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Abstract: In this paper, we first introduce a linear integral operator =p(a, c, µ) (µ > 0;
a, c ∈ R; c > a > −µp; p ∈ N+ := {1, 2, 3, . . .}), which is somewhat related to a rather spe-
cialized form of the Riemann–Liouville fractional integral operator and its varied form known as
the Erdélyi–Kober fractional integral operator. We then derive some differential subordination and
differential superordination results for analytic and multivalent functions in the open unit disk
U, which are associated with the above-mentioned linear integral operator =p(a, c, µ). The results
presented here are obtained by investigating appropriate classes of admissible functions. We also
obtain some Sandwich-type results.
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superordination; sandwich-type theorems; admissible function classes; linear operator
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1. Introduction

LetH(U) be the class of functions that are analytic in the open unit disk

U = {z : z ∈ C and |z| < 1}.

Additionally, letH[a0, n] be the subclass ofH(U), which consists of functions of the
following form:

f (z) = a0 + anzn + an+1zn+1 + . . .(
a0 ∈ C; n ∈ N+ := {1, 2, 3, . . .}

)
.

Clearly, for the familiar class A(p) of analytic and multivalent (or p-valent) functions
in U, with the power-series expansion given by

f (z) = zp +
∞

∑
n=p+1

anzn (p ∈ N+; z ∈ U), (1)
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we have
A(p) := H[0, p] (ap ≡ 1).

In the theory and widespread applications of fractional calculus (see, for example, [1,2];
see also the recent survey-cum-expository review article [3]), one of the most popular
operators happens to be the Riemann–Liouville fractional integral operator of order
α ∈ C

(
<(α) > 0

)
defined by

(
Iα
0+ f

)
(x) =

1
Γ(α)

∫ x

0
(x− τ)α−1 f (τ) dτ

(
x > 0; <(α) > 0

)
(2)

in terms of the familiar (Euler’s) Gamma function Γ(α). An interesting variant of the
Riemann–Liouville operator Iα

0+, which is known as the Erdélyi–Kober fractional integral
operator of order α ∈ C

(
<(α) > 0

)
defined by

(
Iα
0+;σ,η f

)
(x) =

σx−σ(α+η)

Γ(α)

∫ x

0
τσ(η+1)−1 (xσ − τσ

)α−1 f (τ) dτ (3)

(
x > 0; <(α) > 0

)
,

which corresponds essentially to (2) when σ− 1 = η = 0, since(
Iα
0+;1,0 f

)
(x) = x−α

(
Iα
0+ f

)
(x)

(
x > 0; <(α) > 0

)
.

Motivated essentially by the special case of the definition (3) when x = σ = 1,
η = a− 1, and α = c− a, here we consider a linear integral operator =p(a, c, µ) defined for
a function f ∈ A(p) by (see [4])

=p(a, c, µ) f (z) =
Γ(c + µp)

Γ(a + µp)Γ(c− a)

∫ 1

0
τa−1 (1− τ)c−a−1 f

(
zτµ
)

dτ

(µ > 0; a, c ∈ R; c > a > −µp; p ∈ N+).

When evaluated by means of the Eulerian Beta-function integral:

B(α, β) :=



∫ 1

0
τα−1 (1− τ)β−1 dτ

(
min{<(α),<(β)} > 0

)
Γ(α)Γ(β)

Γ(α + β)

(
α, β ∈ C \Z−0

)
,

we readily find that

=p(a, c, µ) f (z) =


zp +

Γ(c + µp)
Γ(a + µp)

∞
∑

n=p+1

Γ(a + µn)
Γ(c + µn)

anzn (c > a)

f (z) (c = a),

(4)

Z−0 being the set of nonpositive integers. It is easy to deduce from (4) that

z
(
=p(a, c, µ) f (z)

)′
=

(
a
µ
+ p

)
=p(a + 1, c, µ) f (z)− a

µ
=p(a, c, µ) f (z). (5)

We also note that the linear operator =p(a, c, µ) is a generalization of many other
integral operators, which were considered in earlier works. For example, for f ∈ A(p) we
have the following special cases:

(i) Putting p = 1,, we obtain the operator Ĩ(a, c; µ) studied by Raina and Sharma (see [5]
with m = 0);
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(ii) Putting a = β, c = β + 1 and µ = 1, we obtain the operator =β
p (β > −p), which was

studied by Saitoh et al. [6];
(iii) Putting a = β, c = α + β− γ + 1 and µ = 1, we obtain the operator R

α,γ
β,p (γ > 0;

α = γ− 1; β > −p), which was studied by Aouf et al. [7];
(iv) Putting a = β, c = α + β and µ = 1, we obtain the operator χα

β,p (α = 0; β > −p),
which was studied by Liu and Owa [8];

(v) Putting p = 1, a = β, c = α + β and µ = 1, we obtain the operator Rα
β (α = 0;

β > −1), which was studied by Jung et al. [9];
(vi) Putting p = 1, a = α − 1, c = β − 1 and µ = 1, we obtain the operator

L(α, β)
(
α, β ∈ C \Z−0

)
, which was studied by Carlson and Shaffer [10];

(vii) Putting p = 1, a = a− 1, c = υ and µ = 1, we obtain the operator Ia,υ (a > 0; υ = −1),
which was studied by Choi et al. [11];

(viii) Putting p = 1, a = α, c = 0 and µ = 1, we obtain the operator Dα (α > −1), which
was studied by Ruscheweyh [12];

(ix) Putting p = 1, a = α = 1, c = m and µ = 1, we obtain the operator
Im (m ∈ N+

0 := N+ ∪ {0}), which was studied by Noor [13];
(x) Putting p = 1, a = β, c = β + 1 and µ = 1, we obtain the operator Iβ, which was

studied by Bernardi [14];
(xi) Putting p = 1, a = 1, c = 2 and µ = 1, we obtain I, which was studied by Libera [15].

