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Abstract: This paper presents new software (Concrelife) capable of reliably simulating chloride ions
penetration in reinforced concrete from different environments in the most common 1-D rectangular
geometry scenarios. Its numerical solution is obtained from the simulation of models whose structure
is based on Network Simulation Method. These models are generated by the program itself and run
in the powerful free code NgSpice. The mathematical model of the problem includes the formation of
bound chloride, precipitated chloride, reduction of porosity, saturated and unsaturated conditions,
etc. All this allows tackling all kinds of scenarios, such as successive changes in concentration and
temperature at the boundary, wet-drying cycles, washing of structures, etc. Concrelife has been
developed with a pleasant window environment, intuitive and easy for a user not expert in numerical
techniques, both for the introduction of data and for the graphic representation of the results, which
include the spatial and temporal concentration of all species of chloride, porosity, water content in
pores etc. To test and verify the results of the software, applications are presented to real scenarios.

Keywords: chloride penetration; reinforced concrete; numerical simulation; simulation software;
non-linear diffusion; Network Simulation Method

MSC: 00A72; 35C99; 65Mxx

1. Introduction

Most of the civil engineering constructions are made with steel reinforced concrete.
Pillars and boards of bridges, ports, oil extraction offshore facilities, etc., they are all types
of structures that are frequently subjected to external liquid or gaseous environments which
contain corrosive contaminants. These pollutants penetrate the concrete through different
physical mechanisms (diffusion, advection, migration, capillarity ...) and, once they reach
the reinforcement and overcome a certain concentration threshold, due to the alkalinity
of the hydration concrete products, they break the current state of passivation of the steel
and start up the armor corrosion [1–6]. This is what is generally called the first stage of the
corrosion process [3,4,6]. The second stage begins at this point, with the formation of tiny
bites in the steel, and continues with the appearance of chemical corrosion products that, in
their expansion, cause large stresses in the concrete bulk that end in increase cracks and
fractures that finally lead to the mechanical collapse of the structure [2–4].

As in other fields of engineering, the use of specific programs has already become a
necessity because, above all, it avoids the enormous economic and time-saving cost that
would require solving these problems without analytical solution through experimental
techniques. This is particularly true in the problems of penetration of chlorides in concrete
in which experimental tests can last for years in many cases. We focus this work on the
presentation of Concrelife [7], a new numerical software for solving the problem of chloride
diffusion in reinforced concretes. The program, whose models are based on the Network
Simulation Method [8–10], is able to approach the most common 1-D rectangular domains,
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under boundary conditions that reproduce the exposure of the concrete sample either to
liquid environments (saturated concrete) or in gaseous environments with relative humidity
below 100% (unsaturated concrete), always providing reliable solutions.

Concrelife [7] is the last of a set of numerical simulation programs of similar struc-
ture and organization developed by the UPCT with teaching and research objectives.
For example, FATSIM-A [11], for solving flow and mass transport in porous media,
SICOMED_18 [12], for simulating soil consolidation with penetrating drains, CODENS_13 [13],
for the solution of nonlinear systems of coupled ordinary differential equations or OXIP-
SIS_12 [14], for simulating different corrosion problems. Thanks to the use of these software,
numerous research papers have been published [15–20].

The mathematical model that rules the problem in water-saturated concretes is basi-
cally form by a main diffusion equation (which contains a term that includes the effects of
the change in porosity) with the free chloride concentration in the liquid solution that occu-
pies the porous as variable and a diffusion coefficient dependent on temperature. Chloride
penetration is so coupled to the problem of heat transfer in the concrete itself, also ruled by
an independent diffusion equation. In addition, the formation of bounded and precipitated
chloride is assumed, these are physical or chemical mechanisms ruled by complementary
equations that related the bounded and free chloride (the so-called isotherms) and the
concentration condition under which precipitation emerges. The formation of salts by
bound chloride or precipitate crystals results in a reduction of the pore size which, in turn,
influences the chloride penetration process. In the case of water-unsaturated problem, the
mathematical model contains new equations that relate, on the one hand, the porosity with
the pore water content and, on the other, the capillary pressure with the relative humidity
of surrounding air environment. In addition, most of the parameters involved, such as
density, viscosity and diffusion coefficients, are dependent on temperature and concentra-
tion through empirical expressions currently used in the scientific literature. All previous
makes the mathematical model (water-saturated or not) coupled and strongly nonlinear,
impossible to address by techniques other than numerical ones. Thus, numerous works
propose specific numerical methods, verified to a greater or lesser degree [1,21–29], which
are not available to the user without expertise in the field of computing. Some software use
models based on the regulations (EN 12390-11:2019) [30] or similar that are based on the
implementation of Fick’s second law by means of the error function, where a semi-infinite
medium is assumed that is only valid for small times, so they could give results that are far
from reality in the service life times. Others have designed commercial software, perhaps
of less precision, that give an approximate idea of the service life times of these armor
structures. This work focuses towards this last aim, where in the Concrelife software the
complex coupled and strongly non-linear mathematical model has been implemented
without assumptions.

