , which means that lim

t→T ′2
(zi(t)− z̄(t)) = 0 where z̄(t) = (1/N)∑N

j=1 zj(t). Finally, we

need to verify that the consensus value z̄(t) converges to the optimal value z∗(t) of the
optimization problem (6).

The Step 1 is same as the one in Theorem 1, then we omit it.
Step 2. With respect to the same V2(t) of Theorem 1, we obtain

V̇2(t) ≤ −ι3λ2(L2)V
1
2

2 (t)− 1
2

ι1N1−u
(

4λ2(L
2

µ+1 )V2(t)
) µ+1

2

≤ −ι3λmin
2 (L2)V

1
2

2 (t)− 1
2

ι1N1−µ

(
4λmin

2 (L
2

µ+1 )V2(t)
) µ+1

2

≤ −ς̄1V
1
2

2 (t)− ς̄2V
µ+1

2
2 (t), (28)

where ς̄1 = ι3λmin
2 (L2) and ς̄2 = (1/2)ι1N1−µ(4λmin

2 (L
2

µ+1 ))
µ+1

2 .
The inequality (28) holds for any σ(t) ∈ Γ. Based on Lemma 1, it follows that V2(t) con-

verges to zero in fixed time. Let T ′2 = T1 +
2
ς̄1

+ 2
ς̄2(µ−1) + τ, we obtain limt→T ′2

V2(t) = 0.

Step 3. For t > T ′2 , the proof that lim
t→+∞

z̄(t) = z∗(t) is same as the one in Theorem 1.

According to the above analysis, the optimization problem (6) can also be resolved under
the switching topologies.

Remark 5. It is worth noting that the gradient method used in this paper cannot be applied to
general non-holonomic systems directly [38], so we only consider the distributed optimization
problem of first-order integral systems. However, the application [39] of non-holonomic systems is
more in line with actual needs. We will concentrate on the optimization problem of non-holonomic
systems in our future work. In addition, the ui(t) is a centralized protocol because it uses the global
gradient information ∑N

j=1∇ f j(xj(t)). However, the global information of the agents is always
difficult to obtain in advance. To make up for these drawbacks, we need to develop some distributed
optimization algorithms.

3.2. Distributed Optimization Protocol

In this section, to propose the distributed optimization protocol, we need to devise a
distributed estimator for each agent to obtain the convex combination ∑N

j=1∇ f j(xj(t)) of all
agents’ local cost function. In combination with the developed distributed estimators and
the previous design strategy of the protocol, we will design the distributed optimization
algorithm to solve the optimization problem (6).
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Suppose that each agent is equipped with an estimator, which can obtain the gradient
of its objective function and needs to estimate the information of other agents. Let yi

r(t)
represent the estimation of gradient∇ fr(xr(t)) of the ith agent with respect to the rth agent.
We take advantage of bir to denote the information transmission strength between the ith
agent and the rth estimator, in which bii > 0, and bri = 0 for i 6= r, i, r = 1, 2, · · · , N. Denote
Lr = L+ Br, where the matrix Br = diag{bk1, bk1, · · · , bkN}, then the matrix Lr is positive
definite. The distributed estimator is designed as follows

ẏi
r(t) =− dr(t)sign

(
∑

j∈Ni

aijΨ
ij
r (t) + bri(yi

r(t)−∇ fr(zr(t)))
)

− cr

(
∑

j∈Ni

aijΨ
ij
r (t) + bri(yi

r(t)−∇ fr(zr(t)))
)µ

,
(29)

where µ > 1, Ψij
r (t) = yi

r(t)− yj
r(t), and cr is a positive gain, dr(t) is a time-varying gain to

be determined later.

Theorem 3. If Assumption 1 holds and the network topology is connected. Then yi
r(t) →

∇ fr(zr(t)), for i, r = 1, 2, · · · , N based on a designed distributed estimator (29) in a fixed time.

