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Abstract: AES is the most widely used secret-key cryptosystem in industry, and determining the
security of AES is a central problem in cryptanalysis. The mixture differential property proposed
in Eurocrypt 2017 is an essential property to setup state-of-the-art key recovery attacks on some
round-reduced versions of AES. In this paper, we exploit mixture differential properties that are
automatically deduced from a mixed integer linear programming (MILP)-based model to extend
key recovery attacks on AES. Specifically, we modify the MILP model toolkit to produce all mixture
trails explicitly and test a 5-round secret-key mixture differential distinguisher on small-scale AES
experimentally. Moreover, we utilize this distinguisher to do a key recovery attack on 6-round
AES-128 that outperforms previous work in the same fashion. We also for the first time utilize a
6-round AES secret-key distinguisher to set up a key recovery attack on 7-round AES-192. This work
is a new yet simple cryptanalysis on AES by exploiting mixture differential properties.

Keywords: mixture differential; AES; cryptanalysis

MSC: 94A60

1. Introduction

Block ciphers, as a category of private key cryptographic algorithms, are the workhorse
of cryptography for ensuring confidentiality due to their high efficiency compared with
public key cryptographic algorithms. The security of cryptographic algorithms is analyzed
from both theoretical and practical points of view. Analysis from the theoretical point
of view is referred to as cryptanalysis, where an attacker can only access plaintexts and
ciphertexts of the target algorithm. Cryptanalysis aims to find out flaws in the cipher design,
which can give a more accurate security evaluation of the target cipher. In this paper, we
focus on cryptanalysis of the most widely used standard block cipher, AES [1], to try to
find out special statistic properties reflected only in plaintexts and ciphertexts to recover
the secret key from a theoretical point of view. In addition to theoretical cryptanalysis,
analysis from a practical point of view (e.g., differential power analysis [2]or differential
fault analysis [3]) analyzes the security of the implementation of the target cipher, which is
beyond the scope of this paper.

A key recovery attack on AES comes in two steps: (1) finding out the property that
can make a distinguisher and (2) designing the key recovery attack algorithm based on the
found distinguisher to recover the secret key. Distinguishing a block cipher under a secret
key from a random permutation is a devastating violation of security. Technically, the distin-
guishers are properties that hold on (even reduced round) block ciphers with a probability
significantly different from that for random permutations. After a distinguisher is found,
the divide-and-conquer framework can be used to setup a key recovery attack. However,
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the key recovery procedure is not always so obvious because the data/time/memory
complexities of the whole process will probably exceed the complexities of brute-force
methods that are standard measures to compare against. The state-of-the-art key recovery
attacks on AES exploit a variety of statistical properties that can be used as a distinguisher,
including the mixture differential properties revealed in [4] by an automatic searching
method. Whether this kind of distinguisher can be used to setup key recovery attacks on
AES remains unclear. In this paper, we answer this question by providing effective key
recovery attacks based on the mixture differential distinguishers.

1.1. Related Work

A variety of properties of AES have been investigated to do key recovery attacks.
The collision attack [5] revealed that there exist collisions between some partial byte-
oriented functions induced by the AES structure, and thus a 4-round distinguisher can be
constructed that in turn enables attacks on 7-round AES with any key length. Differential
cryptanalysis [6] provides the basic concepts of many cryptanalysis methods, including the
impossible differential cryptanalysis [7]. As for key recovery attacks on AES, the impossible
differential cryptanalysis [8] put a 4-round impossible differential distinguisher in the
middle to launch a 6-round key recovery attack. Meet-in-the-Middle (MITM) attack [9]
utilized the 4-round property that, for a special plaintext set called δ-set, the number
of possible values for one byte in the ciphertext set after four-round encryption is very
limited. With additional techniques such as data/time/memory trade-off and differential
enumeration, key recovery attack complexities for 6-round AES-128 and up to 8-round
AES-192 and AES-256 are modified from that in a previous MITM attack [10]. The Square
attack was presented in the design of AES [11], and shows that for a δ-set of plaintexts, the
XOR sum of the intermediate states after three rounds of encryption is equal to zero. A
“partial sum” technique has been introduced [12], which substantially reduces the work
factor of the dedicated Square attack. The “partial sum” method in the Square attack can
be improved by analyzing more information per δ-set [13], and thus the time complexity
can be significantly reduced.

In Eurocrypt 2017, Grassi et al. [14] discovered the first secret-key distinguisher for
5-round AES. In FSE/ToSC 2019, this property is further refined as “mixture-differential
cryptanalysis” [15]. The main idea is, given that the 4-round ciphertexts from a chosen
plaintext pair lie in a particular subspace, the probability is 1 that a specially constructed
pair has the same property, while this is not the case for the random permutation. This
4-round property is modified to 5-round and a 6-round key recovery attack is launched by
prepending one round before the distinguisher [16]. Note that this is the first time that a
5-round distinguisher can be used to set up key recovery attacks. The mixture differential
property was used by Bar-On et al. [17,18] to launch key-recovery attacks on up to 7-round
AES-192 and -256 with practical data and memory complexities. Meanwhile, the record for
a 5-round key recovery attack, which cost 216.5 encryption/decryption [19], is also highly
related to such mixture differential structures.

The mixture differential property has been investigated from diverse perspectives
to extend to more block ciphers [20] and to setup distinguishers with more rounds [16].
However, all these properties are deduced by scrutinizing structures of AES-like construc-
tions manually. Not until recently has a Mixed Integer Linear Programming (MILP)-based
method been proposed to search for mixture differential properties automatically [4]. With
this method, given a description of an aligned block cipher, whether in SPN or Feistel struc-
ture, finding the mixture differential distinguishers is converted to an MILP problem that
can be solved by off-the-shelf constraint programming problem solvers (e.g., Gurobi [21]),
which is the paradigm for the automatic symmetric-key cryptanalysis that has been gain-
ing popularity in recent years [22–27]. The automatically deduced mixture differential
distinguishers for AES cover up to 6 rounds and have been used to perform distinguishing
attacks. However, no key recovery attacks have been provided based on distinguishers on
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AES. Furthermore, no previous work has ever directly applied a 6-round distinguisher to
perform key recovery attacks.

1.2. Our Contribution

In this paper, we answer the question of whether the automatically deduced mixture
differential distinguishers can be used to do key recovery attacks. The contributions are
summarized below.

• We verify the 5-round mixture differential distinguisher deduced from the MILP
method experimentally on small-scale AES practically. With lookup-table-based
implementation, the verification efficiency is improved about 20 times. Compared
with the textbook implementation, the verification time with 230 5-round encryption is
decreased from more than 20 min to about 1 min when running on 32 parallel threads
with an AMD Ryzen Threadripper 3970X Processor. We also refined the MILP-based
automatic tool for searching for mixture differential distinguishers to illustrate all
trails to form the distinguisher.

• In the key recovery aspect, we give a 6-round key recovery attack on AES-128 by
directly exploiting the automatically deduced 5-round secret key distinguisher with
data/time complexity reduced to 238/283.36/233. The previous best attack in the same
fashion was by Grassi [16], with data/time/memory complexity being 272.8/2105/233.
Our methods present a dramatic decrease in data and time complexity with the same
memory complexity.

• Further, a novel 7-round key recovery attack on AES-192 that directly exploits a
6-round secret-key distinguisher is also presented. Though this attack has higher
complexity than some previous ones, this is the first direct utilization of a 6-round
secret-key distinguisher to do key recovery attacks on 7-round AES with complexity
lower than a brute-force attack.

All our source codes are provided in the repository https://github.com/qiaokexin/
mixture-differential-for-AES.git (accessed on 10 October 2022).

This paper is organized as follows. In Section 2, after a short description of AES,
we introduce metrics for evaluating cryptanalysis methods and mixture differential dis-
tinguishers. In Section 3, we rewrite the automatic mixture differential searching model
and verify the 5-round distinguisher on small-scale AES practically and also illustrate
the 6-round mixture characteristics concretely for verification. In Section 4, key recovery
attacks on 6-round AES-128 and 7-round AES-192 are given. The paper is summarized in
Section 5.

