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Abstract: In this paper, we formulate a new system, named the uncertain sandwich impulsive
control system with impulsive time windows. The presented system shows that the linear entry
matrix of the system is indeterminate. We first investigate the exponential stability of the considered
system by linear matrix inequalities (LMIs) and inequalities techniques, then extend the considered
system to a more general one and further study the stability of the general system. Finally, numerical
simulations are delivered to demonstrate the effectiveness of the theoretical results.
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1. Introduction

In our real life, there are many actual artificial or natural systems whose states gradu-
ally change continuously over some time intervals, and for some reason, their states will
be suddenly changed at some moments. Because the time of change is often quite short,
the process of mutation or jump can be seen as occurring at a moment in time. We call
this phenomenon the impulse phenomenon. This phenomenon can not be described by
traditional continuous or discrete systems.

Research on impulse dynamic systems began in the 1960s. In their book On the stability
of motion in the presence of impulses, Milman and Myshkis [1] first mentioned and made a
preliminary study of their stability. Impulsive systems are a special kind of hybrid system
which consist of three parts: continuous dynamics described by differential equations that
control the motion of the system between impulses; discrete dynamics described by differ-
ence equations that control the jump or reset of the instantaneous state at the moment of
the pulse; an impulsive law that determines the time when the impulse occurs. Some basic
theories of impulsive systems can be found in [2–4] and the references therein. Generally
speaking, impulsive systems can be divided into three classes: impulsive control systems,
impulsive disturbance systems, and rigid collision systems induced by discontinuities.
The study of the first class mainly focuses on unstable continuous dynamics and further
makes them stable. For example, the related works can be found in [5,6]. On the other
hand, impulsive disturbance systems can be analyzed as a class of robustness in [7,8]. In
addition, rigid collision systems exist in many mechanical models. When the moving track
reaches the collision surface, there will be an instantaneous impulse due to the presence of
the collision recovery coefficient of the system; the relevant studies can be found in [9,10]
and the references therein. In the following, we will focus on the introduction of impulsive
control systems.

Impulsive control is a discontinuous control method that is based on an impulsive
differential equation or differential equation with impulsive effect [3]. At present, impulsive
control is applied widely to many fields of science and technology, such as communication
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networks [11], control technology [12], biology [13], artificial earth satellite [14], and pest
control [15]. In the 21st century, besides the impulsive control system, other control systems
have also been proposed, such as adaptive control [16] and feedback control [17]. Consid-
ering the present wide application and the strong robustness of digital communication
systems, Stojanovski et al. in [18] proposed a new concept of impulsive synchronization.
Since then, many studies have been devoted to investigating the synchronization and
stability analysis of impulsive control systems; see examples [19–35] and the references
therein. For example, He et al. in [19] investigated secure synchronization of multi-agent
systems under deception attacks in the impulsive control framework and proposed a dis-
tributed impulsive controller to ensure the mean-square bounded synchronization. Lu
et al. in [20] investigated the globally exponential synchronization of impulsive dynamical
networks by considering two types of impulses: synchronizing impulses and desynchro-
nizing impulses. Recently, Cui et al. in [21] investigated the synchronization of Kuramoto
oscillator networks under event-triggered delayed impulsive control by Lyapunov stability
theory. It is well known that the phenomenon of time delay widely exists in real physi-
cal systems. Therefore, like the common time-delay systems, the research of time-delay
impulsive systems has never stopped. For example, stabilization of nonlinear time-delay
systems: distributed-delay dependent impulsive control was investigated by using the
Lyapunov–Razumikhin method in [23]. Li and Wu in [24] considered nonlinear differential
systems with state-dependent delayed impulses and investigated the stability of nonlinear
differential systems with state-dependent delayed impulses by using the impulsive control
theory and some comparison arguments. In recent years, more and more researchers
have paid attention to the stability analysis of memristor-based neural network systems
with impulsive effects. Zhou et al. in [31] built inertial memristor-based neural networks
with impulses and time-varying delays, and investigated the global exponential stability
by an extended Halanay differential inequality and a new delay impulsive differential
inequality. Rajchaki et al. in [32] analyzed the stability and passivity problems for a class of
memristor-based fractional-order competitive neural networks by using Caputo’s fractional
derivation.