Proof. Let the estimator error ŷi
r(t) = yi

t(t)−∇ fr(zr(t)), ŷr(t) = [ŷ1
r (t), ŷ2

r (t), · · · ŷN
r (t)]T ,

ȳr(t) = Lŷr(t), $r(t) = 1N ⊗∇2 fr(zr(t))żr(t). Choose the following Lyapunov function

V3r(t) =
1
2

ŷT
r (t)Lr ŷr(t). (30)

Because Lr is a positive matrix, so V3r(t) is a positive definite function, and one has

1
2

λmin(Lr)‖ŷr(t)‖2 ≤ V3(t) ≤
1
2

λmax(Lr)‖ŷr(t)‖2. (31)

The derivative of V3r(t) is

V̇3r(t) = ȳT
r (t)(−dr(t)sign(ȳr(t))− cr(ȳr(t))µ − $r(t))

≤ −dr(t)N
1−µ

2 ‖ȳr(t)‖1+µ − (cr − ‖$r(t)‖∞)‖ȳr(t)‖1.
(32)

Because λmin(Lr)
2 V3r(t) ≤ ‖ȳr(t)‖2 ≤ λmax(L)r

2 V3r(t), and ‖ȳr(t)‖ ≤ ‖ȳr(t)‖1 ≤
√

N‖ȳr(t)‖,

there is −‖ȳr(t)‖1 ≤ −
√

λmin(Lr)
2 (V3r(t))

1
2 . Choosing cr ≥ ‖$r(t)‖∞‖+ c

′
r, where c

′
r are

positive constants. Hence, there is

V̇3r(t) ≤ −cr N
1−µ

2

(
λmin(Lr)

2
V3r(t)

) 1+µ
2

− c
′
r

√
λmin(Lr)

2
(V3r(t))

1
2

= −α1(V3r(t))
1+µ

2 − α2(V3r(t))
1
2

(33)

where α1 = cr N
1−µ

2

(
λmin(Lr)

2

) 1+µ
2

, α2 = c
′
r

√
λmin(Lr)

2 . It can be deduced that limt→Tr ŷr(t) =

0 from (33), and the convergence time is estimated by Tr which satisfies Tr ≤ 1
α1(µ−1) +

2
α2

.

Let Tmax = max{Tr|r = 1, 2, · · · , N}, then yi
r(t) = ∇ fr(zr(t)) for t ≥ Tmax.

By using yi
r(t) to estimate the gradient ∇ fr(zr(t)) of agent r for agent i, the term

∑N
j=1∇ f j(zj(t)) in centralized optimal protocol (10) can be replaced by the estimation term

yi
r(t). Therefore, the following distributed optimal protocol is proposed

ui(t) = u1
i (t) + u2

i (t) i = 1, 2, · · · , N (34)
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u1
i (t) =



0, 0 ≤ t ≤ T1;

−ι1

N

∑
j=1

aijΩu
ij(t)− ι2

N

∑
j=1

aijΩij(t)− ι3
N

∑
j=1

aijsign(Ωij(t)), T1 < t ≤ T̂2;

−δ
N

∑
r=1

yi
r(t), t > T̂2.

(35)

ẏi
r(t) =



0, 0 ≤ t ≤ T1;

−dr(t)sign
(

∑
j∈Ni

aijΨ
ij
r (t) + bri(yri(t)−∇ fr(zr(t)))

)
−cr

(
∑

j∈Ni

aijΨ
ij
r (t) + bri(yri(t)−∇ fr(zr(t)))

)u

, t > T1;

(36)

uω
i (t) = −γ1(si(t))u − γ2si(t)− γ3sign(si(t)), (37)

si(t) = xi(t)− xi(0)−
∫ t

0
u1

i (v)dv, (38)

where T̂2 = max{T2, T1 + Tmax}.

Theorem 4. If Assumptions 1–2 hold, then the proposed distributed protocol (34–38) enables
all agents of the system (4) to reach a consensus in a fixed time and resolve the problem (6)
asymptotically.

Proof. It is simple to obtain limt→T1 si(t) = ṡi(t)) = 0 in a similar way using the method
described in step 1 of Theorem 1. When t > T1, it can be found that the gradient information
of other agents is estimated efficiently by agent i based on the distributed protocol (31c).
In addition, all estimator values yi

r(t) will approach to ∇ fr(zr(t)) in fixed time Tmax + T1
from Theorem 3. Therefore, there is yi

r(t) = ∇ fr(zr(t)) for t ≥ max{T2, Tmax + T1},
i, k = 1, 2, · · · , N. Based on Theorem 1, all agents’ states xi(t) reach the consensus and
converge to the optimal solution of the optimization problem (6) in a fixed time.