2. Preliminary

We inherit some notations from [4,18].

2.1. A Brief Description of AES

AES [1] block cipher takes in a 128-bit block organized as a 4× 4 matrix on GF(28)
and a 128-, 192- or 256-bit master key. Denote the three versions by AES-128, AES-192
and AES-256 respectively. The number of rounds for AES-128, AES-192 and AES-256 are
10, 12 and 14, respectively. The key schedules for generating subkeys in each round for
the three versions are different in detail but follow the same framework. The encryption
operations in each round for all versions are identical. The input state is denoted by x−1.
After XORing a whiten key k−1, the state iterates on round functions 10, 12 and 14 times,
respectively. The whitening key is the first 128 bits of the master key. The state before the
i-th round is denoted by xi. In the i-th round, the state goes through the following four
steps (Figure 1):

• SubBytes (SB): each byte of xi is substituted by another byte according to an invertible
8-bit Sbox to get state x′i . The substitution is determined by a table called Sbox, which

https://github.com/qiaokexin/mixture-differential-for-AES.git
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is a permutation of 8-bit elements. The Sbox and inverse Sbox are given in Appendix A.
An inverse Sbox is used in decryption, and this step is denoted by InvSubBytes.

• ShiftRows (SR): the j-th (j = 0, · · · , 3) row of state x′i is cyclicly shifted by j bytes to
the left to get state x′′i . Cyclic shifting to the right with the same offsets is applied in
decryption, and this step is denoted by InvShiftRows.

• MixColumn (MC): multiply each column of x′′i by a 4× 4 MDS (maximum distance
separable) matrix over GF(28). The MDS matrix and its inverse are

M =


2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

, and M−1 =


E B D 9
9 E B D
D 9 E B
B D 9 E

,

where each element in the matrix is an element in GF(28) defined by the irreducible
polynomial x8 + x4 + x3 + x + 1, and multiplication and addition are also performed
in this field. Multiplication of M−1 on each column is performed in decryption, and
this step is denoted by InvMixColumn. The MDS property ensures that the number of
non-zero bytes among the input column and output column is no less than 5, except
for the all-zero case, i.e., the branch number being 5.

• AddRoundKey (ARK): XORing a 128-bit subkey ki to the state to get xi+1.

xi

SB

x′
i

SR

x′′
i

MC ARK

xi+1

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

Figure 1. AES round function.

Note that in the last round, MC operation is omitted, and this is also the case for
reduced versions in this paper. The key schedule algorithm processes the master key to
generate the whiten key and all subkeys. As our attack does not utilize relations among
subkeys, we do not show the key schedule here.

The indexes of each byte in a state are in column first order. Use xr,I to denote the
bytes of state xr indicated by I, where I can be a single index or a set of indexes. Use
Col(j) to denote the j-th column of the state and Col(j0, · · · , jl−1) for multi-columns. We
are interested in diagonals of states, denoted by xi,SR−1(Col(J)), and also inversive diagonals,
denoted by xi,SR(Col(J)), where J is a column index or consists of several column indexes.
Use ∆(x) to denote the difference on specific state x. We use x(0), x(1), x(2), x(3) to denote
four states in a quadruple.

A straightforward decryption of AES is done by using the inverses of the steps In-
vSubBytes, InvShiftRows, InvMixColumns and AddRoundKey and reversing their order.
However, an equivalent algorithm for decryption that performs InvSubBytes–InvShiftRows–
InvMixColumns–AddRoundKey in each round and omits InvMixColumns in the last round
has been anticipated in the AES design. So we can have a decryption algorithm that has
the same structure as the encryption, with a change in the key schedule in that we need to
apply the InvMixColumns operation to the round keys in the middle rounds. Considering
that the distinguishers used in our key recovery attacks are independent of the details of the
Sbox and the MixColumn matrix, we can get an equivalent distinguisher on the decryption
direction by shifting the patterns on diagonal positions to the anti-diagonal positions due
to the shift row differentiations. Therefore, our key recovery attack can be applicable to
both encryption and decryption with the same complexities.

AES block cipher by itself is only suitable for encryption or decryption of one block,
say a 128-bit string. When processing messages longer than a block, a mode of operation is
needed to repeatedly apply AES. Common modes of operation include ECB, CBC, CFB,
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OFB, CTR, etc. As cryptanalyses on modes of operation are beyond the scope of this work,
we do not present them in detail.

2.2. Metrics of Evaluation of Cryptanalysis Methods

Cryptanalysis tries to find non-randomness in the cipher design that can be reflected
from plaintexts and ciphertexts without any side-channel information from the execution.
Key recovery attacks are the most threatening cryptanalysis method. Technically, the key
recovery procedure is a divide-and-conquer process. By appending or prepending extra
rounds to the distinguisher, partial key bits involved in the added rounds can be recovered
by utilizing the distinguisher property. Then, the non-involved key bits are exhaustively
searched. The cost of a key recovery attack is estimated with respect to the following
aspects: data complexity, time complexity and memory complexity. Data complexity is
measured by the number of queries of encryption oracle by the attacker. Time complexity
is measured by the computational cost executed by the attacker offline. The unit is usually
the cost of one execution of the encryption algorithm. Memory complexity is the memory
required to launch the attack. An effective key recovery attack should have complexities
lower than those of a brute-force attack, which is the standard measure to compare against.
A brute-force attack has data/time/memory complexity of 1/2n/1 (by enumerating all
keys) or 1/1/2n (by lookup from a precomputed table), where n is the number of key bits.
More basics of cryptanalysis on block ciphers can be found in ([28], Chap. 4). The goal of
cryptanalysts is to reduce the complexities of the attack, and one cryptanalysis method
outperforms another if its complexity is lower.

2.3. Mixture Differentials

Mixture differential property reflects the byte-wise equality relation among a quadruple
of states. There are a total of 15 sorted combinations of four bytes up to pair-wise equality:

(a, b, b, b), (a, a, b, b), (a, b, a, a), (a, b, b, a), (a, b, c, c), (a, b, b, c), (a, a, b, a),

(a, b, c, a), (a, a, a, a), (a, b, a, c), (a, b, a, b), (a, b, c, d), (a, a, b, c), (a, a, a, b),

(a, b, c, b),

where different letters indicate different values. We call them quadruple patterns. If the four
bytes consist of two same pairs, we call this quadruple a mixture ([18], Def. 1). Quadruple
patterns of mixtures include the following cases:

• copy pattern (a, b, a, b), which means the second pair is a copy of the first pair. This
pattern is denoted by “c” and shown graphically as .

• exchange pattern (a, b, b, a), which means the second pair is acquired by exchange of
the two values in the first pair. This pattern is denoted by “e” and shown graphically
as .

• shift pattern (a, a, b, b), which means the second pair is acquired by shifting an inactive
pair, denoted by “s” and shown graphically as .

• inactive pattern (a, a, a, a), which consists of four equal bytes. This pattern is denoted
by “-” and shown graphically as .

Other quadruple patterns are denoted by “∗” and shown graphically as . Through-
out this paper, mixture patterns or mixture differential patterns include these five quadruple
patterns. Probability for a random quadruple to have a “c”, “e” or “s” pattern is 2−2w, and
probability to have an inactive pattern is 2−3w, where w is width of the word.

For aligned block ciphers, the quadruple/mixture patterns on each byte (or nibble
for nibble-wise block ciphers) constitute the quadruple/mixture pattern of the full state.
In the iterative cryptographic primitives, certain mixture patterns can be deduced with
some probability through the iteration. The mixture patterns for states in each round
constitute a pattern trail. With fixed input and output mixture patterns, probability on all
trails with significantly high probability can be summed up to make a mixture differential
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distinguisher with higher probability, which resembles the differential hull for classical
differential cryptanalysis. If the probability is higher than that of a random permutation,
this property can potentially be used for distinguishing attacks or key recovery attacks. We
refine the formal definition and proposition for mixture differentials from [4].