Concrelife has been developed in a pleasant window environment which allows
easy communication with the user both for data entry (parameters involved, boundary
conditions and simulation time window) and for the representation of results in tabulated
or graphical form. The user chooses the mesh size by establishing a compromise between
the required accuracy and the computing time. Mesh sizes above 50 ensure generally
acceptable errors in the engineering field. The Concrelife results have been verified both
experimentally and by comparison with those obtained by other numerical methods,
providing in all cases negligible deviations.

In what follows, the mathematical models of the saturated and unsaturated problems
are firstly presented, followed by an explanation of the detailed use of Concrelife software
through its user interaction windows and by the solution of two illustrative applications
to real scenarios. Finally, the characteristics of the program and its potential to address
the wide variety of problems related to the penetration of chlorides in reinforced concrete
are synthesized.
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2. The Governing Equations
2.1. Water-Saturated Concrete

The mathematical model for heat and chloride transport in water-saturated
concrete [1,21,24,27,31–33] is formed by the set of Equations (1) to (15), shown in Table 1
and Figure 1.

The heat transport equation involves Fourier law and conservation of heat flow. In
the governing Equation (1) T (K) and t (s) are temperature and time, while αT (m2s−1)
is the average thermal diffusivity of the porous media, the ratio between the average
thermal conductivity km (Wm−1K−1) and the average specific heat (ρce)m (Jm−3K−1). In
the boundary conditions Equations (2) and (3), T(Sext,iso)

is the time dependent temperature
(a t-T table) applied to the concrete exterior surface (generally a seasonal dependence) and(

∂T
∂n

)
(Sext,adi)

the temperature gradient on the adiabatic surface. Ta represents the initial

temperature of the concrete, Equation (4). This heat problem is decoupled from chloride
transport so that it is solved separately.

Table 1. Mathematical model of transport in saturated concrete.

Heat Transport

Governing equation:
∂T
∂t − αT∇2(T) = 0 (1)

Boundary conditions: (2)
T(Sext,iso) = T(t)(

∂T
∂n

)
(Sext,adi)

= 0, at adiabatic contour (3)

Initial condition:
T(t=0) = Ta at the domain (4)

Chloride transport

Governing equation:
∂Ct,c

∂t +∇·
(
DcCf,s∇φl

)
= ∇·

(
Dc∇Cf,c

)
(5)

Cf,c = Cf,sφl (6)
Ct,c = Cf,c + Cb + Cp (7)

φl = φo − 1
ρF

Cb − 1
ρps

Cp (8)
∂Cp
∂t = − Cf,s,sat

∂φl
∂t

(
∂Cb
∂Cf,c

)∣∣∣
Cf,c=Cf,s,sat·φl

(9)

Cf,s,sat =
CS

NaClMCl(1000+∆ρT
l )

1+CS
NaClMNaCl(1−ρ0

l ε)
(10)

CS
NaCl =

(
6.044 + 2.8× 10−3T + 3.6× 10−5T2

)
10−3 (11)

∆ρT
l = −1000 (T+288.9414)(T−3.9863)2

508929.2(T+68.12963)
(12)

Dc = Dexp exp(− Ea
R [ 1

T −
1

To
]) (13)

Cb ∼ Cf,c Isotherms:
Cb = Cb,oK Cf,c (linear) (14a)

Cb =
Cb,oK Cf,c
1+K Cf,c

(Langmuir) (14b)

Cb = βCf,c
α (Freundlich) (14c)

Cb = Cb,o
KCα

f,c
1+KCα

f,c
(Langmuir-Freundlich) (14d)

Boundary conditions:
Cf,s(t, Sext,iso) = Co (15)(

∂Cf,s
∂n

)∣∣∣
Sext,adi

= 0 (16)

Initial conditions:
Cf,s(t=0) = Cf,s,i =

Cf,c,i
φo

(17)
φl(t=0) = φo (18)
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Figure 1. Geometry and boundary conditions for the problem of water-saturated concrete. Nomen-
clature: Cf,s is the free chloride concentration in the solution (kg/m3 solution), Cf,s,i is the initial
free chloride concentration in the solution (kg/m3 solution), Co is the free chloride concentration
at the surrounding liquid (kg/m3 solution), L is the concrete structure length (m), Ta is the initial
temperature (◦C), T(Sext,iso) is the external temperature (◦C), x is the position (m) and φo is the initial
porosity (m3 of pores/m3 of concrete).