For some works on the stabilization and synchronization of impulsive control systems,
the assumption of the occurrence of impulse is fixed, or the occurrence of impulse can
be calculated. It is well known that any machine or computer has errors in the input of
impulses, so the expected time is always different from the actual time. This time error is
called the impulsive time window; some related works can be found in [36,37]. In recent
years, many scholars have proposed various impulsive systems and made them stable
by different methods. In [20], the authors have proposed an impulsive controller with an
average impulsive interval. It is worth noting that some restrictions are defined on the
average impulsive interval. In order to remove these restrictions and make the impulsive
control system a more general one, Feng in [30] proposed a single-state jump impulsive
system with periodic time windows and investigated the exponential stability of the new
model. The corresponding impulsive control system can be written in the following form:

u̇(t) = Au(t) + ψ(u(t)) mT ≤ t < mT + θ1,
u(t) = u(t−) + Ju(t−), t = mT + θ1,
u̇(t) = Au(t) + ψ(u(t)), mT + θ1 < t < (m + 1)T,

(1)

where u(t) ∈ Rn is the state vector, ψ : Rn 7→ Rn is a continuous nonlinear function with
ψ(0) = 0, and there exists a semi-definite diagonal matrix L = diag(l1, l2, · · · , ln) such
that ‖ψ(u)‖2 ≤ uT Lu. Au(t) represents the linear part of the control system in which
A ∈ Rn×n is a constant matrix with appropriate dimension. Meanwhile, u(t−) is defined as
u(t−) = limb→t− u(b). J is the coefficient of impulse intensity; T > 0 is the control period
of the system; θ1 represents the impulsive moment, which is defined by impulse time
windows [mT, (m + 1)T]. When t = mT + θ1, a random impulse Ju(t−) occurs. It is worth
noting that the impulsive intensity J is always assumed as a constant matrix in [30,31]. Due
to the need for engineering technology, we hope that the impulsive intensity J is flexible
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and unfixed. In [33], Feng et al. investigated a nonlinear impulsive control system with
impulse time windows and an unfixed coefficient of impulsive intensity. They restricted the
range of J as J ≤ µI, in which µ is a constant and I is an unit matrix with proper dimension,
and further investigated the stability of the considered system.

In real life, since the state of the system is quite complicated, one impulse J for
system (1) is far from stabilizing the system. In [38], Feng formulated a new system that
obtains two impulsive intensities, named the sandwich control system with impulsive time
windows, and further investigated the stability of the considered system and obtained an
exponential stability criterion. Different from most existing results for impulsive systems,
they show that the impulse moments are unknown but limited to certain intervals. In [39],
Liao et al. further studied the sandwich control system with dual stochastic impulses and
obtained the exponential stability criterion. Particularly, a sandwich control system with
dual stochastic impulses can be written as follows

u̇(t) = Au(t) + ψ(u(t)) + K1u(t), mT ≤ t < mT + θ1
u(t) = u(t−) + H1u(t−), t = mT + θ1
u̇(t) = Au(t) + ψ(u(t)) + K2u(t), mT + θ1 < t < mT + θ2
u(t) = u(t−) + H2u(t−), t = mT + θ2
u̇(t) = Au(t) + ψ(u(t)) + K3u(t), mT + θ2 < t < (m + 1)T