By the principle of subordination between analytic functions, given f , g ∈ H(U), the
function f (z) is said to be subordinate to g(z) or, equivalently, the function g(z) is said to
be superordinate to f (z), if there exists a Schwarz function w(z), which (by definition) is
analytic in U with

w(0) = 0 and |w(z)| < 1 (z ∈ U),

such that f (z) = g
(
w(z)

)
. In such a case, we write f (z) ≺ g(z). Furthermore, if the function

g(z) is univalent in U, then we have the following equivalence (see, for example, [16]; see
also [17,18]):

f (z) ≺ g(z) ⇐⇒ f (0) = g(0) and f (U) ⊂ g(U).

We denote by ℘ the set of all functions χ that are injective on U \ E(χ), where

E(χ) = {ς : ς ∈ ∂U and lim
z→ς

f (z) = ∞}

and are such that χ′(ς) 6= 0 for ς ∈ ∂U \ E(χ). We also denote by ℘(a) the subclass of ℘ for
which χ(0) = a and let

℘(0) = ℘0 and ℘(1) = ℘1.

Definition 1 (see ([18], p. 27, Definition 2.3a)). Let Ω be a set in C, χ ∈ ℘ and n ∈ N+. The
class Ψn[Ω, χ] of admissible functions consists of the functions ψ : C3 ×U→ C that satisfy the
admissibility condition ψ(r, s, t; z) /∈ Ω whenever

r = χ(ς), s = kςχ′(ς) and <
(

t
s
+ 1
)
= k<

(
1 +

ςχ′′(ς)

χ′(ς)

)
,

where z ∈ U, ς ∈ ∂U \ E(χ) and k = n. For simplicity, we write Ψ1[Ω, χ] as Ψ[Ω, χ]. In
particular, if we set

χ(z) =
(

Mz + a

M + az

)
M (M > 0; |a| < M),

then
χ(U) = UM = {w : |w| < M}, χ(0) = a, E(χ) = φ and χ ∈ ℘(a).

In this case, we set
Ψn[Ω, M, a] = Ψn[Ω, χ]

and, in the special case when the set Ω = UM, the resulting class is simply denoted by Ψn[M, a].
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Definition 2 (see ([19], p. 817, Definition 3)). Let Ω be a set in C and χ ∈ H[a, n] with
χ′(z) 6= 0. The class Ψ′n[Ω, χ] of admissible functions consists of the functions ψ : C3 ×U→ C
that satisfy the admissibility condition ψ(r, s, t; ς) ∈ Ω whenever

r = χ(z), s =
zχ′(z)

m
and <

(
t
s
+ 1
)
5

1
m
<
(

1 +
zχ′′(z)
χ′(z)

)
,

where z ∈ U, ς ∈ ∂U and m = n = 1. In particular, we write Ψ′1[Ω, χ] as Ψ′[Ω, χ].

Here, in our present investigation, we need the following lemmas, which are proved
by Miller and Mocanu (see [18,19]).

Lemma 1 (see ([18], p. 28, Theorem 2.3b)). Let ψ ∈ Ψn[Ω, χ] with χ(0) = a. If the function
ω(z) given by

ω(z) = a+ anzn + an+1zn+1 + . . .

is analytic in U and satisfies the following inclusion relation:

ψ
(
ω(z), zω′(z), z2ω′′(z); z

)
∈ Ω,

then ω(z) ≺ χ(z).

Lemma 2 (see ([19], p. 818, Theorem 1)). Let ψ ∈ Ψ′n[Ω, χ] with χ(0) = a. If ω(z) ∈ ℘(a)
and the function ψ

(
ω(z), zω′(z), z2ω′′(z); z

)
is univalent in U, then the following set inclusion:

Ω ⊂
{

ψ
(
ω(z), zω′(z), z2ω′′(z); z

)
: z ∈ U

}
implies that χ(z) ≺ ω(z).

In this paper, we determine the sufficient conditions for certain specified classes of
admissible functions of analytic and multivalent (or p-valent) functions that are associated
with the linear operator =p(a, c, µ) so that

χ1(z) ≺
[
=p(a, c, µ) f (z)

]γ ≺ χ2(z)

and

χ1(z) ≺
(=p(a, c, µ) f (z)

zp−1

)γ

≺ χ2(z),

where the functions χ1(z) and χ2(z) are univalent in U. We also derive some differential
sandwich-type results. Similar problems for subordination or superordinations for analytic
functions were studied by Aghalary et al. [20], Ali et al. [21], Kim and Srivastava [22],
Shanmugam et al. [23], Frasin [24], and other authors.

2. Subordination Results Involving the Operator =p(a, c, µ)

Unless otherwise mentioned, we suppose throughout this paper that

γ > 0, µ > 0, a, c ∈ R
(
c > a > −µp; p ∈ N+

)
and z ∈ U.

Moreover, all powers are assumed to be the principal values.

Definition 3. Let Ω be a set in C and χ ∈ ℘0 ∩H[0, γp]. The class Φ1[Ω, χ, γ] of admissible func-
tions consists of the functions ϕ : C3 ×U→ C that satisfy the following admissibility condition:

ϕ(u, v, w; z) /∈ Ω
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whenever

u = χ(ς), v =
kςχ′(ς) + γa

µ χ(ς)

γ
(
a
µ + p

)
and

<


(
a
µ + p

)2
w−

(
a
µ + p

)(
2γa+1

µ

)
v + γ

(
a
µ

)2
u

a
µ (v− u) + pv


= k<

(
1 +

ςχ′′(ς)

χ′(ς)

)
(k > 0), (6)

where z ∈ U, ς ∈ ∂U \ E(χ) and k = γp.

We now state and prove our first result as Theorem 1 below.

Theorem 1. Let ϕ ∈ Φ1[Ω, χ, γ]. If the function f (z) ∈ A(p) satisfies the following set inclusion:{
ϕ

([
=p(a, c, µ) f (z)

]γ,
[
=p(a, c, µ) f (z)

]γ−1=p(a + 1, c, µ) f (z),

(γ− 1)
[
=p(a, c, µ) f (z)

]γ−2 ·
[
=p(a + 1, c, µ) f (z)

]2
+

a + 1 + µp
a + µp

·
[
=p(a, c, µ) f (z)

]γ−1 =p(a + 2, c, µ) f (z); z

)
: z ∈ U

}
⊂ Ω,

(7)

then [
=p(a, c, µ) f (z)

]γ ≺ χ(z).