The chloride transport is ruled by a nonlinear diffusion Equation (5) in which two
variables are involved, the chloride concentration and the pore solution content. In the
chloride transport, Cf,s, Cf,c and Ct,c are variables that represent the free chloride concen-
tration at the solution (kg/m3 solution), the free chloride concentration at the concrete
(kg/m3 concrete) and the total chloride concentration at the concrete (kg/m3 concrete)
while Cb and Cp are the bound and precipitated chloride concentration at the concrete
(kg/m3 concrete). These chlorides are related by the definition (6) and the total chloride
(mass) conservation (7). φl, the pore solution content (m3 of solution/m3 of concrete) is
related by bound and precipitate chlorides by Equation (8) where φo is initial porosity
(m3 of pores/m3 of concrete), and ρF and ρp.s the densities of Friedel’s salt (1892 kg/m3

of concrete) and precipitate (2165 kg/m3 of concrete). Cf,s,sat is the saturate concentration
of the chloride solution to start the precipitation whose rate is given by Equation (9). This
parameter (Cf,s,sat) depends on temperature according to the expression [34], Equation (10),
with CS

NaCl (mol/g of water) the chloride content in a saturated solution, also temperature
dependent in the form of Equation (11) [34–36], with T in ◦C. In Equation (10), MNaCl and
MCl are the molecular weight of NaCl and Cl, respectively, ρ0

l the density of pure water at
20 ◦C (ρ0

l = 998.2 kg/m3), ε a correlation dimensional coefficient (6.46 × 10−4 m3/kg, [36])
and ∆ρT

l the change in water density with temperature (◦C) given by Equation (12) [35].
The dependence of Dc on temperature is given by Equation (13), the only coupling

with heat transport, with Ea the activation energy of the NaCl (20 kJ according [37]. As
for the dependence between Cb and Cf,c, the well-known expressions of linear, Langmuir
and Freundlich isotherms, Equations (14a) to (14d), are assumed. Each of them with their
specific coefficients: K (m3 of concrete per kg de chloride) an equilibrium constant for Lang-
muir models, Cb,o (kg/m3 concrete) the maximum bounded chloride ion concentration at
the concrete, and α (dimensionless) and β (m3 concrete/kg)α−1 constants at the Freundlich
expressions. Finally, Equations (15) and (16) show the boundary conditions, with Co the
free chloride concentration at the surrounding liquid, while Equations (17) and (18) are the
initial condition for chloride and pore solution content, with Cf,s,i the initial free chloride
concentration in the solution (kg/m3 solution) and Cf,c,i the initial free chloride concentra-
tion at the concrete (kg/m3 concrete). Finally, φo is the initial porosity of the concrete.

2.2. Water-Unsaturated Concrete

Table 2 and Figure 2 show the mathematical model [1,21,24,27,31–33,38,39].
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Table 2. Mathematical model of transport in water-unsaturated concrete.

Heat transport:

Equations (1) to (4), Table 1

Chloride transport:

Governing equation:
∂Ct,c

∂t +∇·
(
DcCf,s∇φl

)
+∇·

[(
kCf,s
νlφl

)(
∂pc
∂φl
∇φl +

∂pc
∂φ∇φ+

∂pc
∂T ∇T

)]
= ∇·

(
Dc∇Cf,c

)
(19)

φl
∂(ρl)

∂t + ρl
∂(φl)

∂t = ρl∇·
[

k
νl

(
∂pc
∂φl
∇φl +

∂pc
∂φ∇φ+

∂pc
∂T ∇T

)]
+ k
νl

(
∂pc
∂φl
∇φl +

∂pc
∂φ∇φ+

∂pc
∂T ∇T

)
∇·[ρl] (20)

φ = φo − 1
ρF

Cb − 1
ρps

Cp (21)

Equation (6), (7) and (9) to (12)

k = ko

√
φl
φ

[
1−

(
1−

(
φl
φ

) 1
e
)e]2

(22)

νl =
ν0

w 10
α1(20−T)+α2(20−T)2+α3(20−T)3+α4(20−T)4

96+T

1−ζCNaCl

(23)

ρl = 1000 + ∆ρT
l + ∆ρs

l = 1000− 1000 (T+288.9414)(T−3.9863)2

508929.2(T+68.12963) + ρ0
l εCNaCl (24)

Dc = Dexp

√
φ
φl

[
1−

(
1−

(
φl
φ

) 1
e
)e]2

exp(− Ea
R [ 1

T −
1

To
]) (25)

pc = Ψ1(T)
(
φl
φ

)a1 (26)

pc,b = ρl
RT

mmol, H2O vapor
ln[hr] (27)

Equations (14a) to (14d), Table 1 (water-saturated)
Boundary conditions:

Equations (15) and (16), Table 1 (saturated)
hr(t, Sext,iso) = hr,o (28)

Initial conditions:
Equation (17), Table 1 (saturated)

φ(t=0) = φo (29)
φl(t=0) = φl,o (30)
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Figure 2. Geometry and boundary conditions for the problem of water-unsaturated concrete. Nomen-
clature: Cf,s is the free chloride concentration in the solution (kg/m3 solution), Cf,s,i is the initial free
chloride concentration in the solution (kg/m3 solution), Co is the free chloride concentration at the
surrounding liquid (kg/m3 solution), hr is the relative humidity of the surrounding atmosphere, L is
the concrete structure length (m), Ta is the initial temperature (◦C), T(Sext,iso) is the external temperature
(◦C), x is the position (m), φo is the initial porosity (m3 of pores/m3 of concrete) and φl,o is the initial
pore water content.