(2)

where K1, K2, K3, H1, H2 ∈ Rn×n are constant matrices with appropriate dimensions. θ1
and θ2 represent the impulsive moment, respectively. For system (2), the matrix A is a
constant coefficient matrix. In fact, there exist many uncertain factors in various engineering,
biological, and economic systems; see, for example, [40,41] and the references therein. To
make the nonlinear impulse control system more reasonable, parameter uncertainty and
bounded gain error are introduced into the corresponding impulsive differential equations.
Hence, the research on the robustness of uncertain impulsive control systems is of great
importance. In recent years, many scholars have focused on the system with uncertain
parameters and obtained some results. In [42], Xie et al. investigated H∞ control and
quadratic stabilization of systems with parameter uncertainty via output feedback. Based
on the notion of quadratic stability with disturbance attenuation, the problems of robust
H∞, control, and quadratic stabilization via linear dynamic output feedback have been
solved. Ren in [43] studied a class of uncertain impulsive control systems and obtained a
new sufficient condition for the considered system by the generalized Cauchy–Schwarz
inequality method. Wen in [44] discussed fault-tolerant secure consensus tracking for
multi-agent impulsive control systems with uncertain parameters. Using the impulsive
control method, Lin in [45] investigated hyper-chaotic systems with uncertain parameters.

In the existing works on the study of the impulsive control system, most have focused
on the constant coefficient matrix A. So far, the uncertain sandwich control system with
impulsive time windows has not been studied. Based on the above discussion, in this paper
we put forward an uncertain sandwich control system with impulse time windows which
is can be written in the following form:

u̇(t) = (A + ∆1)u(t) + ψ(u(t)) + K1u(t), mT < t < mT + θ1,
u(t) = u(t−) + H1u(t−), t = mT + θ1,
u̇(t) = (A + ∆2)u(t) + ψ(u(t)) + K2u(t), mT + θ1 < t < mT + θ2,
u(t) = u(t−) + H2u(t−), t = mT + θ2,
u̇(t) = (A + ∆3)u(t) + ψ(u(t)) + K3u(t), mT + θ2 < t ≤ (m + 1)T,

(3)

where ∆i(i = 1, 2, 3) denote the parametric uncertainty in A and ∆T
i ∆i ≤ W. According

to [46], ∆i can be defined as ∆i = MiQi Ni, in which Qi is an uncertain matrix and has
the inequality QT

i Qi ≤ I. Mi and Ni are known constant matrices of proper dimensions.
Although the impulsive control system with uncertain parameters is also studied in [43],
the system we constructed is closer to the needs of real life because system (3) has multiple
impulses which occur in an expected time but are limited to time windows. Therefore, it



Mathematics 2022, 10, 4708 4 of 14

is of great significance to study the exponential stability of system (3). In this paper, our
goal is to find proper constant matrix K1, K2, K3 and impulsive intensity H1, H2 such that
sandwich control system (3) reaches exponential stability.

This paper is organized as follows. In Section 2, we give some definitions and lem-
mas. In Section 3, we discuss the exponential stability of system (3) and give an exponential
stability criterion. Then, numerical simulations are given to show the effectiveness of our
results in Section 4. Finally, Section 5 gives some conclusions.

In this paper, the maximum eigenvalue, the minimum eigenvalue, and the transpose
of a symmetric matrix P ∈ Rn×n are defined by λm(P) and λM(P) and PT , respectively.
We use P > 0 (<0, ≤0, ≥0) to denote a symmetrical positive (negative, semi-negative,
semi-positive) definite matrix P. The Euclidean norm of vector x ∈ Rn is defined as ‖x‖.

2. Preliminaries

In order to investigate the stability of system (3), we give two lemmas and two
definitions as follows.