Definition 1 ((Refined) Mixture Differential ). A mixture differential is a pair of quadruple
patterns (Pin, Pout) such that given plaintext quadruples (P0, P1, P2, P3) conforming Pin, the
ciphertext quadruples (C0, C1, C2, C3) conform Pout with probability p.

We have the following proposition

Proposition 1. To distinguish an aligned cryptographic permutation from a random one by
mixture differentials defined in Definition 1, it is required that for cryptographic permutation,
p > 2−w(3n−+2(nc+nx+ns)) significantly, where w is the width of the word for the cryptographic
permutation, and n−, nc, nx, ns are the number of word-wise “-”, “c”, “x” and “s” mixture patterns
in the output pattern.

Figure 2 shows a mixture trail on 4-round AES with probability 2−32 that is utilized in
Bar-On et al.’s work [17,18] (they actually consider a cluster of similar distinguishers). Note
that for a random F128

2 → F128
2 permutation, the probability of having the output mixture

pattern given the input mixture pattern is 2−64.

Prob. = 2−32

x0

SB,SR,MC

x1

SB,SR

x′′
1

MC

x2

SB,SR,MC

x3

SB,SR

x′′
3 = MC−1(x4)

Figure 2. A 4-round AES mixture differential trail with probability 2−32. (ARK layer omitted as it
does not influence pattern propagation).

3. Mixture Differential Distinguishers

Though mixture differential cryptanalysis has attracted a lot of attention since its
proposed, it was not until recently that it was investigated by using an automatic tool to
search for such distinguishers. In [4], an MILP-based automatic tool is developed to search
for mixture distinguishers.

3.1. Search for Mixture Differential Distinguishers with MILP Model

The framework of the MILP model firstly uses binary variables to represent the
equality between any two states among a quadruple; thus, the mixture pattern is encoded
to a 6-bit string for each byte. Then, the mixture patterns propagate through each layer with
probabilities that are also encoded as binary strings. The mixture pattern variables and
probability variables affect each other by satisfying some linear inequalities. Noting that
second-order property—whether the first pair difference equals the second pair difference
on a byte—influences the probability of getting a certain mixture pattern; second-order
equalities on each byte are also encoded to binary variables, and with some auxiliary
variables, the effect on probability is expressed by linear inequalities as well. All 0-1
variables used in the model are summarized as follows.

• er−1,s
ij , ij ∈ Ind = {′01′,′ 02′,′ 03′,′ 12′,′ 13′,′ 23′}, s ∈ [0, 15], mixture pattern encod-

ing variables for the s-th byte in the input state to the r-th round, i.e., xr−1,s. We have

er−1,s
ij = 0 iff x(i)r−1,s = x(j)

r−1,s.

• deAr−1,t
ij , ij ∈ Ind, t ∈ [0, 3], column-wise mixture pattern encoding variables for the

t-th input column for MC operation in the r-th round. Note that an input column to
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MC layer is a diagonal of the input state, i.e., xr−1,SR−1(Col(t)). We have deAr−1,t
ij = 0

iff x(i)
r−1,SR−1(Col(t))

= x(j)
r−1,SR−1(Col(t))

.

• Ar−1,s
h , Ar−1,s

l , s ∈ [0, 15], probability encoding variables. By considering the first-
order differential property, the probability to have some mixture pattern on xr,s is
2−w(2Ar−1,s

h +Ar−1,s
l ). For example, for a random input quadruple, the probability of an

output byte conforming a “c”, “s” or “e” pattern is 2−2w(Ar−1,s
h = 1, Ar−1,s

l = 0), and
it is 2−3w(Ar−1,s

h = 1, Ar−1,s
l = 1) for a “-” pattern.

• ∆r−1,s
SB together with Ar−1,s

SB , s ∈ [0, 15]. The former indicates whether the second-

order differential is 0 for x′r−1,s, i.e., ∆r−1,s
SB = 0 iff x′(0)r−1,s ⊕ x′(1)r−1,s = x′(2)r−1,s ⊕ x′(3)r−1,s.

The latter describes that the assignment of ∆r−1,s
SB holds with probability 2−wAr−1,s

SB . If
the s-th Sbox is active for both the first pair and the second pair in the quadruple,
with probability 2−w (Ar−1,s

SB = 1) we have ∆r−1,s
SB = 0, or we have ∆r−1,s

SB = 1 with
probability 1 (Ar−1,s

SB = 0). If the s-th Sbox is inactive for both pairs, ∆r−1,s
SB = 0 with

probability 1 (Ar−1,s
SB = 0). If the s-th Sbox is inactive for only one pair, we have

∆r−1,s
SB = 1 with probability 1 (Ar−1,s

SB = 0).
• dopr−1,t, t ∈ [0, 3], indicates whether second-order differential is 0 on x′′r−1,Col(t). We

have dopr−1,t = ∨s∈SR−1(Col(t))∆r−1,s
SB .

• labr−1,t, t ∈ [0, 3], a dummy variable used as a label. We have labr−1,t = 0 ⇐⇒
deAInd = 111111.

• Ar−1,s
minus, number of activity variables reduced considering second-order differential

properties. The probability of the mixture pattern trail covering R rounds is estimated
as 2−∑R

r=1 ∑15
s=0(2A

r−1,s
h +Ar−1,s

l +Ar−1,s
SB −−−Ar−1,s

minus).

Now we are ready to impose constraints on these variables. The pseudo-code of how
the MILP model is built is shown in Algorithm 1, and we refer the readers to [4] for the
detailed mechanism of how the inequality templates are generated. For completeness and to
enable the readers to reproduce the distinguishers (once produced, deduced distinguishers
are easy to be verified experimentally or theoretically, as will be shown later), details
of how linear inequalities concerning certain variables are generated by templates are
provided in Appendix B. Note that the input pattern and output pattern can be left null
and additional variables and constraints need to be added to describe how many activity
variables are consumed to have an output pattern for random permutations, which is used
as a threshold. By imposing that the objective function is smaller than the threshold, we get
an optimization model to deduce input and output patterns to form a distinguisher.

With this model, by solving an optimization problem, the largest probability together
with input and output mixture patterns are deduced. Furthermore, given the input and
output mixture patterns, by solving an enumeration problem, one can enumerate all
mixture pattern trails with the same high probability and sum up the probabilities to
estimate the true probability of making a distinguisher.

Two distinguishers are impressive, which we will use in key recovery attacks. Table 1
shows the input and output pattern of the distinguishers, the probability for one trail,
the number of trails with the same probability and the total probabilities on AES and
on a random permutation. The input mixture patterns of the two distinguishers are the
same, which are “inactive” patterns on x0,SR−1(Col(0,1)), “copy” patterns on x0,SR−1(Col(2))
and “exchange” patterns on x0,SR−1(Col(3)). Define this pattern to be Din. The 5-round

distinguisher has “shift” patterns on x′′4,SR(Col(0)). Denote it by D{0}out . The probability to

have D{0}out after 5 full rounds and MC−1 of AES is 15× 2−8 = 2−60.19, while it is 2−64 for
random permutations. The 6-round distinguisher has “shift”-type mixture patterns on
x′′5,SR(Col(0,1,2)). Denote it by D{0,1,2}

out . The probability to have D{0,1,2}
out after 6 full round and

MC−1 of AES is 56× 2−8×22 = 2−170.19, while it is 2−192 for random permutations. Source
codes for generating these two distinguishers are provided in the repository.
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Algorithm 1 MILP model to get the probability of given mixture patterns

1: function GENERATEMODEL(R, Pin, Pout) . Number of rounds, input and output pat-
terns

2: Index set Ind = {′01′,′ 02′,′ 03′,′ 12′,′ 13′,′ 23′}
3: Initialize an MILP modelM
4: M.var← e0,s

ij , ij ∈ Ind, s ∈ [0, 15] . mixture pattern encoding variables
5: for 1 ≤ r ≤ R do
6: M.var← er,l

ij , ij ∈ Ind, l ∈ [0, 15]

