
����������
�������

Citation: Wu, S.; Khan, M.A.; Saeed,

T.; Sayed, Z.M.M.M. A Refined

Jensen Inequality Connected to an

Arbitrary Positive Finite Sequence.

Mathematics 2022, 10, 4817. https://

doi.org/10.3390/math10244817

Academic Editor: Ana-Maria Acu

Received: 12 November 2022

Accepted: 14 December 2022

Published: 18 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Refined Jensen Inequality Connected to an Arbitrary Positive
Finite Sequence
Shanhe Wu 1,* , Muhammad Adil Khan 2 , Tareq Saeed 3 and Zaid Mohammed Mohammed Mahdi Sayed 2,4

1 Institute of Applied Mathematics, Longyan University, Longyan 364012, China
2 Department of Mathematics, University of Peshawar, Peshawar 25000, Pakistan
3 Department of Mathematics, King Abdulaziz University, Jeddah 21589, Saudi Arabia
4 Department of Mathematics, University of Sáadah, Sáadah 1872, Yemen
* Correspondence: shanhewu@lyun.edu.cn

Abstract: The prime purpose of this paper is to provide a refinement of Jensen’s inequality in
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1. Introduction

The great importance and applications of mathematical inequalities cannot be ignored
in almost every field of science, such as information theory [1], engineering [2], qualitative
theory of integral, mathematical statistics [3], differential equations [4], and economics [5].
Several mathematicians have taken a great interest in refining, proving, and generaliz-
ing numerous mathematical inequalities; due to their rapid developments, mathematical
inequalities have been considered an independent field of modern applied analysis. Con-
vexity plays a key role in developments in the field of mathematical inequalities [6,7]. The
importance of convexity in the theory of inequalities is well known because some much
more useful inequalities that originated from this concept have been created, such as the
majorization inequality and Jensen’s, Slater’s, and Sherman’s inequalities [8]. Among these
inequalities, the Jensen inequality has a special significance because it produces many other
important and classical inequalities, such as the Hölder, Ky-Fan, and AM-GM inequalities,
and it includes a great number of applications in several areas of mathematics. The Jensen
inequality is expressed as follows [9]:

f
(

∑n
i=1 pixi

Pn

)
≤ 1

Pn

n

∑
i=1

pi f (xi), (1)

if f : J → R is a convex function defined on the interval J, xi ∈ J, pi > 0 for i = 1, 2, . . . , n
with Pn = ∑n

i=1 pi. This inequality has been widely applied in many branches of science.
In [10], Azar applied some versions of Jensen’s inequality in finance and examined the
statistical importance of different Jensen-type inequalities by utilizing the mechanism
of simulation of random normal variables. They also showed that Jensen’s inequality
guarantees that the predicted utility paradigm is not simply a theoretical or a mathematical
problem, but it has a statistical support. Jensen’s inequality has pertinence in every subject
of biomathematics that consists of nonlinear processes, and this inequality gives a dynamic
mechanism for predicting some direct outcomes of environmental variations in biological
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systems [11]. In information theory, the non-negativity of Kullback–Leibler divergence,
bounds for Shannon entropy, Hellinger distance, Bhattacharyya coefficient, total variation
distance, and Jeffrey distance can be obtained by using this inequality [12]. By using the
majorization concept, a refinement of the Jensen inequality was given in [13], while some
interesting bounds for the Jensen difference with several applications were provided in [14].

Due to the widespread use of this inequality, many mathematicians have taken a keen
interest in studying its various aspects. In [15], Steffensen proved the same inequality
(1) under relaxed conditions for weights with p1 > 0, p1 + p2 + · · · + pk ≥ 0 for k =
1, 2, . . . , n − 1 and Pn > 0 while using a strict condition of monotonicity of the tuple
(x1, x2, . . . , xn). In 1981, Slater derived a very important inequality for increasing convex
function that was related to the Jensen inequality [16], while in 1985, Pečarić [17] proved
the same inequality for a convex function without using the monotonicity condition of the
function; moreover, a multidimensional version of that inequality was established in [18].
In 2003, Mercer brought to the literature an inequality that was more in line with the Jensen
inequality [19]. There are many results that are devoted to the Jensen–Mercer inequality.
Niezgoda used the concept of majorization and separable sequences, and they derived a
generalization of the Jensen–Mercer inequality [20]. In [21], Dragomir considered some
indexing subsets of {1, 2, . . . , n} and constructed functionals associated with indexing sets
and convex functions. With the aid of these functionals, a refinement of Jensen’s inequality
was derived, which implied the earlier refinement obtained in [22].