Proof. Define the analytic function ω(z) in U by

ω(z) =
[
=p(a, c, µ) f (z)

]γ. (8)

Differentiating (8) with respect to z and using the identity (5), we obtain

[
=p(a, c, µ) f (z)

]γ−1=p(a + 1, c, µ) f (z) =
zω′(z) + γa

µ ω(z)

γ
(

a
µ + p

) . (9)

Further computations show that

(γ− 1)
[
=p(a, c, µ) f (z)

]γ−2(=p(a + 1, c, µ) f (z)
)2

+
a + 1 + µp

a + µp
[
=p(a, c, µ) f (z)

]γ−1=p(a + 2, c, µ) f (z)

=
z2ω′′(z) +

(
1 + 2γa+1

µ

)
zω′(z) + γa(γa+1)

µ2 ω(z)

γ
(

a
µ + p

)2 .

(10)

We now define the following transformations for ϕ : C3 ×U→ C:

u(r, s, t) = r, v(r, s, t) =
s + γa

µ r

γ
(

a
µ + p

)
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and

w(r, s, t) =
t +
(

1 + 2γa+1
µ

)
s + γa(γa+1)

µ2 r

γ
(

a
µ + p

)2 . (11)

We also set

ψ(r, s, t; z) = ϕ(u, v, w; z)

= ϕ

r,
s + γa

µ r

γ
(

a
µ + p

) ,
t +
(

1 + 2γa+1
µ

)
s + γa(γa+1)

µ2 r

γ
(

a
µ + p

)2 ; z

. (12)

Then, by using the Equations (8)–(12), we obtain

ψ
(
ω(z), zω′(z), z2ω′′(z); z

)
= ϕ

([
=p(a, c, µ) f (z)

]γ,
[
=p(a, c, µ) f (z)

]γ−1 =p(a + 1, c, µ) f (z),

(γ− 1)
[
=p(a, c, µ) f (z)

]γ−2 ·
[
=p(a + 1, c, µ) f (z)

]2
+

a + 1 + µp
a + µp

[
=p(a, c, µ) f (z)

]γ−1 =p(a + 2, c, µ) f (z); z

)
.

(13)

Thus, clearly, the Equation (7) becomes

ψ
(
ω(z), zω′(z), z2ω′′(z); z

)
∈ Ω.

The proof of Theorem 1 is completed if it can be shown that the admissibility condition
for ϕ ∈ Φ1[Ω, χ, γ] is equivalent to the admissibility condition for ψ as given in Definition 1.
For this purpose, we note that

t
s
+ 1 =

(
a
µ + p

)2
w−

(
a
µ + p

)(
2γa+1

µ

)
v + γ

(
a
µ

)2
u

a
µ (v− u) + pv

,

and hence that ψ ∈ Ψγp[Ω, χ]. Consequently, by applying Lemma 1, we have

ω(z) ≺ χ(z) or
[
=p(a, c, µ) f (z)

]γ ≺ χ(z),

which proves Theorem 1.

In the case when Ω 6= C is a simply-connected domain, then Ω = h(U) for some
conformal mapping h(z) of U onto Ω. In this case, the class Φ1[h(U), χ, γ] is written
as Φ1[h, χ, γ].

The following result is an immediate consequence of Theorem 1.

Theorem 2. Let ϕ ∈ Φ1[h, χ, γ]. If the function f (z) ∈ A(p) satisfies the following
subordination relation:
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ϕ

([
=p(a, c, µ) f (z)

]γ,
[
=p(a, c, µ) f (z)

]γ−1=p(a + 1, c, µ) f (z),

(γ− 1)
[
=p(a, c, µ) f (z)

]γ−2 [=p(a + 1, c, µ) f (z)
]2

+
a + 1 + µp

a + µp

·
[
=p(a, c, µ) f (z)

]γ−1 =p(a + 2, c, µ) f (z); z

)
≺ h(z),

(14)

then [
=p(a, c, µ) f (z)

]γ ≺ χ(z).

Our next result is an extension of Theorem 1 to the case when the behavior of χ(z) on
∂U is not known.

Theorem 3. Let Ω ⊂ C and suppose that the function χ(z) is univalent in U with χ(0) = 0.
Additionally, let ϕ ∈ Φ1[Ω, χρ, γ] for some ρ ∈ (0, 1), where

χρ(z) = χ(ρz).

If f ∈ A(p) and{
ϕ

([
=p(a, c, µ) f (z)

]γ,
[
=p(a, c, µ) f (z)

]γ−1 =p(a + 1, c, µ) f (z),

(γ− 1)
[
=p(a, c, µ) f (z)

]γ−2 [=p(a + 1, c, µ) f (z)
]2

+
a + 1 + µp

a + µp

·
[
=p(a, c, µ) f (z)

]γ−1 =p(a + 2, c, µ) f (z); z

)
: z ∈ U

}
⊂ Ω,

(15)

then [
=p(a, c, µ) f (z)

]γ ≺ χ(z).

Proof. Theorem 1 yields the following subordination relation:[
=p(a, c, µ) f (z)

]γ ≺ χρ(z).

The result is now deduced from the subordination hypothesis:

χρ(z) ≺ χ(ρz)

for some ρ ∈ (0, 1).

Theorem 4. Let the functions h(z) and χ(z) be univalent in U with χ(0) = 0 and set

χρ(z) = χ(ρz) and hρ(z) = h(ρz).

Suppose also that the mapping ϕ : C3 ×U→ C satisfies one of the following conditions:

(1) ϕ ∈ Φ1[h, χρ, γ] for some ρ ∈ (0, 1) or
(2) ρ0 ∈ (0, 1) exists such that ϕ ∈ Φ1[hρ, χρ, γ] for all ρ ∈ (ρ0, 1).

If the function f (z) ∈ A(p) satisfies the condition (14), then[
=p(a, c, µ) f (z)

]γ ≺ χ(z).

Proof. The proof is similar to the proof of a known result ([18], p. 30, Theorem 2.3d) and it
is, therefore, omitted here.
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The next theorem yields the best dominant of the differential subordination (14).