For water-unsaturated concretes, the pore solution content (φl) and the porosity (φ)
take different value so the latter is a new variable in the governing equations, as well as
the capillary pressure (nonexistent in the saturated problem), the potential quantity that
causes advection or drag flow (suction). The heat transfer is governed by the same set
of equations as for the water-saturated case, (1) to (4), and its solution is also obtained
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numerically, regardless of the transport of chloride. The chloride transport is ruled by
Equations (19) and (20) [1,21,24,27,31–33,38,39], the last reduced to

φl
∂(ρl)

∂t
+ ρl

∂(φl)

∂t
= ∇·

[
ρlkl
νl

(
∂pc
∂φl
∇φl +

∂pc
∂φ
∇φ+

∂pc
∂T
∇T
)]

under the hypothesis of incompressible liquid solution. Equation (19) replaces Equation (5)
of the water-saturated case and is more complex because of the changes in porosity (φ)
while Equation (20) replaces the hypothesis φ = φl of the saturated case (not expressly
collected in its mathematical model). The last is the result of replacing the flow veloc-
ity v = kl

νl

(
∂pc
∂φl
∇φl +

∂pc
∂φ∇φ+

∂pc
∂T ∇T

)
in the conservation law ∂(φlρl)

∂t +∇·(ρlv) = 0
after some mathematical manipulations. The new parameters and quantities that emerge
in these equations, k (m2), νl (Nm−1s−1), ρl (kg/m3) y pc (Pa) are the permeability of
the concrete, the dynamic viscosity, the density of the fluid and the capillary pressure,
respectively. As regards their values, k is assumed to be dependent on φ and φl ac-
cording to Equation (22) [40], with ko the intrinsic permeability and e a constant de-
pendent on the material and the type of cycle (wet or dried). νl is a temperature de-
pendent parameter, Equation (23) [41]; and ρl is a temperature and concentration de-
pendent parameter, Equation (24) [35,36]. In equation (23), ν0

w is the viscosity of pure
water at 20 ◦C (ν0

w = 1002 Pa·s), T is the temperature (◦C), α1 to α4 and ζ dimensional
coefficients (α1 = 1.2378, α2 = −1.303 × 10−3, α3 = 3.06 × 10−6, α4 = 2.55 × 10−8,
ζ = 1.566× 10−3 m3/kg) and CNaCl (kg/m3) the concentration of NaCl in the solution.
This is obtained from CNaCl =

MNaCl
MCl

Cf,s, with MNaCl and MCl the molecular mass of NaCl
and Cl, respectively.

The dependence of Dc on temperature for unsaturated concrete is given by Equation (25),
with e the same constant that appears in Equation (22). As for the capillary pressure (pc),
which appears in Equations (19) and (20), it is assumed that depend on the porosity, the
water content in the pores and the temperature, pc = pc(φl,φ, T). The dependencies
currently proposed in the literature are:

pc(φl,φ, T) = Ψ1(T)
(
φl
φ

)a1 [42]

pc(φl,φ, T) = Ψ2(T)
{(

φl
φ

) 1
a2 − 1

}1−a2
[40]

pc(φl,φ, T) = Ψ3(T){arctg (a3[a4 −φl] + arctg (a3[φ− a4]} [27]

In these expressions, Ψ1 and Ψ2 are temperature dependent functions named capillary
moduli (Pa), while a1 to a4 are dimensionless constants that depend on the material. Despite
the third adapts better to the experimental results and collects the effects of hysteresis,
the first has been chosen to approach pc in Concrelife, Equation (26), because the three
dependencies solutions are almost identical [27,40,42]. This capillary pressure in the
medium has as a boundary condition—the one caused by the relative humidity of the
environment (pc,b), difference between the total (external) and atmospheric pressures. Its
value is given by the expression (26), with hr the relative humidity of the surrounding
atmosphere and mmol, H2O vapor the mass of one mole of water vapor.

For the isotherms as well as the boundary and initial concentration conditions, the
same expressions of the saturated transport are assumed, i.e., Equations (11a) to (11d) for
the first and (15) to (17) for the second. In addition, a new condition is required for the
capillary pressure at the boundary (hr,o), Equation (28), and for the initial values of porosity
(φo) and pore water content (φl,o), Equations (29) and (30), respectively.

3. The Code Concrelife

The purpose of this software is to obtain numerical solutions to the problem of chloride
transport in reinforced concrete, water-saturated or not, under the hypothesis of the exis-
tence of bound and precipitated chlorides, taking into account the thermal dependencies of
the different coefficients involved in the process. In order to make its design simple and
intuitive, a user communication environment has been designed through Windows (for
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XP, Vista, 7, 8 and 10 operating systems) using Matlab® [43]. This allows a progressive
access to each of the steps necessary for the simulation. The very complete and powerful
graphic application of this code is also used to represent the different types of curves of
the solution.

The numerical calculation is conducted using models whose designs are based on the
Network Simulation Method [8,10] and shown in [44], a tool that takes advantage of the
powerful computing algorithms inherent in modern circuit resolution codes [45] to provide
practically an exact solution of the model. The errors are relegated to the size of the mesh
and are much less than 1%, for relatively low meshes (of the order of 40 or 50 cells in 1-D
problems). As the calculation engine for the execution of the models, the free code NgSpice
(Spice Code) has been chosen [46]. This software, a circuit simulator with ‘Modified’ BSD
license —which is based on three open source software packages Spice3f5, Xspice and
Cider1b1—, solves the equations implemented through the circuits created by Concrelife,
generating suitable output files with the results obtained.