Remark 6. There are few works on fixed-time distributed optimization problems for MASs with
external disturbances. In this research, combining the Artstein model reduction technique and the
integral sliding mode control strategy, we solve the fixed-time distributed optimization problems
subject to time-delay systems with external disturbances. In addition, the fixed-time convergence of
the protocol is strictly proved. As a further improvement of finite-time convergence, the estimation
of setting time is unaffected by the initial conditions.

Remark 7. In Reference [40], the finite-time convergence for bilateral teleoperation systems with
disturbance and time-varying delays was studied, in which the settling time is associated with the
initial value of the system. In this research, we consider the fixed-time distributed optimization
problem for the multi-agent system with disturbances and invariant input delays. The convergence
time is independent of the initial value of the system. Inspired by Reference [40], we will consider
the fixed-time distributed optimization problem with time-varying delays in our future work.

4. Numerical Example

In this section, an economic dispatch example is used to verify the performance of the
proposed algorithms (9–12).
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Consider a MAS with six agents whose dynamic is described by (4), in which xi(t) ∈ R,
ωi(t) = 0.3sin(iπt) and τ = 0.5 for i = 1, 2, · · · , 6. The optimization problem is described as

min F(x(t)) =
6

∑
i=1

fi(xi(t)), (39)

where the cost function f1(x1(t)) = 0.5x2
1(t) + 5, f2(x2(t)) = (x2(t) + 6)2 + 2, f3(x3(t)) =

0.5(x3(t) − 1)2 + 2, f4(x4(t)) = 0.5(x3(t) + 3)2 − 10, f5(x5(t)) = x2
5(t) + cos(x5(t)) + 1,

f6(x6(t)) = x2
6(t)− sin(x6(t)) + 3. Obviously, Assumptions 2 and 3 hold, and ρi = 0.3 for

i = 1, 2, · · · , 6. Figure 1 displays the evolutionary trajectory of local and global objective
functions. Additionally, it is simple to find that the fixed topology graph with all weights
being 0−1 in Figure 2a is connected.

-20 -15 -10 -5 0 5 10 15 20

t

0

100

200

300

400

500

600

700

C
o

s
t 

fu
n

c
ti
o

n
s

f
1
(x)

f
2
(x)

f
3
(x)

f
4
(x)

f
5
(t)

f
6
(x)

-20 -15 -10 -5 0 5 10 15 20

x

0

500

1000

1500

2000

S
u
m

 o
f 
c
o
s
t 
fu

n
c
ti
o
n
s

F(x)

X: -1.6

Y: 43.91

Figure 1. Evolutionary trajectory of local and global functions.

(a) (b)

(c) (d)

Figure 2. The switching topology graphs.

Case 1. Fixed-time centralized optimization protocol Under protocol (9), we select the
initial value states as x(0) = [−5, 2, 1,−2,−3, 4]T , suppose the control parameters ι1 = 0.5,
ι2 = 1.5, ι3 = 2, µ = 7/5, δ = 0.5 and γ1 = γ2 = γ3 = 1. By simply calculating, one obtains

λ2(L) = λ2(L2) = λ2(L
2

µ+1 ) = 1. Then, it yields T1 = 4.7 and T2 = 13.46. The simulation
results are given in Figures 3–6. From Figure 3, the proposed algorithm enables the agents’
states to converge toward the same value x∗ = −1.67 in a fixed time T2 = 13.46. The
evolution of control input and function fi(xi(t)) are shown in Figures 4 and 5, respectively.
Although the function F(z(t)) reaches a minimum when t ∈ [4.7, 13.46), it is not the
minimum of the optimization problem (5). Figure 6 shows that the optimal value of the
cost function is F(x∗(t)) = 43.91.
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Figure 2 indicates the switching topologies, starting with topology (1), the system
switches to topology (2) at t = 5, then to topology (3) at t = 5.1, and finally to topology (4)
at t = 5.2. Notably, the four topology graphs are connected, so λmin

2 (L) = λmin
2 (L2) =

λmin
2 (L

2
µ+1 ) = 0.76. Under the same parameters as the fixed topology, we have T1 = 4.7

and T2 = 18.12. Figure 7 shows the state evolution, and agreement is reached. Figure 8
depicts the control input evolution.