Theorem 5. Let the function h(z) be univalent in U and let ϕ : C3 ×U→ C. Suppose that the
following second-order differential equation:

ϕ
(
ω(z), zω′(z), z2ω′′(z); z

)
= h(z) (16)

has a solution χ(z), with χ(0) = 0, satisfying one of the following conditions:

(1) χ(z) ∈ ℘0 and ϕ ∈ Φ1[h, χ, γ] or
(2) χ(z) is univalent in U and ϕ ∈ Φ1[h, χρ, γ] for some ρ ∈ (0, 1) or
(3) χ(z) is univalent in U and ρ0 ∈ (0, 1) exists such that ϕ ∈ Φ1[hρ, χρ, γ] for all ρ ∈ (ρ0, 1).

If the function f (z) ∈ A(p) satisfies (14), then[
=p(a, c, µ) f (z)

]γ ≺ χ(z)

and χ(z) is the best dominant.

Proof. Using the technique in proving the known result ([18], p. 31, Theorem 2.3e), we
deduce that χ(z) is a dominant from Theorems 1 and 2. Moreover, since χ(z) satisfies (16),
it is also a solution of (14). Therefore, χ(z) will be dominated by all dominants. Hence, χ(z)
is the best dominant.

In the particular case when χ(z) = Mz (M > 0) and, in view of Definition 3, the class
Φ1[Ω, χ, γ] of admissible functions, which we denote by Φ1[Ω, M, γ], is described below.

Definition 4. Let Ω be a set in C and M > 0. The class Φ1[Ω, M, γ] of admissible functions
consists of the functions ϕ : C3 ×U→ C such that

ϕ

Meiθ ,
k + γa

µ

γ
(

a
µ + p

)Meiθ ,
L +

[(
1 + 2γa+1

µ

)
k + γa(γa+1)

µ2

]
Meiθ

γ
(

a
µ + p

)2 ; z

 /∈ Ω

whenever z ∈ U, θ ∈ R and

<
(

Le−iθ
)
= (k− 1)kM (∀ θ ∈ R; k = γp).

Corollary 1. Let ϕ ∈ Φ1[Ω, M, γ]. If the function f (z) ∈ A(p) satisfies the following
inclusion relation:

ϕ

([
=p(a, c, µ) f (z)

]γ,
[
=p(a, c, µ) f (z)

]γ−1=p(a + 1, c, µ) f (z),

(γ− 1)
[
=p(a, c, µ) f (z)

]γ−2 [=p(a + 1, c, µ) f (z)
]2

+
a + 1 + µp

a + µp

·
[
=p(a, c, µ) f (z)

]γ−1 =p(a + 2, c, µ) f (z); z

)
∈ Ω,

(17)

then ∣∣=p(a, c, µ) f (z)
∣∣γ < M.

Proof. From Definition 4
χ(z) = Mz .

The result is now deduced: ∣∣=p(a, c, µ) f (z)
∣∣γ < M.
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In the special case when

Ω = χ(U) = {w : |w| < M},

the class Φ1[Ω, M, γ] is simply denoted by Φ1[M, γ].

Corollary 2. Let ϕ ∈ Φ1[M, γ]. If the function f (z) ∈ A(p) satisfies the following inequality:∣∣∣∣∣ϕ
([
=p(a, c, µ) f (z)

]γ,
[
=p(a, c, µ) f (z)

]γ−1 =p(a + 1, c, µ) f (z),

(γ− 1)
[
=p(a, c, µ) f (z)

]γ−2 [=p(a + 1, c, µ) f (z)
]2

+
a + 1 + µp

a + µp

·
[
=p(a, c, µ) f (z)

]γ−1 =p(a + 2, c, µ) f (z); z

)∣∣∣∣∣ < M,

(18)

then ∣∣=p(a, c, µ) f (z)
∣∣γ < M.

Corollary 3. If k > γp and if the function f (z) ∈ A(p) satisfies the following condition:∣∣∣[=p(a, c, µ) f (z)
]γ−1 =p(a + 1, c, µ) f (z)

∣∣∣ < M,

then ∣∣=p(a, c, µ) f (z)
∣∣γ < M.

Proof. The proof follows from Corollary 1 by taking

ϕ(u, v, w; z) = v =
k + γa

µ

γ
(

a
µ + p

) Meiθ .

Example 1. If the function f (z) ∈ A(p), a = c = 0 and γ = µ = 1, then we see that

(i) =p(0, 0, 1) f (z) = f (z);

(ii) =p(1, 0, 1) f (z) = z f ′(z)
p ;

(iii) =p(2, 0, 1) f (z) = z2 f ′′(z)
p(p+1) + 2 z f ′(z)

p(p+1) .

Thus, upon substituting in Corollary 3 from the above relations, we obtain∣∣∣∣ z f ′(z)
p

∣∣∣∣ < M =⇒ | f (z)| < M.

Definition 5. Let Ω be a set in C and suppose that χ(z) ∈ ℘0 ∩H[0, γ]. The class Φ2[Ω, χ, γ]
of admissible functions consists of the functions ϕ : C3 × U → C that satisfy the following
admissibility condition:

ϕ(u, v, w; z) /∈ Ω

whenever

u = χ(ς), v =
kςχ′(ς) + γ

(
a
µ + (p− 1)

)
χ(ς)

γ
(

a
µ + p

)
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and

<

 (a+µp)2

µ(a+µ(p−1))w−
(

γa+1
µ + γ(p− 1)

)
v + γ

(
a
µ + (p− 1)

)
u

a+µp
a+µ(p−1)v− u


= k<

(
1 +

ςχ′′(ς)

χ′(ς)

)
,

(19)

where z ∈ U, ς ∈ ∂U \ E(χ) and k = γ.