Lemma 1 ([33]). For any x, y ∈ Rn, and σ > 0, then

2xTy ≤ σxTx + σ−1yTy. (4)

Lemma 2 ([47]). Let B, C, D, and G be real matrices of appropriate dimensions, and G satisfying
G = GT , then

G + BCD + DTCT BT < 0, (5)

for all CTC ≤ I, if and only if there exists a scalar ξ > 0 such that

G + ξ−1BBT + ξDT D < 0. (6)

Definition 1 ([3]). The right-upper Dini’s derivative of a function V : [0, ∞)× Rn 7→ R+ is
defined by

D+V(t, x(t)) = lim
h→0+

sup
[V(t + h, x(t) + h f (t, x(t)))−V(t, x(t))]

h
. (7)

Definition 2 ([48]). System (3) is said to be exponentially stable if there exist α > 0 and µ > 0
such that any solution of system (3) satisfies the ineqality

‖u(t)‖ ≤ µe−αt‖u(0)‖, ∀t ≥ 0.

3. Exponential Stability Analysis

In this section, rigorous mathematical proof about the exponential stability of sys-
tem (3) is presented.

Theorem 1. If there exists a symmetric and positive definite matrix P ∈ Rn×n and real constants
T > 0, η > 0, gi > 0, εi > 0 (i = 1, 2, 3) as well as θ2 > θ1 > 0, λ1 > 0, λ2 > 0 such that the
following inequalities hold

g1θ1 + g2(θ2 − θ1) + g3(T − θ2)− ln λ1 − ln λ2 > 0, (8)

Hi + η−1
(

PMi MT
i PT + η2NT

i Ni

)
≤ 0, (9)
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then system (3) is exponentially stable, where

Hi = ε−1
i L + PA + AT P + PKi + KT

i P + εiP2 + giP,

λ1 = λM((I + H1)
T P(I + H1))/λm(P),

λ2 = λM((I + H2)
T P(I + H2))/λm(P).

Proof. The Lyapunov function is constructed as follows,

V(u(t)) = uT(t)Pu(t). (10)

From (10), we have that

λm(P)‖u(t)‖2 ≤ V(u(t)) ≤ λM(P)‖u(t)‖2 (11)

If mT ≤ t < mT + θ1, it can be obtained from (3), (4), (7), and (10) that

D+(V(u(t))) =2uT Pu̇

=2uT P[(A + ∆1)u + ψ(u) + K1u]

=uT [P((A + ∆1) + (A + ∆1)
T P + PK1 + KT

1 P]u + 2uT Pψ(u)

≤uT [P(A + ∆1) + (A + ∆1)
T P + PK1 + KT

1 P]u + ε1uT P2u

+ ε−1
1 uT Lu

=− g1uT Pu + uT [P(A + ∆1) + (A + ∆1)
T P + PK1 + KT

1 P

+ ε1P2 + ε−1
1 L + g1P]u

=− g1uT Pu + uT [H1 + P∆1 + ∆T
1 P]u. (12)

Given a proper zero matrix O, we have that[
∆1 O
O O

]
=

[
M1Q1N1 O

O O

]
=

[
M1
O

]
Q1
[

N1 O
]
,

and furthermore, obtain that[
H1 + P∆1 + ∆T

1 P− ε1P2 −P
−P −ε−1

1 I

]
=

[
H1 − ε1P2 −P
−P −ε−1

1 I

]
+

[
PM1

O

]
Q1
[

N1 O
]

+

[
NT

1
O

]
QT

1
[

MT
1 PT O

]
. (13)

By Lemma 2 and the condition (9) for (i = 1), we have that[
H1 + P∆1 + ∆T

1 P− ε1P2 −P
−P −ε−1

1 I

]
≤ 0, (14)

which is equivalent to the following equation

H1 + P∆1 + ∆T
1 P ≤ 0, (15)

so, it can be obtained from (12) and (15) that

D+(V(u(t))) ≤ −g1V(u(t)), (16)

which implies that

V(u(t)) ≤ V(u(mT)−) exp(−g1(t−mT)). (17)
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When t = mT + θ1 , then

V(u(t))|t=mT+θ1 =
(
u(t−) + H1u(t−)

)T P
(
u(t−) + H1u(t−)

)
=u(t−)T(I + H1)

T P(I + H1)u(t−)

≤λ1V(u(t−)), (18)

where λ1 = λM((I + H1)
T P(I + H1))/λm(P).