7: M.con← inequalities on er,l
Ind by Template 1

8: for 0 ≤ t ≤ 3 do . for each column
9: Prepare input and output coding variables for the t-th column:

varInd = [er−1,in0
Ind , er−1,in1

Ind , er−1,in2
Ind , er−1,in3

Ind , er,out0
Ind , er,out1

Ind , er,out2
Ind , er,out3

Ind ]
10: M.con ← inequalities on varij by Template 2 for each ij ∈ Ind . branch

number=5
11: M.var← deAr−1,t

ij , ij ∈ Ind . column-wise mixture pattern encoding vari-
ables

12: M.con← deAr−1,t
ij = er−1,in0

ij ∨ er−1,in1
ij ∨ er−1,in2

ij ∨ er−1,in3
ij , ij ∈ Ind

13: M.var← A
r−1,outj
h , Ar−1,outj

l , j ∈ [0, 3] . variables corresponding to proba-
bility

/* Constraints concerning first-order property */
14: for 0 ≤ s ≤ 3 do
15: M.con ← inequalities on [deAr−1,t

Ind , er,outs
Ind , Ar−1,outs

h , Ar−1,outs
l ] by Tem-

plate 3
16: end for
17: end for

/* Concerning second-order property effect*/
18: M.var← ∆r−1,s

SB , s ∈ [0, 15] . variables for second-order equality on each byte
19: M.var← Ar−1,s

SB , s ∈ [0, 15] . variables corresponding to probability
20: for 0 ≤ s ≤ 15 do
21: M.con← inequalities on [er−1,s

Ind , ∆r−1,s
SB , Ar−1,s

SB ] by Template 4
22: end for
23: for 0 ≤ t ≤ 3 do
24: M.var← dopr−1,t . variables for column-wise second-order equality
25: M.con← dopr−1,t = ∆r−1,in0

SB ∨ ∆r−1,in1
SB ∨ ∆r−1,in2

SB ∨ ∆r−1,in3
SB

26: M.var← labr−1,t . a variable to indicate if not deAInd = 111111
27: M.con← lab = 1−∧ij∈InddeAr−1,t

ij

28: for 0 ≤ s ≤ 3 do
29: M.con→ inequalities on [labr−1,t, dopr−1,t, er,4t+s

Ind ] by Template 5
30: end for
31: end for
32: for 0 ≤ s ≤ 15 do
33: M.var← Ar−1,s

minus . variables corresponding to probability
34: end for
35: for 0 ≤ t ≤ 3 do
36: for 0 ≤ s ≤ 3 do
37: M.con← inequalities on [labr−1,t, dopr−1,t, Ar−1,4t+s

h , A4t+sl , Ar−1,4t+s
minus ]

by Template 6
38: end for
39: end for
40: end for
41: M.con← e0,s

Ind conforming input mixture pattern Pin
42: M.con← eR,s

Ind conforming input mixture pattern Pout

43: M.obj← min ∑R
r=1 ∑15

s=0(2A
r−1,s
h + Ar−1,s

l + Ar−1,s
SB − Ar−1,s

minus)
44: returnM
45: end function
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Table 1. Mixture distinguishers covering 5- and 6-round AES.

No. Rd. Mix. Pattern Mix. Pattern Single #Trails AES Rand.
for x0 for x′′Rd.−1 Prob. Prob. Prob.

1 5 2−64 15 2−60.19 2−64

2 6 2−176 56 2−170.19 2−192

3.2. Verification of 5-Round Distinguishers

It is worth noting that the single 5-round mixture trail does not make a distinguisher,
as it has the same probability as that of random permutations. Thus, to show the validity
of the mixture differential distinguisher as a hull of mixture trails, we tested the validity
of the 5-round distinguisher on the small-scale AES [29], which has the same structure
as standard AES but with a 4-bit Sbox. As the probability of the distinguisher is not
relevant to the size of Sbox and details of MC matrix but reflects how the structure allows
for trails with a certain number of active Sboxes to hold, the verification on small scale
AES is strong evidence for the distinguisher to hold on standard AES. The small scale
AES is implemented in a lookup-table-based implementation [11] that resembles the AES
implementation in many cryptographic libraries such as OpenSSL [30]. Four precomputed
tables are generated by applying SB,SR,MC for all possible input nibbles such that each
table consists of sixteen 16-bit values. The cost of each round is 16 table lookups and
XORing of the table elements and round keys.

The Sbox used in the small-scale AES is in Table 2.

Table 2. The Sbox for the small-scale AES.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) 6 B 5 4 2 E 7 A 9 D F C 3 1 0 8

The operations in the i-th round can be expressed as

xi =


2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

 ·


S(xi−1,0) S(xi−1,4) S(xi−1,8) S(xi−1,12)
S(xi−1,5) S(xi−1,9) S(xi−1,13) S(xi−1,1)
S(xi−1,10) S(xi−1,14) S(xi−1,2) S(xi−1,6)
S(xi−1,15) S(xi−1,3) S(xi−1,7) S(xi−1,11)

⊕ ki−1, (1)

where the matrix elements are elements in GF(24) defined by the primitive polynomial
x4 + x + 1. The lookup-table-based implementation calculates one column by looking up
four tables and adding the results as well as the corresponding subkey column. For the
first column,

xi,Col(0) =


2
1
1
3

 · S(xi−1,0)⊕


3
2
1
1

 · S(xi−1,5)⊕


1
3
2
1

 · S(xi−1,10)⊕


1
1
3
2

 · S(xi−1,15)

⊕ ki−1,Col(10).

(2)
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The four precomputed tables are the compositions of the dot multiplication by the column
elements and the Sbox operation, i.e.,

T0(·) =


2
1
1
3

 · S(·), T1(·) =


3
2
1
1

 · S(·), T2(·) =


1
3
2
1

 · S(·), T3(·) =


1
1
3
2

 · S(·). (3)

The input to the tables is 4-bit string and the output is 16-bit. So each table is a list with
sixteen 16-bit elements. The four tables are shown in Table 3.

Table 3. Lookup tables for the small-scale AES.

x 0 1 2 3 4 5 6 7

T0(x) c66a 5bbe a55f 844c 4226 fee1 e779 7aad

T1(x) ac66 e5bb fa55 c844 6422 1fee 9e77 d7aa

T2(x) 6ac6 be5b 5fa5 4c84 2642 e1fe 79e7 ad7a

T3(x) 66ac bbe5 55fa 44c8 2264 ee1f 779e aad7

x 8 9 a b c d e f

T0(x) 1998 9dd4 dff2 bcc7 6335 2113 0 388b

T1(x) 8199 49dd 2dff 7bcc 5633 3211 0 b388

T2(x) 9819 d49d f2df c7bc 3563 1321 0 8b38

T3(x) 9981 dd49 ff2d cc7b 3356 1132 0 88b3

Then, xi can be calculated by

xi,Col(0) = T0(xi−1,0)⊕ T1(xi−1,5)⊕ T2(xi−1,10)⊕ T3(xi−1,15)⊕ ki−1,Col(0),

xi,Col(1) = T0(xi−1,4)⊕ T1(xi−1,9)⊕ T2(xi−1,14)⊕ T3(xi−1,3)⊕ ki−1,Col(1),

xi,Col(2) = T0(xi−1,8)⊕ T1(xi−1,13)⊕ T2(xi−1,2)⊕ T3(xi−1,7)⊕ ki−1,Col(2),

xi,Col(3) = T0(xi−1,12)⊕ T1(xi−1,1)⊕ T2(xi−1,6)⊕ T3(xi−1,11)⊕ ki−1,Col(3),

(4)

with 16 table lookup operations.
This implementation is faster than the textbook implementation where each operation

is implemented by its definition, as used in [16]. We verified the 5-round distinguisher on
both this lookup-table-based implementation and the implementation provided in [16].
The expected probability for the 5-round distinguisher to hold on small scale AES is
2−4×8 × 15 = 2−28.09. We test on 200 randomly generated master keys and use a 20-round
version to simulate a random permutation. For each randomly generated master key, 230

quadruples conforming input patterns are randomly generated. On average, the number
of quadruples whose ciphertexts confirm the output pattern are 3.885 and 0.215 for 5-
round small-scale AES and 20-round small-scale AES, respectively; thus, the probability
of right quadruples is 2−28.04 for 5-round small scale AES and 2−32.22 for the 20-round
version. This result verifies that the accumulated truncated mixture differential trails can
make a distinguisher. The verification codes are included in our repository. The average
running time with the textbook implementation is about 20 min, while it is about 1 min
with a lookup-table-based implementation when run on an AMD Ryzen Threadripper
3970X Processor.