In summary, the Network Simulation Method consists of transforming the mathemati-
cal model that represents the physicochemical problem into a network of electrical circuits.
Each cell of the spatial discretisation includes the network model that represents the mathe-
matical model and is connected to adjacent cells or boundary conditions. To convert the
mathematical model into a network model, the following steps must be followed: (1) The
equivalence between the study variable and the voltage at the central node of the network is
established; (2) For this purpose, different electrical devices are available to implement the
summand, such as resistors, current generators, batteries, capacitors, etc. and; and (3) The
circuit created must comply with Kirchhoff’s laws. The mathematical model described
above has been fully implemented in the Concrelife software and no assumptions have
been made. A more detailed description of the model can be found in [44].

3.1. The Screens of Input Data

The anagram of the program is shown in Figure 3 and its execution follows the scheme
represented as a flow chart in Figure 4. The computational solutions are stored to be shown
in tabulated form or by graphical representations. For example, instantaneous spatial
profiles of the chloride concentration (concentrated in the solution, in the concrete, or
bounded and precipitated chloride), temporary distributions of these concentrations in
positions selected by the user, total chloride that penetrates the boundary, etc.

Once the program starts, a first communication screen is displayed. As shown in
Figure 5, the user selects the type of problem: saturated or unsaturated. According to the
choice, the screens in Figures 6 and 7 give access to the problem data entry. For the entire
data set, the units in which they are to be expressed are shown.
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These screens also display a menu located at the top with four labels. In the first ‘File’
display, the sub-menu of Figure 8a, the user can choose between the following: create a
new model, save it once the input data has been entered, load a previously created model,
load figures or close the software. The second ‘Models’ display is a submenu to change
from the saturated to unsaturated model or vice versa as shown in Figure 8b. The third
label, ‘Graphic representation’, allows access to the graphic representation screen as shown
in Figure 8c. The last label, ‘Parametrs’, through the only option ‘Calculation parameters’
allows displaying a new window in which the user defines other parameters related to the
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calculus such as ‘Reltol’ or relative tolerance, to set the compromise between accuracy of
results and computing time; ‘Number of division’ to define the number of volume elements
or cells; ‘Time interval’ to set the successive times for which boundary conditions change
their values; and ‘Number of simulation’ to determine the number of times the results are
saved, at regular intervals starting from zero, over the total simulation, Figure 8d.
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Going back to the data entry screens, for the saturated problem (Figure 5), the data is
organized into three blocks. In the first, left column of the figure, the following data are in-
troduced: length of the domain (‘Lengh’), diffusivity of the chloride in the solution (‘Dexp’),
thermal diffusivity (‘α’), the initial porosity (‘φo’), initial concentration of chloride in the
concrete (‘Clini’) and degree of saturation (φl/φ), or ratio between the pore water content
and porosity (‘Saturation’). The type of isotherm (‘Select bound chloride equation’) and
the parameters that adjusts the corresponding dependence (‘Bound chloride parameters’)
complete the data of this column. It is possible to choose between any of the four known
isotherms, linear Langmuir (Equation (14a)), non-linear Langmuir (Equation (14b)), non-
linear Freundlich (Equation (14c)) and non-linear Langmuir–Freundlich (Equation (14d)),
Figure 9a. The parameters involved in each of these dependencies are entered through
the screen of Figure 9b that appears clicking ‘Bound chloride parameters’. Note that you
can simulate the problem without bound chloride by entering on the linear dependence of
Langmuir the value Cb,o = 0.
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coefficients.

The second block collects the concentration and temperature of the surrounding fluid
(‘External chloride concentration’ and ‘External temperature’, respectively), the total time of
simulation (‘Time’), the time interval for which the boundary conditions change (’Change
time’) and the initial temperature of the concrete (Initial temperature’). The total time can
be split in up to 12 equal intervals allowing the concentration and contour temperature to
be changed up to twelve times. Thus, by clicking ‘External chloride concentration’ and
‘External temperature’, the program presents the drop-down in Figure 10a,b, respectively.
The concentration and temperature data that applied to the beginning of each time interval
are introduced.
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In relation to the unsaturated problem (Figure 6), in addition to the above data, the
value of the coefficients of the capillary pressure (19) and the diffusion coefficient (20), e,
e1 y A1, are introduced by clicking the label ‘Wet drying parameters’ in the unsaturated
problem screen. This action gives way to the screen of Figure 10c allowing to enter these
coefficients whose value depends on whether it is a drying (D) process or a wet (W) process.
In addition, clicking the label ‘External relative air humidity’, a new screen in which the
table of values of this parameter (between the range [0.001–1]) for the successive time
intervals defined above is displayed, Figure 10d.