If mT + θ1 < t < mT + θ2, it can be obtained from (3), (4), (7), and (10) that

V̇(u) =2uT Pu̇

≤uT [P(A + ∆2) + (A + ∆2)
T P + PK2 + KT

2 P]u

+ ε2uT P2u + ε−1
2 uT Lu

=− g2uT Pu + uT [H2 + P∆2 + ∆T
2 P]u. (19)

Similarly, by Lemma 2 and the condition (9) for (i = 2), we have that

V̇(u) ≤ −g2V(u(t)), (20)

which implies that

V(u(t)) ≤ λ1V(u(mT + θ1)
−) exp(−g2(t−mT − θ1)). (21)

When t = mT + θ2, then

V(u(t))|t=mT+θ2 =(u(t−) + H2u(t−))T P(u(t−) + H2u(t−))

=u(t−)T(I + H2)
T P(I + H2)u(t−)

≤λ2V(u(t−)). (22)

If mT + θ2 < t < (m + 1)T, it can be obtained from (3), (4), (7), and (10) that

V̇(u) =2uT Pu̇

≤uT [P(A + ∆3) + (A + ∆3)
T P + PK3 + KT

3 P]u + ε3uT P2u

+ ε−1
3 uT Lu

≤− g3uT Pu + uT [H3 + P∆3 + ∆T
3 P]u. (23)

Similarly, by Lemma 2 and the condition (9) for (i = 3), we have that

V̇(u) ≤ −g3V(u), (24)

which implies that

V(u(t)) ≤ λ2V(u(mT + θ2)
−) exp(−g3(t−mT − θ2)). (25)

It follows from (17)–(25) that
Case 1 when m = 0, then
(1) If 0 ≤ t < θ1, then we have that

V(u(t)) ≤ V(u(0)) exp(−g1t), (26)

thus

V(u(θ−1 )) ≤ V(u(0)) exp(−g1θ1). (27)
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(2) If t = θ1, then we have that

V(u(θ1)) ≤ λ1V(u(0)) exp(−g1θ1). (28)

(3) If θ1 < t < θ2, then we have that

V(u(t)) ≤ λ1V(u(0)) exp(−g1θ1 − g2(t− θ1)), (29)

thus

V(u(θ−2 )) ≤ λ1V(u(0)) exp(−g1θ1 − g2(θ2 − θ1)). (30)

(4) If t = θ2, then we have that

V(u(θ2)) ≤ λ1λ2V(u(0)) exp(−g1θ1 − g2(θ2 − θ1)). (31)

(5) If θ2 < t < T, then we have that

V(u(t)) ≤λ2V(u(θ−2 )) exp(−g3(t− θ2))

≤λ1λ2V(u(0)) exp(−g1θ1 − g2(θ2 − θ1)− g3(t− θ2)). (32)

Hence,

V(u(T)) ≤ λ1λ2V(u(0)) exp(−g1θ1 − g2(θ2 − θ1)− g3(T − θ2)).

Case 2 when m = 1, then
(6) If T ≤ t < T + θ1, then we have that

V(u(t)) ≤ λ1λ2V(u(0)) exp(−g1θ1 − g2(θ2 − θ1)− g3(T − θ2)− g1(t− T)). (33)

(7) If t = T + θ1, then we have that

V(u(t)) ≤ λ2
1λ2V(u(0)) exp(−2g1θ1 − g2(θ2 − θ1)− g3(T − θ2)). (34)

(8) If T + θ1 < t < T + θ2, then we have that

V(u(t)) ≤λ2
1λ1V(u(0)) exp(−2g1θ1 − g2(θ2 − θ1)− g3(T − θ2)

− g2(t− T − θ1)). (35)

(9) If t = T + θ2, then we have that

V(u(t)) ≤ λ2
1λ2

2V(u(0)) exp(−2g1θ1 − 2g2(θ2 − θ1)− g3(T − θ2)). (36)