3.3. Illustration of 6-Round Distinguishers

Regarding 6-round distinguishers, the probability is too low to be verified experi-
mentally even on a small variant of AES. Therefore, we demonstrate the mixture pattern
trails of the 6-round distinguishers. Figure 3 shows one trail with probability 2−176. The
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probability lies on the MC layer to make specific mixture patterns in states x1, x3 and x4,
marked in yellow. The deduced patterns reflect equality among quadruples. It is worth
noting that for state x′′0 and state x′′2 , the differences of the first pair and the second pair are
the same, so after the MC layer conditioned on that one pair has zero difference on specific
bytes, the other pair has the same difference with probability 1. This is where the mixture
differential distinguisher gains an advantage. However, after one more round of confusion,
this property does not hold anymore, and probability is calculated independently on two
pairs, as is the case for x′′3 to x4.

Pr = (2−8)4

Pr = (2−8)12

Pr = (2−8)6

x0

SB,SR

x′′
0

MC

x1

SB,SR

x′′
1

MC

x2

SB,SR

x′′
2

MC

x3

SB,SR

x′′
3

MC

x4

SB,SR

MC

x5

SB,SR

x′′
5

MC−1

x6

Figure 3. A 6-round AES mixture differential trail with probability 2−176.

There are a total of 56 trails with probability 2−176 with the same input and output
pattern as in Figure 3. All trails are shown in abbreviated form in Table A4 in Appendix C.

4. Key Recovery Attacks

We utilize the 6-round mixture differential distinguisher with probability 2−170.19

to do a key recovery attack on 7-round AES-192 and use a 5-round distinguisher with
probability 2−60.19 to do cryptanalysis on 6-round AES-128, all by appending one round
after the distinguisher. As we do not prepend rounds before the distinguisher, we can
acquire N quadruples conforming Din trivially and concentrate on the guess-and-determine
procedure on the ciphertext side.

4.1. Key Recovery on 6-Round AES-128

Suppose the plaintext quadruples in x−1 conform Din, with probability 2−60.19 that
the mixture pattern is s in position x′′4,SR(Col(0)), i.e., the differences of both the first pair and
second pair are zero on the first inversed diagonal. These conditions are used as filters to
filter out wrong guesses of k5. To use the MITM technique to reduce complexity, express
the filter conditions by combinations of ∆(x5) through MC−1 operation. Specifically, the
filter conditions and corresponding key byte that needs to be guessed to deduce the target
difference are
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∆(x′′4,0) = 0⇔ 0Ex · ∆(x5,0)⊕ 0Bx · ∆(x5,1) = 0Dx · ∆(x5,2)⊕ 09x · ∆(x5,3),
↑ ↑ ↑ ↑

k5,0 k5,13 k5,10 k5,7

∆(x′′4,7) = 0⇔ 0Bx · ∆(x5,4)⊕ 0Dx · ∆(x5,5) = 09x · ∆(x5,6)⊕ 0Ex · ∆(x5,7),
↑ ↑ ↑ ↑

k5,4 k5,1 k5,14 k5,11

∆(x′′4,10) = 0⇔ 0Dx · ∆(x5,8)⊕ 09x · ∆(x5,9) = 0Ex · ∆(x5,10) + 0Bx∆(x5,11),
↑ ↑ ↑ ↑

k5,8 k5,5 k5,2 k5,15

∆(x′′4,13) = 0⇔ 09x · ∆(x5,12)⊕ 0Ex · ∆(x5,13) = 0Bx · ∆(x5,14)⊕ 0Dx · ∆(x5,15).
↑ ↑ ↑ ↑

k5,12 k5,9 k5,6 k5,3

(5)

The four filter bytes together with four involved bytes for each are called four groups.
In the key recovery procedure, initialize four counters of size 232 for each group. To get 2m

right quadruple, we prepare 260.09+m quadruples conforming the input pattern. Then,

1. For each quadruple, do the MITM procedure on four groups:

(a) For the first group, guess K5,{0,13}, compute the value 0Ex · ∆(x5,0) ⊕ 0Bx ·
∆(x5,1) on both the first pair and the second pair, and store the current guess
in a hash table T indexed by this 16-bit value. After this step, each item of T
contains on average one element.

(b) Guess k5,{10,7} and compute the value 0Dx · ∆(x5,2)⊕ 09x · ∆(x5,3) on both the
first pair and the second pair. Look up the table T by this 16-bit value and get
the candidate for the combination k5,{0,13,10,7}. Increase the counter for the first
group. After this step, on average, 216 candidates are suggested.

(c) Repeat Step 1(a)–(b) for the other three groups.

2. To have h-bit advantage of key exhaustive search on each group, combine the top
232−h candidates suggested by each counter to get 2128−4h candidates of the full 128-bit
key k5. Check with plaintext–ciphertext pairs.

Time and memory complexity. The memory complexity of the attack is 4× 232 coun-
ters, and the hash table is sized 216, which are negligible. For each quadruple, the first
MITM step takes 216 × 8 times Sbox lookups and 216 hash table lookups. The second step
has about the same cost. If each round of AES is estimated as 20 times Sbox lookups and
each hash table lookup is estimated as one AES round, the time complexity for each group
in Step 1 is 2× 216 × (8× 1

5×20 + 1
5 ) ≈ 215.16 5-round AES encryptions. The total time

complexity of the attack is 260.19+m × 4× 215.16 + 2128−4h = 277.36+m + 2128−4h.
Success probability and data complexity. Step 1 of the attack goes on each group

independently, so we only need to know whether the 32-bit right key will appear in the
top 2h positions for each group with high probability. Each quadruple recommends 216

candidates on average. Each right quadruple hits the right key once and hits the wrong keys
216 − 1 times. Each wrong quadruple hits the right key and wrong keys indiscriminately
a total of 216 times. The right key is hit about 2m + 260.19+m−16 = 244.19+m + 2m times,
and each wrong key is, on average, hit (2m(216 − 1) + 260.19+m(216 − 2−16))/(232 − 1) ≈
244.19+m + 2m−16 times. Thus, the signal/noise ratio, i.e., the ratio of the counter of the
right key and the average counter of a wrong key, is SN = 244.19+m+2m

244.19+m+2m−16 ≈ 1 + 2−44.19. We

estimate the success probability by the formula Ps = Φ(
√

2mSN−Φ−1(1−2−h)√
SN+1 ) [31], where Φ is

the cumulative distribution function of the standard normal distribution. By setting m = 6
and h = 12, the success probability is above 99% and the time complexity is 283.36.

To have 26 right quadruples, we need to build up 266.19 quadruples conforming input
pattern Din. We fix 90 bits of plaintexts and enumerate the remaining 38 bits. Among
the 90 fixed bits, 64 are located in x0,SR−1(0,1). Choose six bytes from x0,SR−1(2,3) and fix
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3-bit in each of these six bytes, and fix 4-bit in each of the remaining 2bytes. We could

build ( 25(25−1)
2 )6( 24(24−1)

2 )2 ≈ 267.53 quadruples, which is enough for the attack. The data
complexity is no larger than 238.