By comparing Figure 3 with Figure 7, one can observe that consensus is possible even
when the communication topology is changing. Compared with Figure 4, the ui(t) will
change slightly at the time of the switch t = 5, t = 5.1 and t = 5.2 in the subgraph of
Figure 8.
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Figure 3. The states of xi(t) for i = 1, 2, · · · , 6.
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Figure 8. The evolution of control input ui(t) for i = 1, 2, · · · , 6.

Case 2. Fixed-time distributed optimization protocol.
Under the protocols (34–38), we choose the same control parameters as in Case 1.

Furthermore, suppose Br = diag{br1, br2, · · · , br6}, where brr = 3 and bri = 0 for i 6= r,
cr = 2, and dr(t) = ‖∇ fr(zr(t))żr(t)‖+ 2 for r = 1, 2, · · · , 6. By calculation, it has T1 = 4.7,
T2 = 13.46, Tmax = 31.25 and T̂ = 35.95. The simulation results are shown in Figures 9–12.
It is discovered that all agents can also achieve agreement and converge to the optimal
solution of the global optimization problem (6) in Figure 9. For t ≥ 4.7, the settling time
of achieving consensus under the protocols (34–38) is larger than the one in (9–12) due
to protocol (11) being used to estimate the gradients of other agents’ objective functions.
Further, this will lead to the settling time being large under algorithms (34–38).
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Figure 9. The states of xi(t) for i = 1, 2, · · · , 6.
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Figure 10. The evolution of control input ui(t) for i = 1, 2, · · · , 6.
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Remark 8. Although the algorithms proposed in this paper have been well verified in the above
numerical examples, there are still some shortcomings. The estimation for the settling time is rather
conservative due to the use of Lemma 1. For example, Figure 3 shows that the convergence is
achieved at t = 5.42, but the estimated settling time is T2 = 13.46. In practice, the conservative
estimation may fail to provide useful system information. To solve this issue, some more accurate
settling time estimation methods should be further considered.

5. Conclusions

In this paper, a centralized optimization algorithm was proposed to handle the opti-
mization problem of MASs with both input delays and external disturbances. By using
the Artstein model reduction technique, the time-delay system was transformed into a
delay-free one, and the external disturbances can be effectively eliminated by an integral
sliding mode control strategy. By creating certain distributed estimators, the acquired
centralized algorithm can be expanded to the distributed one. The fixed time consensus
was proved under the proposed algorithms, and the global optimal value can be achieved
asymptotically. However, there are certain limitations in the Artstein model reduction
technique to procecertainly-invariant delay. In this research, the control input should be
zero after reaching consensus. Otherwise, it will be impossible to convert a time-delay
system to a delay-free system. In future work, we will further investigate the analysis
methods of time-delay system in more detail and seek some new techniques to deal with
this issue.

Author Contributions: Conceptualization, X.X. and Z.Y.; methodology, X.X. and Z.Y.; software,
Z.Y.; validation, X.X., Z.Y. and H.J; formal analysis, X.X.; investigation, X.X.; the resources, Z.Y.;
data curation, X.X.; writing—original draft preparation, X.X.; writing—review and editing, Z.Y.;
visualization, Z.Y.; supervision, H.J.; project administration, Z.Y.; funding acquisition, Z.Y. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China
(Grant Nos. 62003289, 62163035), in part by the China Postdoctoral Science Foundation (Grant No.
2021M690400), in part by the Special Project for Local Science and Technology Development Guided
by the Central Government (Grant No. ZYYD2022A05), and in part by Xinjiang Key Laboratory of
Applied Mathematics (Grant No. XJDX1401).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

MASs Multi-agent systems

References
1. Weiss, G. Multiagent Systems, 2nd ed.; The MIT Press: Cambridge, MA, USA, 2013.
2. Chen, L.; Sun, Z. Gradient-based bearing-only formation control: An elevation angle approach. Automatica 2022, 141, 1–9.