(10) If T + θ2 < t < 2T, then we have that

V(u(t)) ≤λ2
1λ2

2V(u(0)) exp(−2g1θ1 − 2g2(θ2 − θ1)

− g3(T − θ2)− g3(t− T − θ2)). (37)

Case n when m = n− 1, then
(11) If (n− 1)T < t < (n− 1)T + θ1, then we have that

V(u(t)) ≤λn−1
1 λn−1

2 V(u(0)) exp(−(n− 1)g1θ1 − (n− 1)g2(θ2 − θ1)

− (n− 1)g3(T − θ2)− g1(t− (n− 1)T)). (38)
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(12) If t = (n− 1)T + θ1, then we have that

V(u(t)) ≤λn
1 λn−1

2 V(u(0)) exp(−ng1θ1 − (n− 1)g2(θ2 − θ1)

− (n− 1)g3(T − θ2)). (39)

(13) If (n− 1)T + θ1 < t < (n− 1)T + θ2 , then we have that

V(u(t)) ≤λn
1 λn−1

2 V(u(0)) exp(−ng1θ1 − (n− 1)g2(θ2 − θ1)

− (n− 1)g3(T − θ2)− g2(t− (n− 1)T − θ1)). (40)

(14) If t = (n− 1)T + θ2, then we have that

V(u(t)) ≤λn
1 λn

2 V(u(0)) exp(−ng1θ1 − ng2(θ2 − θ1)

− (n− 1)g3(T − θ2)). (41)

(15) If (n− 1)T + θ2 < t ≤ nT, then we have that

V(u(t)) ≤λn
1 λn

2 V(u(0)) exp(−ng1θ1 − ng2(θ2 − θ1)

− (n− 1)g3(T − θ2)− g3(t− (n− 1)T − θ2)). (42)

Case n + 1 when m = n, then
(16) If nT < t < nT + θ1, then we have that

V(u(t)) ≤λn+1
1 λn

2 V(u(0)) exp(−ng1θ1 − ng2(θ2 − θ1)

− ng3(T − θ2)− g1(t− nT)). (43)

(17) If t = nT + θ1, then we have that

V(u(t)) ≤λn+1
1 λn

2 V(u(0)) exp(−(n + 1)g1θ1 − ng2(θ2 − θ1)

− ng3(T − θ2)). (44)

(18) If nT + θ1 < t < nT + θ2 , then we have that

V(u(t)) ≤λn+1
1 λn

2 V(u(0)) exp(−(n + 1)g1θ1 − ng2(θ2 − θ1)

− ng3(T − θ2)− g2(t− nT − θ1)). (45)

(19) If t = nT + θ2, then we have that

V(u(t)) ≤λn+1
1 λn+1

2 V(u(0)) exp(−(n + 1)g1θ1 − (n + 1)g2(θ2

− θ1)− ng3(T − θ2)). (46)

(20) If nT + θ2 < t ≤ (n + 1)T, then we have that

V(u(t)) ≤λn+1
1 λn+1

2 V(u(0)) exp(−(n + 1)g1θ1 − ng2(θ2 − θ1)

− ng3(T − θ2)− g3(t− nT − θ2)). (47)

From (45) and (46), we can obtain the two inequalities as fellows

V(u(t)) ≤λn
1 λn

2 V(u(0)) exp(−(n + 1)g1θ1

− (n + 1)g2(θ2 − θ1)− ng3(T − θ2))

≤V(u(0)) exp(−(g1θ1 + g2(θ2 − θ1) + g3(T − θ2)

− ln λ1 − ln λ2)n + ln λ1 − g1θ1)), (48)
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and

V(u(t)) ≤λn+1
1 λn+1

2 V(u(0)) exp(−(n + 1)g1θ1

− (n + 1)g2(θ2 − θ1)− ng3(T − θ2)− g3(t− nT − θ2))

≤V(u(0)) exp(−(g1θ1 + g2(θ2 − θ1) + g3(T − θ2)

− ln λ1 − ln λ2)(n + 1)). (49)

By the inequalities (49) and (50) and the condition (8), we can obtain that

lim
t→∞

V(u(t)) = 0. (50)

From (50) and Definition 2, it is easy to obtain that system (3) is exponentially stable.