This manuscript is organized as follows: In Section 2, a refinement of Jensen’s in-
equality that is associated with an arbitrary positive sequence and some indexing sets is
provided (Theorem 1). The result is elaborated for particular indexing sets (Corollary 1). In
Remarks 1 and 2, it is explained that the obtained results can generate the earlier results. In
Section 3, the main results will be used to deduce refinements of the quasi-arithmetic and
power mean inequalities. In Section 4, we illustrate several applications of the obtained
results in information theory.

2. Refinement of Jensen’s Inequality

Before describing the main results, we first give some notations that will be used
throughout the paper.

If S is a subset of {1, 2, . . . , n} and ti ∈ R for i = 1, 2, . . . , n, then Sc = {1, 2, . . . , n} \ S,
TS = ∑i∈S ti, and Tn = ∑n

i=1 ti.
Our first prime result is as follows.

Theorem 1. Assume that f : J → R is a convex function defined on the interval J, wi, pi >
0, xi ∈ J for i = 1, 2, . . . , n. Then, for arbitrary non-empty proper subsets K, L, M of {1, 2, . . . , n},
we have

f
(

∑n
i=1 pixi

Pn

)
≤ 1

PnWn

(
WLPK f

(
∑i∈K pixi

PK

)
+ WLPKc f

(
∑i∈Kc pixi

PKc

)
+WLc PM f

(
∑i∈M pixi

PM

)
+ WLc PMc f

(
∑i∈Mc pixi

PMc

))
≤ 1

Pn

n

∑
i=1

pi f (xi). (2)

The above inequalities hold in the reverse direction if the function f is concave.

Proof. We begin to express the left side of Jensen’s inequality as:

f
(

∑n
i=1 pixi

Pn

)
= f

(( n

∑
i=1

wi

) 1
PnWn

n

∑
i=1

pixi

)

= f

((
∑
i∈L

wi + ∑
i∈Lc

wi

) 1
PnWn

n

∑
i=1

pixi

)
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= f

(
1

PnWn

(
∑
i∈L

wi

(
∑
i∈K

pixi + ∑
i∈Kc

pixi

)
+ ∑

i∈Lc
wi

(
∑

i∈M
pixi + ∑

i∈Mc
pixi

)))

= f

(
1

PnWn

(
∑
i∈L

wi ∑
i∈K

pixi + ∑
i∈L

wi ∑
i∈Kc

pixi + ∑
i∈Lc

wi ∑
i∈M

pixi + ∑
i∈Lc

wi ∑
i∈Mc

pixi

))

= f

(
1

PnWn

(
∑
i∈L

wi ∑
i∈K

pi
∑i∈K pixi

∑i∈K pi
+ ∑

i∈L
wi ∑

i∈Kc
pi

∑i∈Kc pixi

∑i∈Kc pi

+ ∑
i∈Lc

wi ∑
i∈M

pi
∑i∈M pixi

∑i∈M pi
+ ∑

i∈Lc
wi ∑

i∈Mc
pi

∑i∈Mc pixi

∑i∈Mc pi

))
. (3)

Note that

1
PnWn

(
∑
i∈L

wi ∑
i∈K

pi + ∑
i∈L

wi ∑
i∈Kc

pi + ∑
i∈Lc

wi ∑
i∈M

pi + ∑
i∈Lc

wi ∑
i∈Mc

pi

)

= ∑
i∈L

wi
1

PnWn

(
∑
i∈K

pi + ∑
i∈Kc

pi

)
+ ∑

i∈Lc
wi

1
PnWn

(
∑

i∈M
pi + ∑

i∈Mc
pi

)

=
1

Wn

(
∑
i∈L

wi + ∑
i∈Lc

wi

)
= 1.