4.2. Key Recovery on 7-Round AES-192

The key recovery attack on 7-round AES-192 is quite similar to the previous one on
6-round AES-128, considering that they both append one round after a distinguisher and
the distinguishers have the same input pattern. But there are more filter conditions on
the output of the 6-round distinguisher. The filters can be divided into four groups, each
involving four bytes in k6. We show the guess-and-filter procedure in the first group, and
the other three groups proceed in the same fashion.

In the first group, the filters are ∆(x′′5,0) = 0, ∆(x′′5,1) = 0 and ∆(x′′5,2) = 0, holding on
to both the first pair and the second pair. Equivalently, ∆(x′′5 ) can be expressed by ∆x6
through the MC−1 layer. In the key recovery procedure, to apply the MITM technique,
write the filter conditions in the first group as

∆(x′′5,0) = 0⇔ 0Ex · ∆(x6,0)⊕ 0Bx · ∆(x6,1) = 0Dx · ∆(x6,2)⊕ 09x · ∆(x6,3),

∆(x′′5,1) = 0⇔ 09x · ∆(x6,0)⊕ 0Ex · ∆(x6,1) = 0Bx · ∆(x6,2)⊕ 0Dx · ∆(x6,3),

∆(x′′5,2) = 0⇔ 0Dx · ∆(x6,0)⊕ 09x · ∆(x6,1) = 0Ex · ∆(x6,2)⊕ 0Bx · ∆(x6,3).
↑ ↑ ↑ ↑

k6,0 k6,13 k6,10 k6,7

(6)

Initialize four counters of size 232 for each group. Suppose we have prepared 2170.19+m

plaintext quadruples conforming Din to expect 2m right quadruples. Then:

1. For each quadruple, do the MITM procedure on four groups:

(a) For the first group, guess k6,{0,13}, compute the value 0Ex · ∆(x6,0) ⊕ 0Bx ·
∆(x6,1) on both the first pair and the second pair, and store the current guess
in a hash table T indexed by this 16-bit value. After this step, each item of T
contains, on average, one element.

(b) Guess k5,{10,7} and compute the value 0Dx · ∆(x6,2)⊕ 09x · ∆(x6,3) on both the
first pair and the second pair. Look up the table T by this 16-bit value and get
the candidate for the combination k6,{0,13,10,7}. Test if the last two equations
in Equation (6) are satisfied under this candidate on both the first pair and
the second pair. This test is a filter with probability 2−32. If so, increase the
counter; otherwise, discard the key candidate.

(c) Repeat Step 1(a–b) for the other three groups.

2. To have h-bit advantage of key exhaustive search on each group, combine the top
232−h candidates indicated by each counter to form 2128−4h full 128-bit key k6 and
combine with the other 64-bit keys that are independent of k6. Check the 2192−4h

candidate keys with plaintext–ciphertext pairs.

Time and memory complexity. The memory complexity of the attack is 4× 232 coun-
ters, and it has a hash table of size 216, which are negligible. For each quadruple, the first
MITM step takes 216 × 8 times Sbox lookups and 216 hash table lookups. Step 1(b) takes an
additional 16 Sbox lookups in each guess of k5,{10,7}. The complexity of Step 1 is estimated
as 2× 216 × (8× 1

6×20 + 1
6 ) + 216 × 16

6×20 ≈ 215.26 6-round AES encryptions. The total time
complexity of the attack is 2170.19+m × 4× 215.26 + 2192−4h = 2187.45+m + 2192−4h.

Success probability and data complexity. Each quadruple only suggests 2−16 32-bit
keys for each group on average. Each right quadruple will hit the right 32-bit key once.
The wrong quadruples will hit all keys indiscriminately. Thus, the right key will be hit
about 2m + 2170.19+m−16/232 ≈ 2122.19+m + 2m times. The wrong key will be hit 2122.19+m

times on average. The signal/noise ratio is no smaller than SN = 1 + 2−122.19. By setting
m = 1, h = 2, the success probability is about 69.95% with time complexity 2188.45.
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To build up 2171.19 plaintext quadruples conforming the input pattern, we build
structures such that in each structure, 64-bits of x0,SR−1(0,1) are fixed and the other bits are

enumerated. Each structure can provide ( 28(28−1)
2 )8 ≈ 2119.95 quadruples conforming the

input pattern; therefore, 252 structures are needed. The data complexity of the attack is
252+64 = 2116.

The comparison of our work and previous ones is shown in Table 4. Key recovery
attacks are estimated from the data/time/memory complexities. From Table 4, it is obvious
that for the 6-round key recovery attack on AES-128, our method outperforms the impossi-
ble differential attack [8], MITM attack [9] and the original mixture differential attack [17].
Especially considering the number of rounds of distinguishers used, denoted by RDist in the
table, our result is the best one by utilizing a 5-round distinguisher to launch key recovery
attacks. For 7-round AES-192, our result is the first one to setup a key recovery attack with
a 6-round distinguisher.

Table 4. Comparison of attacks on 6- and 7-round AES. (RDist is the number of rounds of the
distinguisher exploited to set up the attack. Our results are highlighted in bold).

Version R Method Data Time Memory RDist Ref.(CP) (ENC.) (16-byte)

AES-128 6

Partial Sum 232 242 240 4 [13]
Integral 235 269.7 232 4 [11]

Mixture Diff. 227.5 281 227.5 4 [17]
Mixture Diff. 238 283.36 233 5 Ours
Mixture Diff. 272.8 2105 233 5 [16]

MITM 28 2106.2 2106.2 — [9]
Imp. Differential 291.5 2122 289 4 [8]

AES-192 7

MITM 297 299 298 — [10]
MITM 232 2129.7 2129.7 — [9]

Collision 232 2146.3 280 4 [5]
Square 236.2 2155 236.2 4 [12]

Mixture Diff. 226 2146.3 240 4 [17]
Mixture Diff. 2116 2188.45 234 6 Ours

5. Conclusions

In this paper, we exploited the secret-key mixture differential properties on round-
reduced AES deduced from MILP models to present key recovery attacks on 6-round
AES-128 and 7-round AES-192 by appending one round after the distinguishers. The
complexity of our 6-round AES-128 key recovery attack with a 5-round distinguisher
outperforms the previous one of the same fashion, as the data/time/memory complexities
are significantly reduced from 272.8/2105/233 to 238/283.36/233. Further, this is the first time
that a 7-round key recovery attack has been possible by utilizing a 6-round distinguisher
directly. Moreover, in the distinguisher verification part, the implementation of the small-
scale AES used in our experiments is about 20 times more efficient than the previous one.

Future work can include finding out more properties to make a distinguisher on
block ciphers as well as designing key recovery attacks with reduced data/time/memory
complexity. For the AES block cipher, the current mixture differential property is byte-
oriented. That is to say, the details of the Sbox and the mix column matrix are not taken
into account when searching for the mixture differential properties. Methods to search for
properties with higher probability on AES or that that can cover more rounds remain to be
investigated. In the key recovery aspects, the current method is independent of the key
schedule. There may exist useful relations among subkeys to further reduce the complexity
of the key recovery attack. The key schedule effect will be taken into consideration in
future work.
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Appendix A. AES Encryption Parameters

The Sbox and the inverse Sbox used in the AES block cipher are shown in Table A1
and Table A2, respectively. The i-th element in the table (count in row-first order) is the
output for input i. All elements are in hex form.

Table A1. Sbox in the AES block cipher.

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
00 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76
10 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0
20 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15
30 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75
40 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84
50 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf
60 d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8
70 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2
80 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73
90 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db
a0 e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79
b0 e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08
c0 ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a
d0 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e
e0 e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df
f0 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16

https://github.com/qiaokexin/mixture-differential-for-AES.git
https://github.com/qiaokexin/mixture-differential-for-AES.git
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Table A2. Inverse Sbox in the AES block cipher.