3.2. Simulation and Graphical Outputs

Once the data has been entered and after clicking the icon
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, the model is generated
by programming in the form of a text file, and NgSpice starts the simulation. This gives
way to the presentation of the typical NgSpice software screen [46], where the percentage
of time elapsed until complete computing is indicated. An auxiliary screen gives addi-
tional information in reference to the simulation number through which the computation
progresses, Figure 11.
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accesses the graphical
representation of the solutions through the screen of Figure 12. In this, the drop-down ‘Kind
of representation’ allows to select between spatial representation of variables (‘Spatial’),
in selected moments introduced in the drop-down ‘Time to represent’, and temporal
representation of variables (‘Evolution’) at the location chosen in ‘Section to represent’ in the
main screen, Figure 13a,b. The variables that can be represented for the saturated problem
are (1) free chloride concentration in the solution (kg/m3), ‘Free Chloride concentration
(Vol.)’; (2) free chloride concentration in concrete (kg/m3), ‘Free Chloride concentration’;
(3) bounded chloride concentration in the concrete (kg/m3), ‘Bound Chloride concentration’;
and (4) concrete porosity, ‘Porosity’. For the unsaturated problem, the previous variables
plus (5) precipitated chloride concentration in concrete (kg/m3), ‘Precipitated Chloride
concentration’; (6) volume fraction of the liquid phase in the pores, ‘Volume fraction of the
liquid phase’; and (7) saturation degree, ‘Saturation degree’, Figure 14a,b.
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As an illustration, typical representations of Concrelife are shown. The spatial concen-
tration of three species of chlorides after 250 days is shown in Figure 15a. Time evolution
of concentration of three species of chloride at 1.2 cm from the boundary is shown in
Figure 15b. The free chloride (kg/m3 solution) is represented in the color green, the free
chloride (kg/m3 concrete) in blue, and finally, the bound chloride (kg/m3 concrete) in black.
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Figure 15. (a) Spatial concentration of three species of chloride, Cf,s (free chloride in kg/m3 solution),
Cf,c (free chloride in kg/m3 concrete) and Cb (bound chloride in kg/m3 solution), after 250 days.
(b) Time dependence of concentration of three species of chloride at x = 1.2 cm.

4. Applications

Three applications are presented to demonstrate the efficiency and reliability of Con-
crelife. For them, a mesh of 50 cells is chosen. Data of the first application, whose purpose
is to verify the results of the program are listed in Table 3. The experimental data have been
taken from the experimental tests conducted by [27,47], where the latter author [27] indi-
cates that the first two experimental data have been ignored, since it seemed that the bound
chloride ions were more soluble in positions close to the surface. One possible explanation
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is that the standard measurement method for measuring free chloride is less accurate at high
concentrations. Table 3 shows results obtained by [27,47] ignoring these first two data, as
indicated by [27]. The coefficients of the Langmuir–Freundlich nonlinear isotherm chosen
to approximate the Cb-Cf,c dependence have been adjusted using the spreadsheet [27,47].
Figure 16 shows the concentrations of free, bound and total chlorides, given by Concrelife,
in typical locations of a concrete sample after 18 months. Note that the concentration level
of free chloride Cf,c exceeds the threshold of this variable (0.6–1.2 kg/m3 of concrete) for
which armor corrosion begins [2,3,26,48,49]. After integrating the Cf,c concentration profile
obtained in the simulation along each of the slices in which the sample was cut in the
experimental test, we can compare the experimental results and those of the simulation
using Concrelife. Table 4 collects this comparison and verifies that the deviations between
experimental and numerical solutions are minimal, with relative errors below 2.94%.

Table 3. Data of the first application (water-saturated concrete).

Common Parameters

Rg = 8.31 J/mol K Ea = 19,805 J Cf,s,sat,(20 ◦C) = 192 kg/m3 ρps = 2165 kg/m3 ρps = 1892 kg/m3

Co = 18.59 kg/m3 solution for 18 months
ϕo = 0.134 Dexp = 5.33 × 10−12 m2/s L = 0.2 m Ct,i = 0.038 kg/m3 concrete

Bound chloride parameters for Langmuir–Freundlich isotherm

Cbo = 11.895 Kg/m3 concrete K = 1.1007 α = 0.5639

Temperature parameters

Ta = 20 ◦C αT = 7 × 10−7 m2/s

Experimental data [27,47]

Distance
(mm)

Free chlorides
(kg/m3 concrete)

Bound chlorides
(kg/m3 concrete) Total chlorides (kg/m3 concrete)

6.430 1.8800 7.2694 9.1494
9.495 1.6512 7.0625 8.7137
12.160 1.4421 6.8359 8.2780
14.580 1.2439 6.5984 7.8423
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Table 4. Deviations between experimental and numerical solutions.