Hence, by making use of Jensen’s inequality in (3), we achieve

f

(
1
Pn

n

∑
i=1

pixi

)

≤ 1
PnWn

(
∑
i∈L

wi ∑
i∈K

pi f

(
∑i∈K pixi

∑i∈K pi

)
+ ∑

i∈L
wi ∑

i∈Kc
pi f

(
∑i∈Kc pixi

∑i∈Kc pi

)

+ ∑
i∈Lc

wi ∑
i∈M

pi f

(
∑i∈M pixi

∑i∈M pi

)
+ ∑

i∈Lc
wi ∑

i∈Mc
pi f

(
∑i∈Mc pixi

∑i∈Mc pi

))
. (4)

≤ 1
PnWn

(
∑
i∈L

wi ∑
i∈K

pi
∑i∈K pi f (xi)

∑i∈K pi
+ ∑

i∈L
wi ∑

i∈Kc
pi

∑i∈Kc pi f (xi)

∑i∈Kc pi

+ ∑
i∈Lc

wi ∑
i∈M

pi
∑i∈M pi f (xi)

∑i∈M pi
+ ∑

i∈Lc
wi ∑

i∈Mc
pi

∑i∈Mc pi f (xi)

∑i∈Mc pi

)

=
1

PnWn

(
∑
i∈L

wi ∑
i∈K

pi f (xi) + ∑
i∈L

wi ∑
i∈Kc

pi f (xi)

+ ∑
i∈Lc

wi ∑
i∈M

pi f (xi) + ∑
i∈Lc

wi ∑
i∈Mc

pi f (xi)

)

=
1
Pn

n

∑
i=1

pi f (xi). (5)

Remark 1. It is important to note that Theorem 1 implies the refinement of Jensen’s inequality
given in [21], while the refined inequality can be derived by choosing K = M.

In the upcoming result, we obtain a refined Jensen inequality for particular index sets,
which gives the inequality established in [22].
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Corollary 1. Assume that f : J → R is a convex function defined on the interval J, wi, pi >
0, xi ∈ J for i = 1, 2, . . . , n. Then, for any k, l, m ∈ {1, 2, . . . , n}, we have

f

(
1
Pn

n

∑
i=1

pixi

)
≤ 1

PnWn

(
wl pk f (xk) + wl(Pn − pk) f

(
∑n

i=1 pixi − pkxk
Pn − pk

)
+(Wn − wl)pm f (xm) + (Wn − wl)(Pn − pm) f

(
∑n

i=1 pixi − pmxm

Pn − pm

))
≤ 1

Pn

n

∑
i=1

pi f (xi). (6)

The inequalities in (6) are reversed if the function f is concave.

Proof. Taking K = {k}, L = {l} and M = {m} in (2), we get (6).

Remark 2. In Corollary 1, if k = m, then (6) will become the inequality (2.1) given in [22].

3. Applications for Mean Inequalities

Let p = (p1, . . . , pn) and x = (x1, . . . , xn) be positive n-tuples and I ⊆ {1, 2, . . . , n}. If
r ∈ R, then the power mean PM(x; p; r, I) is defined by:

PM(x; p; r, I) =


(

1
PI

∑i∈I pixr
i

) 1
r , if r 6= 0,

(
∏i∈I xpi

i

) 1
PI , if r = 0.

(7)

In particular, if I = {1, 2, . . . , n}, then we denote the power mean by PM(x; p; r).
As applications of the main result, we deduce refinements of the power mean inequal-

ity.

Corollary 2. Let pi, xi, wi ∈ R+ (i = 1, 2, . . . , n). If s, t ∈ R with s ≤ t and K, L, M are
non-empty proper subsets of {1, 2, . . . , n}, then

PM(x; p; s) ≤
[ 1

PnWn

(
PKWLP t

M(x; p; s, K) + WLPKcP t
M(x; p; s, Kc)

+WLc PMP t
M(x; p; s, M) + WLc PMcP t

M(x; p; s, Mc)
)] 1

t

≤ PM(x; p; t), t 6= 0. (8)

PM(x; p; s) ≤ exp
[ 1

PnWn
(PKWL logPM(x; p; s, K) + WLPKc logPM(x; p; s, Kc)

+WLc PM logPM(x; p; s, M) + WLc PMc logPM(x; p; s, Mc))
]

≤ PM(x; p; t), t = 0. (9)

PM(x; p; s) ≤
[ 1

PnWn
(PKWLP s

M(x; p; t, K) + WLPKcP s
M(x; p; t, Kc)