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
00 52 09 6a d5 30 36 a5 38 bf 40 a3 9e 81 f3 d7 fb
10 7c e3 39 82 9b 2f ff 87 34 8e 43 44 c4 de e9 cb
20 54 7b 94 32 a6 c2 23 3d ee 4c 95 0b 42 fa c3 4e
30 08 2e a1 66 28 d9 24 b2 76 5b a2 49 6d 8b d1 25
40 72 f8 f6 64 86 68 98 16 d4 a4 5c cc 5d 65 b6 92
50 6c 70 48 50 fd ed b9 da 5e 15 46 57 a7 8d 9d 84
60 90 d8 ab 00 8c bc d3 0a f7 e4 58 05 b8 b3 45 06
70 d0 2c 1e 8f ca 3f 0f 02 c1 af bd 03 01 13 8a 6b
80 3a 91 11 41 4f 67 dc ea 97 f2 cf ce f0 b4 e6 73
90 96 ac 74 22 e7 ad 35 85 e2 f9 37 e8 1c 75 df 6e
a0 47 f1 1a 71 1d 29 c5 89 6f b7 62 0e aa 18 be 1b
b0 fc 56 3e 4b c6 d2 79 20 9a db c0 fe 78 cd 5a f4
c0 1f dd a8 33 88 07 c7 31 b1 12 10 59 27 80 ec 5f
d0 60 51 7f a9 19 b5 4a 0d 2d e5 7a 9f 93 c9 9c ef
e0 a0 e0 3b 4d ae 2a f5 b0 c8 eb bb 3c 83 53 99 61
f0 17 2b 04 7e ba 77 d6 26 e1 69 14 63 55 21 0c 7d

Appendix B. Inequality Templates Used in MILP Model

There are six inequality templates in the MILP model to search for the mixture dif-
ferential distinguishers, as is shown in Table A3. The template for generating inequalities
concerning i variables consists of vectors of length (i + 1). Each vector represents one
inequality. Formally, vector (a0, a1, · · · , ai−1, b) represents inequality a0x0 + a1x1 + · · ·+
ai−1xi−1 + b ≥ 0.

Table A3. Inequality templates used in the MILP model to search for mixture differential distinguishers.

No. Inequalities

Template 1
(0, 0, 0, 1, −1, 1, 0), (1, 1, 0, −1, 0, 0, 0), (0, 0, 0, 1, 1, −1, 0), (−1, −1, 1, −1, 1, 1, 1),
(1, −1, 0, 1, 0, 0, 0), (−1, 1, 0, 1, 0, 0, 0), (1, 1, 1, −1, −1, −1, 1), (1, 0, −1, 0, 1, 0, 0),
(0, 1, −1, 0, 0, 1, 0), (0, −1, 1, 0, 0, 1, 0), (−1, 0, 1, 0, 1, 0, 0)

Template 2
(1, 1, 1, 1, 1, −4, 1, 1, 0), (1, 1, 1, 1, −4, 1, 1, 1, 0), (1, −4, 1, 1, 1, 1, 1, 1, 0), (1, 1, 1, 1,
1, 1, 1, −4, 0), (1, 1, 1, −4, 1, 1, 1, 1, 0), (−4, 1, 1, 1, 1, 1, 1, 1, 0), (1, 1, −4, 1, 1, 1, 1,
1, 0), (1, 1, 1, 1, 1, 1, −4, 1, 0)

Template 3

(1, 2, 3, 3, 1, 2, −2, −1, −3, −1, −2, −1, −5, −3, 0), (8, −14, −14, 4, 4, −10, −6, 6,
6, −1, −1, 7, 16, 6, 14), (−4, 0, 4, −2, 2, −2, 4, −1, −3, 2, −2, 3, 6, 4, 0), (−10, −14,
4, −14, 4, 8, 7, 6, −1, 6, −1, −6, 16, 6, 14), (−14, 8, −14, 4, −10, 4, 6, −6, 6, −1, 7,
−1, 16, 6, 14), (4, −6, 4, 8, 4, −8, −2, 4, −6, −5, −1, 5, 0, 4, 2), (−2, −4, 2, 0, −2, 4,
2, 4, −2, −1, 3, −3, 6, 4, 0), (2, 4, −2, −2, 4, 6, −1, −1, 0, 0, −1, −3, −6, −4, 0), (4,
2, −2, −4, 0, −2, −3, −2, 3, 4, −1, 2, 6, 4, 0), (4, 4, 4, 4, 4, 4, −1, −1, −2, −3, −4,
−4, −14, −10, 0), (−2, 4, 4, 2, 4, −2, −2, −3, 1, −2, 0, 1, −6, −2, 0), (4, −2, 4, 4,
−2, 2, 1, −2, −3, 0, 1, −2, −6, −2, 0), (0, 0, 0, −2, −2, −2, 1, 1, −2, 1, 2, 2, 4, 2, 2),
(−4, −3, −2, −4, −3, −2, −1, 3, 3, 2, 3, −1, 6, 2, 10), (−2, −2, −2, −2, −2, −2, 2,
0, 2, 1, −1, 1, 3, 2, 7)

Template 4
(1, −1, 1, 1, −1, 1, −1, −2, 0), (−1, 1, 1, 1, 1, −1, −1, −2, 0), (1, 1, −1, −1, 1, 1,
−1, −2, 0), (1, 1, 1, −1, −1, −1, 1, 0, 0), (1, −1, −1, 1, 1, −1, 1, 0, 0), (−1, 1, −1, 1,
−1, 1, 1, 0, 0), (−1, −1, 1, −1, 1, 1, 1, 0, 0), (0, 0, −1, 0, −1, −1, 1, 1, 2)

Template 5

(1, 1, −1, −1, 1, −1, 1, 1, 0), (0, 0, 1, 1, 0, −1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 1, −1, 0), (0, 0,
0, 0, 0, 1, −1, 1, 0), (0, 0, 0, 1, −1, 0, 0, 1, 0), (0, 0, 1, 0, 1, 0, −1, 0, 0), (1, 1, 1, −1,
−1, 1, 1, −1, 0), (0, 0, −1, 1, 0, 1, 0, 0, 0), (0, 0, 0, 1, 1, 0, 0, −1, 0), (0, 0, −1, −1, 1,
−1, 1, 1, 1), (0, 0, 1, −1, 0, 1, 0, 0, 0), (0, 0, 1, 0, −1, 0, 1, 0, 0), (1, 1, 1, 1, 1, −1, −1,
−1, 0)

Template 6 (0, −1, 0, 0, −1, 1), (0, 0, 1, 0, −1, 0), (1, 1, −1, 0, 1, 0), (−1, 0, 0, 0, −1, 1)
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Appendix C. Mixture Differential Trails of 6-Round AES

There are 56 mixture differential trails for 6-round AES, each with probability 2−176.
All the trails are shown in Table A4. In each trail, each state pattern consists of sixteen byte
patterns in column-first order. State patterns for x0 and x5 to x6 are the same as those in
Figure 3, so we omit them.

Table A4. Mixture differential trails with probability 2−176 for 6-round AES (x0 and x5 to x6 patterns
are the same as those in Figure 3. The signs “−", “c", “x", “s" and “∗" represent the inactive, copy,
exchange, shift and other quadruple patterns respectively).