Distance
(mm) Free Chlorides (kg/m3 Concrete) Bound Chlorides (kg/m3 Concrete) Total Chlorides (kg/m3 Concrete)

Experimental Simulation Experimental Simulation Experimental Simulation

6.430 1.8800 1.9140
(1.807%) 7.2694 7.2508

(0.256%) 9.1494 9.1648
(0.168%)

9.495 1.6512 1.6638
(0.765%) 7.0625 7.0423

(0.286%) 8.7137 8.7062
(0.087%)

12.160 1.4421 1.4571
(1.041%) 6.8359 6.8296

(0.092%) 8.2780 8.2867
(0.105%)

14.580 1.2439 1.2804
(2.936%) 6.5984 6.6072

(0.133%) 7.8423 7.8876
(0.577%)

The second application, whose data are listed in Table 5, is a coupled problem in
a saturate concrete sample, where to show the possibilities of changing the boundary
conditions in the software, it is proposed that the external chloride concentration drops
sharply after 5 years while temperature boundary conditions simulate approximately those
of an annual seasonal cycle. This could be the case of a structure submerged in a swimming
pool that is initially filled with seawater and after 5 years is changed to water with a lower
salt concentration. To approximate the dependence between bound and free chlorides,
the Langmuir–Freundlich isotherm with typical values for its coefficients has been chosen.
The surface of the concrete opposite to that subjected to the outside environment (x = lo)
has been considered adiabatic for heat flux and impermeable for the chloride ions. This is
a suitable option since the geometry of the problem is symmetric in general allowing to
simulate only half of the domain. The simulation time chosen is sufficient to ensure that
the concentration of free chloride in the supposed position of the reinforcement bar is near
or exceeds the threshold of corrosion initiation. This time is far from the characteristic time
of the process, lo2/Dexp.

Table 5. Saturated problem. Data of the second application.

Common Parameters

Rg = 8.31 J/mol K Ea = 19,805 J Cf,s,sat,(20 ◦C) = 192 kg/m3 ρps = 2165 kg/m3 ρps = 1892 kg/m3

Co = 19.455 kg/m3 solution for 0 ≤ t ≤ 5 years Co = 1 kg/m3 solution for t > 5 years
ϕo = 0.1 Dexp = 9.35 × 10−11 m2/s L = 0.2 m Cf,s,i = 0 kg/m3

Bound chloride parameters for Langmuir–Freundlich isotherm

Cbo = 12.5366 Kg/m3 concrete K = 0.6934 α = 0.9451

Temperature parameters

Ta = 10 ◦C αT = 7 × 10−7 m2/s
External temperature

Month T(Sext,iso) (◦C) Month T(Sext,iso) (◦C) Month T(Sext,iso) (◦C)
1 10 5 15 9 18
2 11 6 17 10 17
3 11 7 18 11 15
4 13 8 19 12 11

The simulation results are shown in Figures 17–19. In the first, concentration profiles
for Cf,s (free chloride in kg/m3 solution), Cf,c (free chloride in kg/m3 concrete) and Cb
(bound chloride in kg/m3 solution) at 5 and 20 years are depicted. The change in profile
caused by the fall in concentration at the boundary (x = 0) as well as the delay in this fall
as we enter inside the sample are appreciated. The time dependent concentration of the
same chlorides at typical locations, x = 5 and 10 cm are depicted in Figure 18. Finally,
Figure 19 shows the total chloride quantity of Cf,s, Cb and Cf,c that crosses the boundary
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between 0 and t days. It is immediate to deduce from these graphs the time for which
the concentration threshold of Cf,c that starts the corrosion of the reinforcement in each
position is reached.

The third application refers to an unsaturated problem whose data lists in Table 6. In
this example, the external temperature has a slow harmonic variation throughout the year.
For the concentration of chloride in the surrounding atmosphere, the cycle of variation
is 0.5 years with a square waveform, showing a structure submerged in seawater some
months and not others. Relative humidity values throughout the year have been chosen
arbitrarily from those possible for this example, reproducing an almost harmonic function
of 0.5-year cycle, thus showing the ability to change the boundary conditions of the software.
Finally, the relative humidity value equal to unity means that the structure is submerged.
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Figure 17. Concentration profiles of Cf,s (free chloride in kg/m3 solution), Cf,c (free chloride in kg/m3

concrete) and Cb (bound chloride in kg/m3 solution), at (a) 5 and (b) 20 years.
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Figure 18. Time dependent concentration of Cf,s (free chloride in kg/m3 solution), Cf,c (free chloride
in kg/m3 concrete) and Cb (bound chloride in kg/m3 solution) at (a) x = 5 and (b) 10 cm.
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Figure 19. Time dependent of total chloride of Cf,s (free chloride in kg/m3 solution), Cf,c (free chloride
in kg/m3 concrete) and Cb (bound chloride in kg/m3 solution) that penetrates the boundary.

Table 6. Unsaturated problem. Data of the third application.