+WLc PMP s
M(x; p; t, M) + WLc PMcP s

M(x; p; t, Mc))
] 1

s

≤ PM(x; p; t), s, t 6= 0. (10)

PM(x; p; s) ≤ exp
[ 1

PnWn
(PKWL logPM(x; p; t, K) + WLPKc logPM(x; p; t, Kc)
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+WLc PM logPM(x; p; t, M) + WLc PMc logPM(x; p; t, Mc))
]

≤ PM(x; p; t), s = 0. (11)

Proof. Let s, t 6= 0 and φ(x) = x
t
s , x > 0. Clearly, φ′′(x) = t

s (
t
s − 1)x

t
s−2. The function φ

will be convex if t
s ≥ 1 or t

s < 0. If t
s ≥ 1, then s, t > 0 as s ≤ t. If t

s < 0, then t > 0 and
s < 0 as s ≤ t. In both cases, by using the function φ(x) = x

t
s , substituting xi by xs

i in (2),
and then taking the power 1

t , we obtain (8). Similarly, for the case in which 0 < t
s ≤ 1, φ

is concave with t < 0. Therefore, by using Theorem 1 for the concave function φ(x) = x
t
s ,

substituting xi by xs
i , and then taking the power 1

t , we deduce (8).
Similarly to the above procedure, we can prove (10) by using the function φ(x) = x

s
t ,

x > 0 and substituting xi by xt
i in Theorem 1.

The inequalities (9) and (11) can be easily proven by taking t→ 0 and s→ 0 in (8) and
(10), respectively.

Let x = (x1, . . . , xn) and p = (p1, . . . , pn) be positive n-tuples and I ⊆ {1, 2, . . . , n}.
If h is a strictly monotone and continuous function, then the quasi-arithmetic mean is
defined by:

QM(p; x; h; I) = h−1

(
1
PI

∑
i∈I

pih(xi)

)
. (12)

In particular, if I = {1, 2, . . . , n}, then we denote the power mean by QM(p; x; h).

Corollary 3. Let pi, wi, xi ∈ (0, ∞) (i = 1, 2, . . . , n). If K, L, M are non-empty proper subsets of
{1, 2, . . . , n} and g ◦ h−1 is a convex function, then

g(QM(p; x; h)) ≤ 1
PnWn

[
WLPKg(QM(p; x; h, K)) + WLPKc g(QM(p; x; h, Kc))

+ WLc PMg(QM(p; x; h, M)) + WLc PMc g(QM(p; x; h, Mc))
]

≤ 1
Pn

n

∑
i=1

pig(xi). (13)

The above inequalities hold in the opposite direction if the function g ◦ h−1 is concave.

Proof. Using (2) for h(xi) instead of xi and g ◦ h−1 instead of f , we will obtain the required
inequality.

4. Applications in Information Theory

In order to illustrate applications of the new result in information theory, first, we
recall some necessary concepts.

Assume that f : R+ → R is a convex function, a = (a1, a2, . . . , an), and b = (b1, b2, . . . , bn)
are n-tuples with ai, bi ∈ R+; then, the Csiszár f-divergence functional [23] is defined by

C f (a, b) =
n

∑
i=1

bi f
( ai

bi

)
.

We recall the following important notions in information theory [14,24]: Let a =
(a1, a2, . . . , an) and b = (b1, b2, . . . , bn) be positive n-tuples such that ∑n

i=1 ai = ∑n
i=1 bi = 1.

Kullback–Leibler divergence: Kd(a, b) =
n

∑
i=1

ai log
( ai

bi

)
.

Shannon entropy: S(a) = −
n

∑
i=1

ai log ai.
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Total variation distance: Vd(a, b) =
n

∑
i=1
|ai − bi|.

Jeffrey distance: Jd(a, b) =
n

∑
i=1

(ai − bi) log
( ai

bi

)
.

Bhattacharyya coefficient: Bd(a, b) =
n

∑
i=1

√
aibi.

Hellinger distance: Hd(a, b) =
n

∑
i=1

(√
ai −

√
bi

)2
.

Triangular discrimination: Td(a, b) =
n

∑
i=1

(ai − bi)
2

ai + bi
.