Theorem 6. Let ϕ ∈ Φ2[Ω, χ, γ]. If the function f (z) ∈ A(p) satisfies the following set inclusion:{
ϕ

([=p(a, c, µ) f (z)
zp−1

]γ

,
[=p(a, c, µ) f (z)

zp−1

]γ =p(a + 1, c, µ) f (z)
=p(a, c, µ) f (z)

,

[=p(a, c, µ) f (z)
zp−1

]γ
[
(γ− 1)

(=p(a + 1, c, µ) f (z)
=p(a, c, µ) f (z)

)2

+
a + 1 + µp

a + µp
=p(a + 2, c, µ) f (z)
=p(a, c, µ) f (z)

]
; z

)
: z ∈ U

}
⊂ Ω,

(20)

then [=p(a, c, µ) f (z)
zp−1

]γ

≺ χ(z).

Proof. We define an analytic function g(z) in U by

g(z) =
[=p(a, c, µ) f (z)

zp−1

]γ

. (21)

By making use of (5) and (21), we obtain

[=p(a, c, µ) f (z)
zp−1

]γ =p(a + 1, c, µ) f (z)
=p(a, c, µ) f (z)

=
zg′(z) + γ

(
a
µ + (p− 1)

)
g(z)

γ
(

a
µ + p

) . (22)

Further computations show that[=p(a, c, µ) f (z)
zp−1

]γ
[
(γ− 1)

(=p(a + 1, c, µ) f (z)
=p(a, c, µ) f (z)

)2

+
a + 1 + µp

a + µp
=p(a + 2, c, µ) f (z)
=p(a, c, µ) f (z)

]

=
z2g′′(z) +

(
1 + 2γa+1

µ + 2γ(p− 1)
)

zg′(z) + ( γa
µ + γ(p− 1))

(
γa+1

µ + γ(p− 1)
)

g(z)

γ
(

a
µ + p

)2 .

We next define the transformations from C3 to C by

u = r, v =
s + γ

(
a
µ + (p− 1)

)
r

γ
(

a
µ + p

) ,
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and

w =
t +
(

1 + 2γa+1
µ + 2γ(p− 1)

)
s + ( γa

µ + γ(p− 1))
(

γa+1
µ + γ(p− 1)

)
r

γ
(

a
µ + p

)2 .

Additionally, let

ψ(r, s, t; z) = ϕ(u, v, w; z)

= ϕ

(
r,

s + γ
(

a
µ + (p− 1)

)
r

γ
(

a
µ + p

) ,

t +
(

1 + 2γa+1
µ + 2γ(p− 1)

)
s + ( γa

µ + γ(p− 1))
(

γa+1
µ + γ(p− 1)

)
r

γ
(

a
µ + p

)2 ; z

)
.

(23)

Thus, by using Equations (21)–(23), we obtain

ψ
(

g(z), zg′(z), z2g′′(z); z
)

= ϕ

([=p(a, c, µ) f (z)
zp−1

]γ

,
[=p(a, c, µ) f (z)

zp−1

]γ=p(a + 1, c, µ) f (z)
=p(a, c, µ) f (z)

,

[=p(a, c, µ) f (z)
zp−1

]γ
[
(γ− 1)

(=p(a + 1, c, µ) f (z)
=p(a, c, µ) f (z)

)2

+
a + 1 + µp

a + µp
=p(a + 2, c, µ) f (z)
=p(a, c, µ) f (z)

]
; z

)
.

(24)

Hence, (20) implies that
ψ
(

g(z), zg′(z), z2g′′(z); z
)
∈ Ω.

The proof of Theorem 6 is completed if it can be shown that the admissibility condition
for ϕ ∈ Φ2[Ω, χ, γ] is equivalent to the admissibility condition for ψ as given in Definition 1.
For this purpose, we note that

t
s
+ 1 =

(a+µp)2

µ(a+µ(p−1))w−
(

γa+1
µ + γ(p− 1)

)
v + γ

(
a
µ + (p− 1)

)
u

a+µp
a+µ(p−1)v− u

,

and hence that ψ ∈ Ψ[Ω, χ, γ]. Therefore, by applying Lemma 1, we conclude that g(z) ≺
χ(z) or, equivalently, that [=p(a, c, µ) f (z)

zp−1

]γ

≺ χ(z),

which completes the proof of Theorem 6.

We next consider the case when Ω 6= C is a simply-connected domain, with Ω = h(U),
for some conformal mapping h(z) of U onto Ω. In this case, Φ2[h(U), χ, γ] is written
as Φ2[h, χ, γ]. In the particular case when χ(z) = Mz (M > 0), we denote the class
Φ2[Ω, χ, γ] of admissible functions by Φ2[Ω, M].

Proceeding similarly as in the previous section, the following result is an immediate
consequence of Theorem 6.
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Theorem 7. Let ϕ ∈ Φ2[h, χ, γ]. If the function f (z) ∈ A(p) satisfies the following
subordination relation:

ϕ

([=p(a, c, µ) f (z)
zp−1

]γ

,
[=p(a, c, µ) f (z)

zp−1

]γ =p(a + 1, c, µ) f (z)
=p(a, c, µ) f (z)

,

[=p(a, c, µ) f (z)
zp−1

]γ

·
[
(γ− 1)

(=p(a + 1, c, µ) f (z)
=p(a, c, µ) f (z)

)2

+
a + 1 + µp

a + µp
=p(a + 2, c, µ) f (z)
=p(a, c, µ) f (z)

]
; z

)
≺ h(z),

(25)

then [=p(a, c, µ) f (z)
zp−1

]γ

≺ χ(z).

Definition 6. Let Ω be a set in C and M > 0. The class Φ2[Ω, M, γ] of admissible functions
consists of the functions ϕ : C3 ×U→ C such that

ϕ

(
Meiθ ,

k + γ
(

a
µ + (p− 1)

)
γ
(

a
µ + p

) Meiθ ,

L +
[(

1 + 2γa+1
µ + 2γ(p− 1)

)
k + ( γa

µ + γ(p− 1))
(

γa+1
µ + γ(p− 1)

)]
Meiθ

γ
(

a
µ + p

)2 ; z

)

/∈ Ω

(26)

whenever z ∈ U, θ ∈ R and

<
(

Le−iθ
)
= (k− 1)kM (∀ θ ∈ R; p ∈ N+; k = γ).