[CrossRef]
3. Deng, H.; Liang, S.; Hong, Y. Distributed continuous-time algorithms for resource allocation problems over weight-balanced

digraphs. IEEE Trans. Cybern. 2018, 48, 3116–3125. [CrossRef]
4. Wang, X.; Han, M. Online sequential extreme learning machine with kernels for nonstationary time series prediction. Neurocom-

puting 2014, 145, 90–97. [CrossRef]
5. Alam, M.; Schiller, E.; Shu, L. Dependable and real-time vehicular communication for intelligent transportation systems. Mob.

Netw. Appl. 2018, 23, 1129–1131. [CrossRef]
6. Olfati-Saber, R.; Murray, R. Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans.

Autom. Control 2004, 49, 1520–1533. [CrossRef]

http://doi.org/10.1016/j.automatica.2022.110310
http://dx.doi.org/10.1109/TCYB.2017.2759141
http://dx.doi.org/10.1016/j.neucom.2014.05.068
http://dx.doi.org/10.1007/s11036-016-0782-9
http://dx.doi.org/10.1109/TAC.2004.834113


Mathematics 2022, 10, 4689 18 of 19

7. Zhu, Y.; Ren, W.; Yu, W.; Wen, G. Distributed resource allocation over directed graphs via continuous-time algorithms. IEEE Trans.
Syst. Man Cybern. Syst. 2021, 51, 1097–1106. [CrossRef]

8. Yan, Y.; Chen, Z.; Varadharajan, V. Distributed consensus-based economic dispatch in power grids using the paillier cryptosystem.
IEEE Trans. Smart Grid 2021, 12, 3493–3502. [CrossRef]

9. Meng, W.; Wang, X.; Liu, S. Distributed load sharing of an inverter-based microgrid with reduced communication. IEEE Trans.
Smart Grid 2018, 9, 1354–1364.

10. Nedić, A.; Ozdaglar, A.; Parrilo, P. Constrained consensus and optimization in multi-agent networks. IEEE Trans. Autom. Control
2010, 55, 922–938.

11. Chen, J.; Sayed, A. Diffusion adaptation strategies for distributed optimization and learning over networks. IEEE Trans. Signal
Process. 2012, 60, 4289–4305. [CrossRef]

12. Shoham, Y.; Leyton-Brown, K. Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations; Cambridge University
Press: Cambridge, UK, 2008.

13. Wang, Q.; Duan, Z.; Wang, J.; Chen, G. LQ synchronization of discrete-time multiagent systems: A distributed optimization
approach. IEEE Trans. Autom. Control 2019, 64, 5183–5190. [CrossRef]

14. Liu, H.; Yu, W. Discrete-time algorithm for distributed unconstrained optimization problem with finite-time computations. IEEE
Trans. Circuits Syst. II Express Briefs 2021, 68, 351–355. [CrossRef]

15. Yu, W.; Liu, H.; Zheng, W.; Zhu, Y. Distributed discrete-time convex optimization with nonidentical local constraints over
time-varying unbalanced directed graphs. J. Frankl. Inst. 2021, 134, 1–15. [CrossRef]

16. Zhang, L.; Liu, S. Projected subgradient based distributed convex optimization with transmission noises. Appl. Math. Comput.
2021, 418, 1–12.

17. Li, Y.; Zhang, H.; Huang, B.; Han, J. A distributed Newton-Raphson-based coordination algorithm for multi-agent optimization
with discrete-time communication. Neural Comput. Appl. 2020, 32, 4649–4663. [CrossRef]

18. Wang, C.; Xu, S.; Yuan, D.; Zhang, B.; Zhang, Z. Distributed online convex optimization with a bandit primal-dual mirror descent
push-sum algorithm. Neurocomputing 2022, 497, 204–215. [CrossRef]

19. Guo, Z.; Chen, G. Distributed zero-gradient-sum algorithm for convex optimization with time-varying communication delays
and switching networks. Int. J. Robust Nonlinear Control 2018, 28, 4900–4915. [CrossRef]

20. Pang, Y.; Hu, G. Gradient-free distributed optimization with exact convergence. Automatica 2021, 144, 110474. [CrossRef]
21. Varagnolo, D.; Zanella, F.; Cenedese, A. Newton-Raphson consensus for distributed convex optimization. IEEE Trans. Autom.

Control 2016, 61, 994–1009. [CrossRef]
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