Theorem 2. Let f be a convex function defined on R+ and let a = (a1, a2, . . . , an), b =
(b1, b2, . . . , bn) be two positive n-tuples. Then, for arbitrary non-empty proper subsets K, L, M of
{1, 2, . . . , n}, we have

f
(

∑n
i=1 ai

∑n
i=1 bi

) n

∑
i=1

bi ≤
1

Wn

(
WL ∑

i∈K
bi f
(

∑i∈K ai

∑i∈K bi

)
+ WL ∑

i∈Kc
bi f
(

∑i∈Kc ai

∑i∈Kc bi

)

+WLc ∑
i∈M

bi f
(

∑i∈M ai

∑i∈M bi

)
+ WLc ∑

i∈Mc
bi f
(

∑i∈Mc ai

∑i∈Mc bi

))
≤ C f (a, b). (14)

Proof. Using Theorem 1 for xi =
ai
bi

and pi = bi for i ∈ {1, 2, . . . , n}, we obtain (14).

Corollary 4. Let b = (b1, b2, . . . , bn) be positive n-tuple such that ∑n
i=1 bi = 1. Then, for

arbitrary non-empty proper subsets K, L, M of {1, 2, . . . , n}, we have

S(b) ≤ 1
Wn

(
WL ∑

i∈K
bi log

(
|K|

∑i∈K bi

)
+ WL ∑

i∈Kc
bi log

(
|Kc|

∑i∈Kc bi

)

+WLc ∑
i∈M

bi log
(
|M|

∑i∈M bi

)
+ WLc ∑

i∈Mc
bi log

(
|Mc|

∑i∈Mc bi

))
≤ log n. (15)

where |T| represents the number of elements in the set T.

Proof. Taking f (x) = − log x, x ∈ (0, ∞), ai = 1, for each i ∈ {1, 2, . . . , n} in (14), we
obtain (15).

Corollary 5. Let a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) be positive n-tuples such that
∑n

i=1 ai = ∑n
i=1 bi = 1. Then, for arbitrary non-empty proper subsets K, L, M of {1, 2, . . . , n},

we have

0 ≤ 1
Wn

(
WL ∑

i∈K
ai log

(
∑i∈K ai

∑i∈K bi

)
+ WL ∑

i∈Kc
ai log

(
∑i∈Kc ai

∑i∈Kc bi

)

+WLc ∑
i∈M

ai log
(

∑i∈M ai

∑i∈M bi

)
+ WLc ∑

i∈Mc
ai log

(
∑i∈Mc ai

∑i∈Mc bi

))
≤ Kd(a, b). (16)

Proof. If we apply the inequality (14) for f (x) = x log x, x ∈ R+, then we obtain (16).
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Corollary 6. If all of the conditions of Corollary 5 hold, then

Vd(a, b) ≥ 1
Wn

(
WL

∣∣∣ ∑
i∈K

ai − ∑
i∈K

bi

∣∣∣+ WL

∣∣∣ ∑
i∈Kc

ai − ∑
i∈Kc

bi

∣∣∣
+WLc

∣∣∣ ∑
i∈M

ai − ∑
i∈M

bi

∣∣∣+ WLc

∣∣∣ ∑
i∈Mc

ai − ∑
i∈Mc

bi

∣∣∣). (17)

Proof. By applying the function f (x) = |x− 1|, x ∈ R+ in (14), we obtain (17).

Corollary 7. If all of the conditions of Corollary 5 hold, then

Jd(a, b) ≥ 1
Wn

(
WL

(
∑
i∈K

bi − ∑
i∈K

ai

)
log
(

∑i∈K ai

∑i∈K bi

)
+WL

(
∑

i∈Kc
bi − ∑

i∈Kc
ai

)
log
(

∑i∈Kc ai

∑i∈Kc bi

)
+WLc

(
∑

i∈M
bi − ∑

i∈M
ai

)
log
(

∑i∈M ai

∑i∈M bi

)

+WLc

(
∑

i∈Mc
bi − ∑

i∈Mc
ai

)
log
(

∑i∈Mc ai

∑i∈Mc bi

))
≥ 0. (18)

Proof. By choosing the function f (x) = (x− 1) log x, x ∈ (0, ∞), in (14), we obtain (18).