Corollary 4. Let ϕ ∈ Φ2[Ω, M, γ]. If the function f (z) ∈ A(p) satisfies the following
inclusion relation:

ϕ

([=p(a, c, µ) f (z)
zp−1

]γ

,
[=p(a, c, µ) f (z)

zp−1

]γ =p(a + 1, c, µ) f (z)
=p(a, c, µ) f (z)

,

[=p(a, c, µ) f (z)
zp−1

]γ
[
(γ− 1)

(=p(a + 1, c, µ) f (z)
=p(a, c, µ) f (z)

)2

+
a + 1 + µp

a + µp
=p(a + 2, c, µ) f (z)
=p(a, c, µ) f (z)

]
; z

)
∈ Ω,

(27)

then ∣∣∣∣=p(a, c, µ) f (z)
zp−1

∣∣∣∣γ < M.

In the special case when

Ω = χ(U) = {w : w ∈ C and |w| < M},

the class Φ2[Ω, M, γ] is simply denoted by Φ2[M, γ].
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Corollary 5. Let ϕ ∈ Φ2[M, γ]. If the function f (z) ∈ A(p) satisfies the following inequality:∣∣∣∣∣ϕ
([=p(a, c, µ) f (z)

zp−1

]γ

,
[=p(a, c, µ) f (z)

zp−1

]γ=p(a + 1, c, µ) f (z)
=p(a, c, µ) f (z)

,

[=p(a, c, µ) f (z)
zp−1

]γ
[
(γ− 1)

(=p(a + 1, c, µ) f (z)
=p(a, c, µ) f (z)

)2

+
a + 1 + µp

a + µp
=p(a + 2, c, µ) f (z)
=p(a, c, µ) f (z)

]
; z

)∣∣∣∣∣ < M,

(28)

then ∣∣∣∣=p(a, c, µ) f (z)
zp−1

∣∣∣∣γ < M.

Corollary 6. If k > γ and if the function f (z) ∈ A(p) satisfies the following condition:∣∣∣∣∣
(=p(a, c, µ) f (z)

zp−1

)γ =p(a + 1, c, µ) f (z)
=p(a, c, µ) f (z)

∣∣∣∣∣ < M,

then ∣∣∣∣=p(a, c, µ) f (z)
zp−1

∣∣∣∣γ < M.

Proof. The proof follows from Corollary 5 by taking

ϕ(u, v, w; z) = v =
k + γ

(
a
µ + (p− 1)

)
γ
(

a
µ + p

) Meiθ .

Example 2. rmFor f (z) ∈ A(p), a = c = 0 and γ = µ = 1, if we ubstitute in Corollary 6 from
Example 1 (i) and (ii), we obtain∣∣∣∣ f ′(z)

pzp−2

∣∣∣∣ < M =⇒
∣∣∣∣ f (z)
zp−1

∣∣∣∣ < M.

3. Superordination and Sandwich-Type Results Involving =p(a, c, µ)

In this section, we investigate differential superordination and sandwich-type results
for the linear operator =p(a, c, µ). For this purpose, the class of admissible functions is
defined as follows.

Definition 7. Let Ω be a set in C and suppose that χ(z) ∈ H[0, γp] with zχ′(z) 6= 0. The class
Φ′1[Ω, χ, γ] of admissible functions consists of the functions ϕ : C3 × U → C that satisfy the
following admissibility condition:

ϕ(u, v, w; ς) ∈ Ω

whenever

u = χ(z), v =
zχ′(z) + m γa

µ χ(z)

mγ
(

a
µ + p

)
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and

<


(

a
µ + p

)2
w−

(
a
µ + p

)(
2γa+1

µ

)
v + γ

(
a
µ

)2
u

a
µ (v− u) + pv


5

1
m
<
(

1 +
zχ′′(z)
χ′(z)

)
,

where z ∈ U, ς ∈ ∂U and m = γp.

Theorem 8. Let ϕ ∈ Φ′1[Ω, χ, γ]. If f (z) ∈ A(p),
[
=p(a, c, µ) f (z)

]γ ∈ ℘0 and the function ϕ
given by

ϕ

([
=p(a, c, µ) f (z)

]γ,
[
=p(a, c, µ) f (z)

]γ−1=p(a + 1, c, µ) f (z),

(γ− 1)
[
=p(a, c, µ) f (z)

]γ−2 (=p(a + 1, c, µ) f (z)
)2

+
a + 1 + µp

a + µp

·
[
=p(a, c, µ) f (z)

]γ−1 =p(a + 2, c, µ) f (z); z

) (29)

is univalent in U, then the following set inclusion:

Ω ⊂
{

ϕ

([
=p(a, c, µ) f (z)

]γ,
[
=p(a, c, µ) f (z)

]γ−1=p(a + 1, c, µ) f (z),

(γ− 1)
[
=p(a, c, µ) f (z)

]γ−2 (=p(a + 1, c, µ) f (z)
)2

+
a + 1 + µp

a + µp

·
[
=p(a, c, µ) f (z)

]γ−1 =p(a + 2, c, µ) f (z); z

)
: z ∈ U

} (30)

implies that
χ(z) ≺

[
=p(a, c, µ) f (z)

]γ.

Proof. From (13) and (30), we have

Ω ⊂
{

ψ(ω(z), zω′(z), z2ω′′(z); z) : z ∈ U
}

.

Moreover, we see from (11) that the admissibility condition for ϕ ∈ Φ′1[Ω, χ, γ] is equivalent
to the admissibility condition for ψ as given in Definition 2. Hence ψ ∈ Ψ′γp[Ω, χ] and, by
Lemma 2, we obtain

χ(z) ≺ ω(z) or χ(z) ≺
[
=p(a, c, µ) f (z)

]γ.

If Ω 6= C is a simply-connected domain, then Ω = h(U) for some conformal mapping
h(z) for U onto Ω. In this case, the class Φ′1[h(U), χ, γ] is written simply as Φ′1[h, χ, γ].