Remark 1. The choice of parameters in Theorem 1 mainly depends on solving the LMIs equations
and inequality (9). In other words, given parameters K1, K2, K3, T, θ1, θ2, η, we can find a flexible
solution g1, g2, g3, ε1, ε2, ε3, P, H1, H2 through the LMIs method given in [49] and inequality (9).

In system (3), we only consider two impulse intensities, H1 and H2. If n impulse
intensities H1, · · · , Hn are inserted in a period unit T, system (3) can be written in the
following form:

u̇(t) = (A + ∆1)u(t) + ψ(u(t)) + K1u(t), mT < t < mT + θ1,
u(t) = u(t−) + H1u(t−), t = mT + θ1,
u̇(t) = (A + ∆i)u(t) + ψ(u(t)) + Kiu(t), mT + θi < t < mT + θi+1,
u(t) = u(t−) + Hiu(t−), t = mT + θi,
u̇(t) = (A + ∆i+1)u(t) + ψ(u(t)) + Ki+1u(t), mT + θi+1 < t ≤ (m + 1)T,

(51)

where i = 2, · · · , n.

Corollary 1. If there exists a symmetric and positive definite matrix P ∈ Rn×n and real constants
T > 0, η > 0, gi > 0, εi > 0(i = 1, · · · , n) as well as θj > θi > 0(j > i), λi > 0 such that the
following inequalities hold

g1θ1 +
n

∑
i=2

gi(θi − θi−1) + gn+1(T − θn)− ln Πn
i=1λi > 0, (52)

Hi + η−1
(

PMi MT
i PT + η2NT

i Ni

)
≤ 0, (53)

then system (51) is exponentially stable, where

Hi = ε−1
i L + PA + AT P + PKi + KT

i P + εiP2 + giP,

λi = λM((I + Hi)
T P(I + Hi))/λm(P).

Remark 2. Conditions (52) and (53) can be obtained by the same method from Theorem 1. In
many engineering applications, since the complexity of the system, two impulses can not make the
system stable. Corollary 1 gives a generalization for impulse intensities n. Compared with the
results in [30,35,38,39,43], we not only consider the n impulses intensities in one period T, but also
investigate the uncertainty of parameters for systems (3) and (51). Obviously, the results we get are
more in line with the needs of the project.

4. Simulation

In the following, we take Chua’s system with uncertain parameters as an example to
show the effectiveness of our theoretical results. Let X = (x, y, z)T .
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Example 1. Chua’s oscillator [39] can be expressed as
ẋ = αy− αx− αg(x),
ẏ = x− y + z,
ż = −βy,

(54)

where
g(x) = bx + 0.5(a− b)(|x + 1| − |x− 1|),

α, β are parameters and constant a and b satisfy a < b < 0.
Take parameters α = 9.2156, β = 15.9946, a = −1.24905, b = −0.75735, and the initial

condition X(0) = [4, 0,−3]T , the chaotic trajectory of system (54) is shown in Figure 1.

Figure 1. The chaotic phenomenon of system (54) with the initial condition X(0) = [4, 0,−3]T .