Corollary 8. If all of the assumptions of Corollary 5 hold, then

Bd(a, b) ≤ 1
Wn

(
WL

√
∑
i∈K

ai ∑
i∈K

bi + WL

√
∑

i∈Kc
ai ∑

i∈Kc
bi

+WLc

√
∑

i∈M
ai ∑

i∈M
bi + WLc

√
∑

i∈Mc
ai ∑

i∈Mc
bi

)
. (19)

Proof. By utilizing the convex function f (x) = −
√

x where x ∈ R+, in (14), we ob-
tain (19).

Corollary 9. Under the assumptions of Corollary 5, the following inequality holds:

Hd(a, b) ≥ 1
Wn

(
WL

(√
∑
i∈K

ai −
√

∑
i∈K

bi

)2

+ WL

(√
∑

i∈Kc
ai −

√
∑

i∈Kc
bi

)2

+WLc

(√
∑

i∈M
ai −

√
∑

i∈M
bi

)2

+ WLc

(√
∑

i∈Mc
ai −

√
∑

i∈Mc
bi

)2
)

≥ 0. (20)

Proof. Considering the function f (x) = (
√

x− 1)2, x ∈ (0, ∞), in (14), we deduce (20).

Corollary 10. Under the assumptions of Corollary 5, the following inequalities hold:

Td(a, b) ≥ 1
Wn

WL

(∑i∈K ai −∑i∈K bi
)2

∑
i∈K

ai + ∑
i∈K

bi

+ WL

((
∑i∈Kc ai −∑i∈Kc bi

)2

∑i∈Kc ai + ∑i∈Kc bi

)
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+WLc

((
∑i∈M ai −∑i∈M bi

)2

∑i∈M ai + ∑i∈M bi

)
+ WLc

((
∑i∈Kc ai −∑i∈Mc bi

)2

∑i∈Mc ai + ∑i∈Mc bi

))
≥ 0. (21)

Proof. Since f (x) = (x−1)2

x+1 , x ∈ (0, ∞) is convex, by using the function in (14), we ob-
tain (21).

Remark 3. If we substitute K = M in all of the results presented in this section, we may obtain
the results derived in [21]. Furthermore, if we take K = {k} = L = {l} and M = {m}, then we
may deduce the estimations for the notions in information theory as obtained in [22].

In the remainder of this article, we present applications of the main result for the
Zipf–Mandelbrot entropy. Before we get started, we offer some basic information about the
Zipf–Mandelbrot entropy.

Zipf’s law was further generalized by Mandelbrot in 1966 [25]. This generalized law
is called the Zipf–Mandelbrot law in the literature. The Zipf–Mandelbrot law provides
development to account for the low-rank words in a corpus where i < 100 [26]: l(i) = c

(i+t)s ,
and for particular cases in which t = 0, this law becomes Zipf’s law. There are numerous
interesting applications of this generalized law in different fields, such as ecological field
studies [27], information sciences [28], linguistics [26,29], etc.

The Zipf–Mandelbrot entropy ZME(H, t, u) is given by

ZME(H, t, s) =
s

Hn,t,s

n

∑
j=1

log(j + t)
(j + t)s + logHn,t,s, (22)

where n ∈ N, s > 0, t ≥ 0, Hn,t,s = ∑n
i=1

1
(i+t)s and the Zipf-Mandelbrot law is given by:

ZML(i, n, t, s) = 1/(i+t)s

Hn,t,s
.

In the following corollaries, we demonstrate applications of the new result, which
provides estimations for the Zipf–Mandelbrot entropy.

Corollary 11. Let t ≥ 0, s, bi > 0 with ∑n
i=1 bi = 1. Then, for arbitrary non-empty proper subsets

K, L, M of {1, 2, . . . , n}, the following inequalities hold:

−ZME(H, t, s)−
n

∑
i=1

log bi
(i + t)sHn,t,s

≥ 1
Wn

(
WL ∑

i∈K

log
(

∑i∈K
1

(i+t)sHn,t,s ∑i∈K bi

)
(i + t)sHn,t,s

+WL ∑
i∈Kc

log
(

∑i∈Kc
1

(i+t)sHn,t,s ∑i∈Kc bi

)
(i + t)sHn,t,s

+ WLc ∑
i∈M

log
(

∑i∈M
1

(i+t)sHn,t,s ∑i∈M bi

)
(i + t)sHn,t,s

+WLc ∑
i∈Mc

log
(

∑i∈Mc
1

(i+t)sHn,t,s ∑i∈Mc bi

)
(i + t)sHn,t,s

)
≥ 0. (23)