No. x1 x2 x3 x4
0 ---- ---- --c- xxx- cccc xxxx xxxx xxxx s∗ss ss∗s sss∗ ∗sss ssss ssss ssss ∗sss
1 ---- ---- c-c- x-x- cccc xxxx cccc xxxx s∗ss ss∗s sss∗ ∗sss ssss ssss ssss ∗sss
2 ---- ---- -c-c -x-x xxxx cccc xxxx cccc sss∗ ∗sss s∗ss ss∗s ssss ss∗s ssss ssss
3 ---- ---- ---c -xxx xxxx xxxx xxxx cccc s∗ss ss∗s sss∗ ∗sss ssss ssss ssss ∗sss
4 ---- ---- c--- x-xx xxxx xxxx cccc xxxx s∗ss ss∗s sss∗ ∗sss ssss ssss ssss ∗sss
5 ---- ---- --cc -xx- cccc xxxx xxxx cccc s∗ss ss∗s sss∗ ∗sss ssss ssss ssss ∗sss
6 ---- ---- -c-c -x-x xxxx cccc xxxx cccc s∗ss ss∗s sss∗ ∗sss ssss ssss ssss ∗sss
7 ---- ---- -c-- xx-x xxxx cccc xxxx xxxx s∗ss ss∗s sss∗ ∗sss ssss ssss ssss ∗sss
8 ---- ---- cc-c ---x xxxx cccc cccc cccc s∗ss ss∗s sss∗ ∗sss ssss ssss ssss ∗sss
9 ---- ---- cc-- x--x xxxx cccc cccc xxxx s∗ss ss∗s sss∗ ∗sss ssss ssss ssss ∗sss

10 ---- ---- c-cc --x- cccc xxxx cccc cccc s∗ss ss∗s sss∗ ∗sss ssss ssss ssss ∗sss
11 ---- ---- -ccc -x-- cccc cccc xxxx cccc s∗ss ss∗s sss∗ ∗sss ssss ssss ssss ∗sss
12 ---- ---- -cc- xx-- cccc cccc xxxx xxxx s∗ss ss∗s sss∗ ∗sss ssss ssss ssss ∗sss
13 ---- ---- ccc- x--- cccc cccc cccc xxxx s∗ss ss∗s sss∗ ∗sss ssss ssss ssss ∗sss
14 ---- ---- c-cc --x- cccc xxxx cccc cccc ∗sss s∗ss ss∗s sss∗ s∗ss ssss ssss ssss
15 ---- ---- ---c -xxx xxxx xxxx xxxx cccc ∗sss s∗ss ss∗s sss∗ s∗ss ssss ssss ssss
16 ---- ---- cc-c ---x xxxx cccc cccc cccc ∗sss s∗ss ss∗s sss∗ s∗ss ssss ssss ssss
17 ---- ---- --cc -xx- cccc xxxx xxxx cccc ∗sss s∗ss ss∗s sss∗ s∗ss ssss ssss ssss
18 ---- ---- -c-c -x-x xxxx cccc xxxx cccc ∗sss s∗ss ss∗s sss∗ s∗ss ssss ssss ssss
19 ---- ---- -ccc -x-- cccc cccc xxxx cccc ∗sss s∗ss ss∗s sss∗ s∗ss ssss ssss ssss
20 ---- ---- c--c --xx xxxx xxxx cccc cccc s∗ss ss∗s sss∗ ∗sss ssss ssss ssss ∗sss
21 ---- ---- c--c --xx xxxx xxxx cccc cccc sss∗ ∗sss s∗ss ss∗s ssss ss∗s ssss ssss
22 ---- ---- c--- x-xx xxxx xxxx cccc xxxx sss∗ ∗sss s∗ss ss∗s ssss ss∗s ssss ssss
23 ---- ---- cc-c ---x xxxx cccc cccc cccc sss∗ ∗sss s∗ss ss∗s ssss ss∗s ssss ssss
24 ---- ---- ccc- x--- cccc cccc cccc xxxx sss∗ ∗sss s∗ss ss∗s ssss ss∗s ssss ssss
25 ---- ---- ---c -xxx xxxx xxxx xxxx cccc sss∗ ∗sss s∗ss ss∗s ssss ss∗s ssss ssss
26 ---- ---- c-cc --x- cccc xxxx cccc cccc sss∗ ∗sss s∗ss ss∗s ssss ss∗s ssss ssss
27 ---- ---- -ccc -x-- cccc cccc xxxx cccc sss∗ ∗sss s∗ss ss∗s ssss ss∗s ssss ssss
28 ---- ---- c--c --xx xxxx xxxx cccc cccc ∗sss s∗ss ss∗s sss∗ s∗ss ssss ssss ssss
29 ---- ---- c--c --xx xxxx xxxx cccc cccc ss∗s sss∗ ∗sss s∗ss ssss ssss sss∗ ssss
30 ---- ---- c-c- x-x- cccc xxxx cccc xxxx sss∗ ∗sss s∗ss ss∗s ssss ss∗s ssss ssss
31 ---- ---- --cc -xx- cccc xxxx xxxx cccc sss∗ ∗sss s∗ss ss∗s ssss ss∗s ssss ssss
32 ---- ---- -c-- xx-x xxxx cccc xxxx xxxx sss∗ ∗sss s∗ss ss∗s ssss ss∗s ssss ssss
33 ---- ---- c--- x-xx xxxx xxxx cccc xxxx ∗sss s∗ss ss∗s sss∗ s∗ss ssss ssss ssss
34 ---- ---- c-c- x-x- cccc xxxx cccc xxxx ∗sss s∗ss ss∗s sss∗ s∗ss ssss ssss ssss
35 ---- ---- cc-- x--x xxxx cccc cccc xxxx ∗sss s∗ss ss∗s sss∗ s∗ss ssss ssss ssss
36 ---- ---- --c- xxx- cccc xxxx xxxx xxxx sss∗ ∗sss s∗ss ss∗s ssss ss∗s ssss ssss
37 ---- ---- cc-- x--x xxxx cccc cccc xxxx sss∗ ∗sss s∗ss ss∗s ssss ss∗s ssss ssss
38 ---- ---- -cc- xx-- cccc cccc xxxx xxxx sss∗ ∗sss s∗ss ss∗s ssss ss∗s ssss ssss
39 ---- ---- --c- xxx- cccc xxxx xxxx xxxx ∗sss s∗ss ss∗s sss∗ s∗ss ssss ssss ssss
40 ---- ---- -c-- xx-x xxxx cccc xxxx xxxx ∗sss s∗ss ss∗s sss∗ s∗ss ssss ssss ssss
41 ---- ---- ccc- x--- cccc cccc cccc xxxx ∗sss s∗ss ss∗s sss∗ s∗ss ssss ssss ssss
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42 ---- ---- -cc- xx-- cccc cccc xxxx xxxx ∗sss s∗ss ss∗s sss∗ s∗ss ssss ssss ssss
43 ---- ---- cc-c ---x xxxx cccc cccc cccc ss∗s sss∗ ∗sss s∗ss ssss ssss sss∗ ssss
44 ---- ---- cc-- x--x xxxx cccc cccc xxxx ss∗s sss∗ ∗sss s∗ss ssss ssss sss∗ ssss
45 ---- ---- c-cc --x- cccc xxxx cccc cccc ss∗s sss∗ ∗sss s∗ss ssss ssss sss∗ ssss
46 ---- ---- c-c- x-x- cccc xxxx cccc xxxx ss∗s sss∗ ∗sss s∗ss ssss ssss sss∗ ssss
47 ---- ---- ccc- x--- cccc cccc cccc xxxx ss∗s sss∗ ∗sss s∗ss ssss ssss sss∗ ssss
48 ---- ---- ---c -xxx xxxx xxxx xxxx cccc ss∗s sss∗ ∗sss s∗ss ssss ssss sss∗ ssss
49 ---- ---- --cc -xx- cccc xxxx xxxx cccc ss∗s sss∗ ∗sss s∗ss ssss ssss sss∗ ssss
50 ---- ---- c--- x-xx xxxx xxxx cccc xxxx ss∗s sss∗ ∗sss s∗ss ssss ssss sss∗ ssss
51 ---- ---- -ccc -x-- cccc cccc xxxx cccc ss∗s sss∗ ∗sss s∗ss ssss ssss sss∗ ssss
52 ---- ---- -cc- xx-- cccc cccc xxxx xxxx ss∗s sss∗ ∗sss s∗ss ssss ssss sss∗ ssss
53 ---- ---- -c-c -x-x xxxx cccc xxxx cccc ss∗s sss∗ ∗sss s∗ss ssss ssss sss∗ ssss
54 ---- ---- -c-- xx-x xxxx cccc xxxx xxxx ss∗s sss∗ ∗sss s∗ss ssss ssss sss∗ ssss
55 ---- ---- --c- xxx- cccc xxxx xxxx xxxx ss∗s sss∗ ∗sss s∗ss ssss ssss sss∗ ssss
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