Furthermore, system (54) can be written in the following form

Ẋ = AX + ψ(X), (55)

where

A =

 −α(1 + b) α 0
1 −1 1
0 −β 0

,

and

ψ(X) =

 −0.5α(a− b)(|x + 1| − |x− 1|)
0
0

. (56)

From (56), we have that

‖ψ(X)‖2 = 0.5α2(a− b)2(x2 + 1− |x2 − 1|) ≤ α2(a− b)2x2,

so, we can select L = diag(α2(a− b)2, 0, 0).
In order to better illustrate the importance of parameter perturbation, for matrix A of system

(55), we give two kinds of uncertain parameter perturbation ∆1 and ∆2.
For the fist kind of parameter perturbation ∆1

i = M1
i Q1

i N1
i (i = 1, 2, 3), we select M1

1 =
M1

2 = M1
3 = N1

1 = N1
2 = N1

3 = I and Q1
1 = Q1

2 = Q1
3 = diag(0.2 cos t, 0.2 cos t, 0.2 cos t),

so ∆1 := ∆1
1 = ∆1

2 = ∆1
3. Then system (55) under uncertain factors can be written to the

following form
Ẋ = (A + ∆1)X + ϕ(X). (57)
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Choosing the same parameters and initial values as in system (55), we plot the phase diagram of
system (57), and the result is shown in Figure 2. Then choosing K1 = diag(−90,−80,−50), K2 =
diag(−80,−80,−50), K3 = diag(−90,−80,−60) with η = 0.2, θ1 = 0.005, θ2 = 0.01, and
T = 0.02. By solving LMIs and inequality (9), we can obtain a feasible solution: g1 = 10, g2 =
80, g3 = 60, ε1 = 0.2, ε2 = 8, ε3 = 9, H1 = diag(−0.07,−0.26, 0.03), H2 = diag(−0.45−
0.4− 0.4) and

P =

 0.9120 −0.1267 0.1338
−0.1267 0.9317 −0.0032
0.1338 −0.0032 0.0793

.

Obviously, these parameters we select satisfy Equations (8) and (9). According to Theorem 1,
system (57) is exponentially stable under the action of pulses H1 and H2. The time response curves
of Chua’s oscillator are shown in Figure 3.

Figure 2. The chaotic phenomenon of system (57) with the initial condition X(0) = [4, 0,−3]T .

Figure 3. The time responding curves of system (57) with uncertain sandwich control and impulse
time windows.

For the second kind of parameter perturbation ∆2
i = M2

i Q2
i N2

i , (i = 1, 2, 3), we select
M2

1 = M2
2 = M2

3 = N2
1 = N2

2 = N2
3 = I and Q2

1 = Q2
2 = Q2

3 = diag(0.02x2(1) +
0.05x(1)x(3) + 0.09x(1)x(3)), so∆2 := ∆2

1 = ∆2
2 = ∆2

3. Then system (55) under uncertain
factors can be written to the following form

Ẋ = (A + ∆2)X + ϕ(X). (58)
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Choosing the same parameters and initial values as in system (55), we plot the phase diagram
of system (58), and the result is shown in Figure 4. According to Theorem 1, system (58) is
exponentially stable, and the time response curve of Chua’s oscillator is shown in Figure 5.

Figure 4. The chaotic phenomenon of system (58) with the initial condition X(0) = [4, 0,−3]T .

Figure 5. The time responding curves of system (58) with uncertain sandwich control and impulse
time windows.

5. Conclusions

In this paper, a new model of a nonlinear impulsive control system with uncertain
parameters and impulse time windows is proposed. A stability criterion is given in terms of
linear matrix inequalities. By the LMIs method and some inequality techniques, a sufficient
condition for exponential stability of system (3) is derived by Lyapunov stability. To make
the conclusion more general, we insert a countable number of impulses in a period of time
T and investigate its exponential stability. At last, numerical simulation verifies that the
main theoretical results are effective. In this paper we only considered countable impulsive
intensities n. In many engineering applications, countable impulses are far from making
the system stable. To make the system a more general one, we can extend the results of this
paper to a class of impulsive time sequences in one periodic unit with eventually uniformly
bounded impulsive frequency and investigate the stability of the considered system in the
future. We hope that this paper will provide a direction for the future study of uncertain
parameter nonlinear impulsive control systems.
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