Common Parameters

Rg = 8.31 J/mol K Ea = 19,805 J Cf,s,sat,(20 ◦C) = 192 kg/m3 ρps = 2165 kg/m3 ρps= 1892 kg/m3

ϕo = 0.1 Dexp = 8.30 × 10−11 m2/s L = 0.1 m Sat = 1

Bound chloride parameters for Langmuir–Freundlich isotherm

Cbo = 13.7835 Kg/m3 concrete K = 0.8662 α = 0.9068

Parameters for diffusion coefficient and permeability

e = 0.5331
(wet cycle) e = 0.5331 (drying cycle) ko = 2.45 × 10−21 m2

Parameters for capillary pressure

ρ1 = 0.1 MPa
(wet cycle) ρ1 = 0.1 MPa (drying cycle) a1 = 3 (wet cycle) a1 = 7

(drying cycle)

Concentration parameters

Cf,s,i = 0 kg/m3

External concentration

Month Co (kg/m3

solution)
Month Co (kg/m3 solution) Month Co (kg/m3

solution)
1 19.455 5 1.822 × 10−8 9 19.455
2 19.455 6 1.822 × 10−8 10 1.822 × 10−8

3 19.455 7 19.455 11 1.822 × 10−8

4 1.822 × 10−8 8 19.455 12 1.822 × 10−8

Temperature parameters

Ta = 10 ◦C αT = 7 × 10−7 m2/s
External temperature

Month T(Sext,iso) (◦C) Month T(Sext,iso) (◦C) Month T(Sext,iso) (◦C)
1 10 5 15 9 18
2 11 6 17 10 17
3 11 7 18 11 15
4 13 8 19 12 11
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Table 6. Cont.

Relative humidity parameters

External relative humidity
Month hr Month hr Month hr
1 1 5 0.3 9 1
2 1 6 0.7 10 0.5
3 1 7 1 11 0.4
4 0.4 8 1 12 0.6

The simulation results are shown in Figures 20–22. The concentration of Cf,s (free
chloride in kg/m3 solution), Cf,c (free chloride in kg/m3 concrete) and Cb (bound chloride
in kg/m3 solution) along the concrete at times 1, 5, 7.9, 10 and 20 years, Figure 20, clearly
show the effect on these profiles of the seasonal dependence of the concentration of the
surrounding atmosphere, clearly showing the effect of the structure being submerged some
months and not others. This influence results in the temporary harmonic variation of
the concentration at points inside the concrete being delayed the further we move away
from the outer surface of the sample. Thus, in the months when the structure is not
submerged, the chlorides already in the structure can diffuse both into the structure and to
the near-surface areas. Similar results have been obtained in real structures subjected to a
seasonal tidal cycle [50]. Figure 21 shows the time dependent concentration of bounded
and free chlorides at typical locations, x = 2.5, 5 and 7.5 cm. These distributions, as expected,
show a first transition of approximately 9 years for the indicated positions, after which the
concentrations remain harmonic without average variation. Finally, the total chloride that
enters the concrete from the initial moment until t days, separated in its components Cf,s,
Cb and Cf,c, is shown in Figure 22.
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5. Final Comments and Conclusions

The proposed applications allow us to state that the Concrelife software, designed for
the simulation of the problem of penetration of chlorides in reinforced concrete, saturated
or not, reproduces the most demanding conditions to this problem and thus reports reliable
results that allow defining the first state of the useful life of a structure, the period of time
that elapses from the start-up of the structure until the beginning of the reinforcement corro-
sion. The program assumes the current empirical dependencies on the parameters involved
(density and viscosity of the solution, diffusivity of the chloride) with the temperature. The
temperature field is also obtained numerically from the solution of the non-coupled ther-
mal problem, which allows the implementation of time-dependent boundary conditions.
Regarding the penetration of chlorides, the software incorporates the generation of bound
chloride and precipitated chloride, phenomena that lead to a change in the porosity of
concrete thanks to the formation of Friedel´s salt and precipitate crystals. All known types
of empirical dependencies between bounded and free chloride (linear Langmuir, non-linear
Langmuir, Freundlich and Langmuir-Freundlich) have been incorporated into the program.
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In addition, the software allows the introduction of time dependence boundary conditions,
in the form of piece-wise functions, for the chloride concentration and relative humidity.

The need to simulate long-term time intervals (usually years), which inevitably entails
large computing times and a huge amount of resulting data whose processing is not
available to personal computers, has been circumvented with the execution of successive
temporary windows (up to 12) of which the final data is retained, thus avoiding saturation
of the computer memory. The graphical output environment of the software, based on
Matlab ® [43], incorporates the presentation of the spatial and temporal dependences of
all the variables of interest such as, (1) the spatial distribution of all species of chloride in
set times, (2) the temporal evolution of the concentrations in each position of the domain,
(3) the total time dependent chloride that penetrates through the boundary, (4) the porosity,
and (5) the water content in the pores.

To facilitate the handling by users unfamiliar with numerical techniques and other as-
pects of computing, the communication environment with the program’s user is conducted
through windows for both data entry, computation start and graphical representation
of results. Its versatility allows the execution of any type of problem in 1-D rectangular
geometry (which are the most common cases) that can be presented in reinforced concrete
columns including changes in relative humidity, wet-drying, column washing, etc.

The numerical technique that Concrelife software applies is based on the network
method, a tool verified in many other problems of similar or greater complexity to those
presented in this work. The software incorporates standard network models for the most
complex scenarios to which, after the association of specific values with the elements that
integrate these models, it executes them in the free code NgSpice [46] taking advantage
of the modern and powerful computing algorithms that it incorporates. The result of the
simulation is, in practice, the exact solution of the model, leaving the errors relegated to the
size of the mesh chosen—in general, less than 0.5% for relatively small meshes.
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