Proof. Let ai =
1

(i+t)sHn,t,s
, i ∈ {1, 2, . . ., n}; then,

n

∑
i=1

ai log ai =
n

∑
i=1

1
(i + t)sHn,t,s

log
1

(i + t)sHn,t,s

= −
n

∑
i=1

1
(i + t)sHn,t,s

log((i + t)sHn,t,s)

= −
n

∑
i=1

s
(i + t)sHn,t,s

log(i + t)−
n

∑
i=1

logHn,t,s

(i + t)sHn,t,s
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= − s
(i + t)sHn,t,s

n

∑
i=1

log(i + t)
(i + t)s −

logHn,t,s

Hn,t,s

n

∑
i=1

1
(i + t)s = −ZME(H, t, s).

Since Hn,t,s =
n
∑

i=1

1
(t+i)s ,

n
∑

i=1

1
(i+t)sHn,t,s

= 1. Hence, by using (16) for ai = 1
(i+t)sHn,t,s

,

i = 1, 2, .., n, we obtain (23).

Corollary 12. If α1, α2 ≥ 0 and β1, β2 > 0, then for arbitrary non-empty proper subsets K, L, M
of {1, 2, . . . , n}, the following inequalities hold:

−ZME(H, α1, β1) +
n

∑
i=1

log((i + α2)
β2Hn,α2,β2 )

(i + α1)
β1Hn,α1,β1

≥ 1
Wn

WL ∑
i∈K

log

∑i∈K
1

(i+α1)
β1 Hn,α1,β1

∑i∈K
1

(i+α2)
β2 Hn,α2,β2


(i + α1)

β1Hn,α1,β1

+ WL ∑
i∈Kc

log

∑i∈Kc 1
(i+α1)

β1 Hn,α1,β1

∑i∈Kc 1
(i+α2)

β2 Hn,α2,β2


(i + α1)

β1Hn,α1,β1

+WLc ∑
i∈K

log

∑i∈M
1

(i+α1)
β1 Hn,α1,β1

∑i∈M
1

(i+α2)
β2 Hn,α2,β2


(i + α1)

β1Hn,α1,β1

+ WLc ∑
i∈Mc

log

∑i∈Mc 1
(i+α1)

β1 Hn,α1,β1

∑i∈Mc 1
(i+α2)

β2 Hn,α2,β2


(i + α1)

β1Hn,α1,β1

 ≥ 0. (24)

Proof. Let ai =
1

(i+α1)
β1Hn,α1,β1

and bi =
1

(i+α2)
β2Hn,α2,β2

, i = 1, 2, . . . , n; then, as in the proof

of Corollary 11, we have

n

∑
i=1

ai log ai =
n

∑
i=1

1
(i + α1)β1Hn,α1,β1

log
1

(i + α1)β1Hn,α1,β1

= −ZME(H, α1, β1).

n

∑
i=1

ai log bi =
n

∑
i=1

1
(i + α1)β1Hn,α1,β1

log
1

(i + α2)β2Hn,α2,β2

= −
n

∑
i=1

log((i + α2)
β1Hn,α2,β2)

(i + α1)β1Hn,α1,β1

.

Also,
n

∑
i=1

ai =
n

∑
i=1

1
(i + α1)β1Hn,α1,β1

= 1 and
n

∑
i=1

bi =
n

∑
i=1

1
(i + α2)β2Hn,α2,β2

= 1.

Therefore, by using (16) for ai =
1

(i+α1)
β1Hn,α1,β1

and bi =
1

(i+α2)
β2Hn,α2,β2

, i = 1, 2, . . . , n,

we obtain (24).

5. Conclusions

Jensen’s inequality is very important in almost every field of science, as this inequality
has very fruitful applications. Due to the various applications of Jensen’s inequality,
numerous mathematicians have paid considerable attention to refinements, extensions, and
generalizations of this inequality. In this work, we considered a positive finite sequence
and obtained an interesting refinement of Jensen’s inequality pertaining to some index
sets. We also discussed the refinement for particular index sets. Interestingly, the obtained
results could generate the earlier refinements of Jensen’s inequality. Moreover, we gave
several applications of the main result in information theory and deduced refinements of
inequalities for some special means.
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