Proceeding as in Section 2, the following result is seen to be an immediate consequence
of Theorem 8.
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Theorem 9. Let χ(z) ∈ H[0, γ], the function h(z) is analytic in U and ϕ ∈ Φ′1[h, χ, γ]. If
f (z) ∈ A(p) and

[
=p(a, c, µ) f (z)

]γ ∈ ℘0, and if the function ϕ given by

ϕ

([
=p(a, c, µ) f (z)

]γ,
[
=p(a, c, µ) f (z)

]γ−1=p(a + 1, c, µ) f (z),

(γ− 1)
[
=p(a, c, µ) f (z)

]γ−2 (=p(a + 1, c, µ) f (z)
)2

+
a + 1 + µp

a + µp
[
=p(a, c, µ) f (z)

]γ−1=p(a + 2, c, µ) f (z); z

) (31)

is univalent in U, then the following subordination relation:

h(z) ≺ ϕ

([
=p(a, c, µ) f (z)

]γ,
[
=p(a, c, µ) f (z)

]γ−1=p(a + 1, c, µ) f (z),

(γ− 1)
[
=p(a, c, µ) f (z)

]γ−2 (=p(a + 1, c, µ) f (z)
)2

+
a + 1 + µp

a + µp
[
=p(a, c, µ) f (z)

]γ−1 =p(a + 2, c, µ) f (z); z

) (32)

implies that
χ(z) ≺

[
=p(a, c, µ) f (z)

]γ.

Theorems 8 and 9 can only be used to obtain the subordinants of differential superor-
dination of the form (30) or (32). The following theorem proves the existence of the best
subordinant of (32) for some function ϕ.

Theorem 10. Let the function h(z) be analytic in U and let ϕ : C3 ×U→ C. Suppose that the
following differential equation:

ϕ
(

χ(z), zχ′(z), z2χ′′(z); z
)
= h(z)

has a solution χ(z) ∈ ℘0. If

ϕ ∈ Φ′1[h, χ, γ], f (z) ∈ A(p) and
[
=p(a, c, µ) f (z)

]γ ∈ ℘0,

and the function ϕ given by

ϕ

([
=p(a, c, µ) f (z)

]γ,
[
=p(a, c, µ) f (z)

]γ−1=p(a + 1, c, µ) f (z),

(γ− 1)
[
=p(a, c, µ) f (z)

]γ−2 (=p(a + 1, c, µ) f (z)
)2

+
a + 1 + µp

a + µp
[
=p(a, c, µ) f (z)

]γ−1=p(a + 2, c, µ) f (z); z

) (33)

is univalent in U, then the following subordination relation:

h(z) ≺ ϕ

([
=p(a, c, µ) f (z)

]γ,
[
=p(a, c, µ) f (z)

]γ−1=p(a + 1, c, µ) f (z),

(γ− 1)
[
=p(a, c, µ) f (z)

]γ−2 (=p(a + 1, c, µ) f (z)
)2

+
a + 1 + µp

a + µp
[
=p(a, c, µ) f (z)

]γ−1=p(a + 2, c, µ) f (z); z

) (34)
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implies that
χ(z) ≺

[
=p(a, c, µ) f (z)

]γ

and χ(z) is the best subordinant.

Proof. The proof of Theorem 10 is similar to that of Theorem 4 and is, therefore, omitted here.

Combining Theorems 2 and 9, we obtain the following sandwich-type theorem.

Theorem 11. Let the functions h1(z) and χ1(z) be analytic in U, and let the function h2(z) be
univalent in U, χ2(z) ∈ ℘0 with χ1(0) = χ2(0) = 0 and

ϕ ∈ Φ1[h2, χ2, γ] ∩Φ′1[h1, χ1, γ].

If f (z) ∈ A(p), [
=p(a, c, µ) f (z)

]γ ∈ H[0, γp] ∩ ℘0

and the function ϕ given by

ϕ

([
=p(a, c, µ) f (z)

]γ,
[
=p(a, c, µ) f (z)

]γ−1=p(a + 1, c, µ) f (z),

(γ− 1)
[
=p(a, c, µ) f (z)

]γ−2 (=p(a + 1, c, µ) f (z)
)2

+
a + 1 + µp

a + µp
[
=p(a, c, µ) f (z)

]γ−1=p(a + 2, c, µ) f (z); z

)

is univalent in U, then the following subordination relation:

h1(z) ≺ ϕ

([
=p(a, c, µ) f (z)

]γ,
[
=p(a, c, µ) f (z)

]γ−1=p(a + 1, c, µ) f (z),

(γ− 1)
[
=p(a, c, µ) f (z)

]γ−2 (=p(a + 1, c, µ) f (z)
)2

+
a + 1 + µp

a + µp
[
=p(a, c, µ) f (z)

]γ−1=p(a + 2, c, µ) f (z); z

)
≺ h2(z)

implies that
χ1(z) ≺

[
=p(a, c, µ) f (z)

]γ ≺ χ2(z).

Definition 8. Let Ω be a set in C and χ(z) ∈ H[0, γ] with zχ′(z) 6= 0. The class Φ′2[Ω, χ, γ]
of admissible functions consists of the functions ϕ : C3 × U → C that satisfy the following
admissibility condition:

ϕ(u, v, w; ς) ∈ Ω (35)

whenever

u = χ(z), v =
zχ′(z) + mγ

(
a
µ + (p− 1)

)
χ(z)

mγ
(

a
µ + p

) ,

and

<


(a+µp)2

µ
(

a+µ(p−1)
)w−

(
γa+1

µ + γ(p− 1)
)

v + γ
(

a
µ + (p− 1)

)
u

a+µp
a+µ(p−1)v− u


5

1
m
<
(

1 +
zχ′′(z)
χ′(z)

)
,
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where z ∈ U, ς ∈ ∂U \ E(χ) and m = γ.

We now state and prove the dual result of Theorem 6 for differential superordination.

Theorem 12. Let ϕ ∈ Φ′2[Ω, χ, γ]. If

f (z) ∈ A(p) and
[=p(a, c, µ) f (z)

zp−1

]γ

∈ ℘0,

and if the function ϕ given by

ϕ

([=p(a, c, µ) f (z)
zp−1

]γ

,
[=p(a, c, µ) f (z)

zp−1

]γ =p(a + 1, c, µ) f (z)
=p(a, c, µ) f (z)

,

[=p(a, c, µ) f (z)
zp−1

]γ

·
[
(γ− 1)

(=p(a + 1, c, µ) f (z)
=p(a, c, µ) f (z)

)2

+
a + 1 + µp

a + µp
=p(a + 2, c, µ) f (z)
=p(a, c, µ) f (z)

]
; z

) (36)

is univalent in U, then the following set inclusion:

Ω ⊂
{

ϕ

([=p(a, c, µ) f (z)
zp−1

]γ

,
[=p(a, c, µ) f (z)

zp−1

]γ =p(a + 1, c, µ) f (z)
=p(a, c, µ) f (z)

,

[=p(a, c, µ) f (z)
zp−1

]γ
[
(γ− 1)

(=p(a + 1, c, µ) f (z)
=p(a, c, µ) f (z)

)2

+
a + 1 + µp

a + µp
=p(a + 2, c, µ) f (z)
=p(a, c, µ) f (z)

]
; z

)
: z ∈ U

} (37)

implies that

χ(z) ≺
[=p(a, c, µ) f (z)

zp−1

]γ

.

Proof. From (24) and (37), we have

Ω ⊂
{

ψ(ω(z), zω′(z), z2ω′′(z); z) : z ∈ U
}

.

We also observe from (23) that the admissibility condition for ϕ ∈ Φ′2[Ω, χ, γ] is equivalent
to the admissibility condition for ψ as given in Definition 2. Hence, ψ ∈ Ψ′[Ω, χ] and, by
Lemma 2, we find that

χ(z) ≺ ω(z) or χ(z) ≺
[=p(a, c, µ) f (z)

zp−1

]γ

,

which completes the proof of Theorem 12.

If Ω 6= C is a simply-connected domain, then Ω = h(U) for some conformal map-
ping h(z) of U onto Ω. In this case, the class Φ′2[h(U), χ, γ] is written, for convenience, as
Φ′2[h, χ, γ].

The following result is an immediate consequence of Theorem 12.
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Theorem 13. Let χ(z) ∈ H[0, γ], the function h(z) is analytic in U and ϕ ∈ Φ′2[h, χ, γ]. If

f (z) ∈ A(p) and
[=p(a, c, µ) f (z)

zp−1

]γ

∈ ℘0,

and if the function ϕ given by

ϕ

([=p(a, c, µ) f (z)
zp−1

]γ

,
[=p(a, c, µ) f (z)

zp−1

]γ=p(a + 1, c, µ) f (z)
=p(a, c, µ) f (z)

,

[=p(a, c, µ) f (z)
zp−1

]γ

·
[
(γ− 1)

(=p(a + 1, c, µ) f (z)
=p(a, c, µ) f (z)

)2

+
a + 1 + µp

a + µp
=p(a + 2, c, µ) f (z)
=p(a, c, µ) f (z)

]
; z

) (38)

is univalent in U, then the following set inclusion:

h(z) ≺ ϕ

([=p(a, c, µ) f (z)
zp−1

]γ

,
[=p(a, c, µ) f (z)

zp−1

]γ=p(a + 1, c, µ) f (z)
=p(a, c, µ) f (z)

,

[=p(a, c, µ) f (z)
zp−1

]γ
[
(γ− 1)

(=p(a + 1, c, µ) f (z)
=p(a, c, µ) f (z)

)2

+
a + 1 + µp

a + µp
=p(a + 2, c, µ) f (z)
=p(a, c, µ) f (z)

]
; z

) (39)

implies that

χ(z) ≺
[=p(a, c, µ) f (z)

zp−1

]γ

.

Finally, upon combining Theorems 7 and 13, we are led to the following
sandwich-type theorem.

Theorem 14. Let the functions h1(z) and χ1(z) be analytic in U, and let the function h2(z) be
univalent in U. Suppose also that χ2(z) ∈ ℘0 with

χ1(0) = χ2(0) = 0 and ϕ ∈ Φ2[h2, χ2, γ] ∩Φ′2[h1, χ1, γ].

If

f (z) ∈ A(p) and
[=p(a, c, µ) f (z)

zp−1

]γ

∈ H[0, γ] ∩ ℘0,

and if the function ϕ given by

ϕ

([=p(a, c, µ) f (z)
zp−1

]γ

,
[=p(a, c, µ) f (z)

zp−1

]γ =p(a + 1, c, µ) f (z)
=p(a, c, µ) f (z)

,

[=p(a, c, µ) f (z)
zp−1

]γ

·
[
(γ− 1)

(=p(a + 1, c, µ) f (z)
=p(a, c, µ) f (z)

)2

+
a + 1 + µp

a + µp
=p(a + 2, c, µ) f (z)
=p(a, c, µ) f (z)

]
; z

) (40)
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is univalent in U, then the following set inclusion:

h1(z) ≺ ϕ

([=p(a, c, µ) f (z)
zp−1

]γ

,
[=p(a, c, µ) f (z)

zp−1

]γ =p(a + 1, c, µ) f (z)
=p(a, c, µ) f (z)

,

[=p(a, c, µ) f (z)
zp−1

]γ

·
[
(γ− 1)

(=p(a + 1, c, µ) f (z)
=p(a, c, µ) f (z)

)2

+
a + 1 + µp

a + µp
=p(a + 2, c, µ) f (z)
=p(a, c, µ) f (z)

]
; z

)
≺ h2(z)

(41)

implies that

χ1(z) ≺
[=p(a, c, µ) f (z)

zp−1

]γ

≺ χ2(z).

4. Conclusions

By using a rather specialized version of the Riemann–Liouville fractional integral
operator and its varied form known as the Erdélyi–Kober fractional integral operator, we
have first introduced the following linear integral operator:

=p(a, c, µ) (µ > 0; a, c ∈ R; c > a > −µp; p ∈ N+ := {1, 2, 3, . . .}),

which was considered earlier by El-Ashwah and Drbuk [4]. We have then derived several
results involving the differential subordination and the differential superordination for
the admissible classes Φ1[Ω, χ, δ] and Φ′1[Ω, χ, δ] of multivalent (or p-valent) functions
associated with operator =p(a, c, µ).

The various results, which also include sandwich-type theorems, which we have
presented in this paper, are new and would motivate further research in the field of the
geometric function theory of complex analysis.
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