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Abstract: This paper investigates a simple memristor emulator consisting of a diode bridge and a
capacitor. It exhibits pinched hysteresis loops, and what is more striking is the higher frequency,
as it operates up to greater than 5 MHz. Based on the proposed memristor, a higher-frequency
Colpitts circuit was established. According to the mathematical model of the system, the system only
possesses one unstable equilibrium point. Period doubling bifurcation, reverse periodic doubling
bifurcation, different types of periodic and chaotic orbits, transient chaos, coexisting bifurcations and
offset boosting are depicted. More interestingly, it has coexisting multiple attractors with different
topologies, such as a chaotic attractor accompanied with periodic orbits, period-1 orbits with bicuspid
structure and periodic-2 orbits with tridentate structure. Moreover, a hardware circuit using discrete
components was fabricated and experimental measurements were consistent with the MATLAB
numerical results, further confirming the real feasibility of the proposed circuit.

Keywords: memristor; coexisting multiple attractors; bifurcation; Colpitts oscillator
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1. Introduction

A memristor is a two-terminal device that offers a constitutive relation of flux and
charge [1]. Since the successful implementation of a memristor in TiO2 in HP Lab in 2008 [2],
its promising application in logic gates [3,4], non-volatile memory [5,6], neuromorphic
computing and neurons [7–12], signal processing [13,14] and nonlinear systems [15–17]
has attracted extensive attention. Despite commercial chips having been fabricated [18], to
date, the availability of memristors as mainstream electronic components remains limited
because of their fabrication complexity and high cost. In order to study the dynamics
of nonlinear circuits and systems containing memristors, various kinds of memristor
emulators have been reported to simulate the basic characteristics of memristors.

So far we know, memristor emulators generally use kinds of electronic components
such as MOSFET [19–21], diode bridge [22–32], various analog building blocks such
as operational amplifiers and multipliers [33,34], differential difference current convey-
ors (DDCCs) [35], second generation current conveyors (CCIIs) [36], current conveyor
transconductance amplifier (CCTAs) [37], voltage difference transconductance amplifiers
(VDTAs) [38], differential voltage current conveyor (DVCCs) [39] and so on.

Corinto F. put forward a memristor emulator combined with a passive diode bridge
and second-order RLC filter in 2012 [22]. Subsequently, improved memristive symmetric
diode bridge emulators [23–29] and asymmetric diode bridges [30–32] were reported, and
they show symmetrical or asymmetrical pinched hysteresis loops in the voltage–current
domain. Abundant chaotic circuit based on memristive diode bridge emulators have been
proposed, and can display some complex and interesting nonlinear phenomena such as
coexisting attractors [27,29–32], bursting [28,30] and hyperchaos [32], just to name a few.

Memristors for high-frequency applications are also an area of research. In 2014, a
DDCC-based ground memristor that operates up to 1 MHz frequency was designed [35].
In 2017, Ranjan proposed a simpler memristor simulator mainly consisting of one CCII
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and one multiplier, where DC voltages and adjustable resistors were used to ensure zero
crossing of the pinched hysteresis loop, and its highest frequency could reach 860 kHz [36].
In the same year, Ranjan used a current transmission transconductance amplifier (CCTA) to
realize the transformation of grounding, floating, incremental model or decrement models
quickly without changing the circuit structure; however, the operating frequencies of the
memristor emulator circuit on printed circuit board were in the range of few hundreds
of kHz only because of limitations on the bandwidth and slew rate of BJT based ICs [37].
In 2018, a grounded memristor emulator circuit consisting of seven MOS transistors and
one grounded capacitor was presented, and the maximum allowable frequency reached
50 MHz [19]. In 2019, only three MOS tubes and a capacitor were used to realize a
floating memristor with a maximum frequency of 13 MHz [20]. In 2021, Vista proposed
a floating memristor based on single VDTA that has the maximum allowable frequency
(50 MHz) [38]. In 2022, Anamika used VDTA and OTA to realize a dual-mode grounded
memristor emulator with 1 MHz operating frequency [39]. A floating memristor emulator
(the maximum frequency was 50 MHz) based on four MOSFETs only was developed [21].
The above literature addresses memristor emulators that operate up to higher frequencies.

A summary of the existing works on memristor emulators with higher frequency
are illustrated in Table 1. They mainly center on MOSFET [19–21] or analog building
blocks [35–39]. Except for [21], the memristive emulators all need power supply. A
memristive diode bridge emulator containing only passive devices is known with simple
circuit structure, without ground limitation. The existing works on diode bridge memristor
emulator circuits [22–32] have not covered the higher frequency characteristics. So far as
we know, it is necessary to be concerned about the higher frequency characteristics of diode
bridge memristive emulators.

Table 1. Comparative analysis of the proposed work on memristor emulators with higher frequencies.

Ref. Essential
Components

Power
Supply

Floating/
Grounded

Operating
Frequency

[19] 7 MOSFETs ±0.9 V DC
voltages Grounded 50 MHz

[20] 3 MOSFETs 10 µA Floating 13 MHz

[21] 4 MOSFETs No Floating 50 MHz

[35] DDCC ±1.5 V DC Grounded 1 MHz
[36] 1 CCII, 1 multiplier ±10 V DC Grounded 860 kHz
[37] CCTA ±1.5 V DC Floating/grounded hundreds of kHz
[38] VDTA ±0.9 V DC Floating 50 MHz

[39] VDTA, OTA ±0.9 V DC,
±1.2 V DC Grounded 1 MHz

Proposed
work Diode bridge No Floating 5 MHz

This paper proposes a floating memristor emulator configuration based on diode
bridges, and it comprises one diode bridge and one capacitor. The numerical and circuit
simulation results suggest that the proposed memristor emulator works at more than
5 MHz operating frequency. By introducing the proposed memristor into a Colpitts chaotic
oscillator circuit, the circuit can generate coexisting multiple attractors.

The remaining sections of this paper are organized as follows. In Section 2, a floating
memristor emulator based on diode bridges is addressed, and has a pinched hysteresis loop.
In Section 3, a memristive-based Colpitts circuit and its mathematical model, equilibrium
and stability are depicted. In Section 4, numerical simulations of the proposed circuit
are performed by using basins of attraction, phase portraits, bifurcation diagrams and
Lyapunov exponents and so on. The system can produce coexisting attractors. In Section 5,
hardware experiments on a breadboard are performed, and the results are according with
numerical simulations. Lastly, the conclusions are summarized in Section 6.
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2. Generalized Memristor Emulator

Based on a first-order memristive diode bridge [22], this paper proposes a generalized
memristor emulator consisting of a diode bridge with a capacitor, depicted in Figure 1. The
memristor model can be expressed as:

dv0
dt = F(v0, v1) = 2Is0 [e

−ρv0 cosh(ρv1)− 1]/C0

i = g(v0, v1)v1 = 2Is0e−ρv0sinh(ρv1)
(1)

where I and v1 are current and voltage of the memristor W, respectively, and v0 is the
voltage of the capacitor C0, and ρ = 1/(2nVT). Consider that the memristive emulator
consists of the capacitor (C0 = 100 pF) and the diode bridge U1B4B42, and the parameters
are set as follows: reverse saturation current IS0 = 6.543 × 10−5 A, emission coefficient
n = 4.386, thermal voltage VT = 25 mV and v = sin(2πft).
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Figure 1. Generalized memristor (a) diode bridge with parallel C; (b) symbol of memristor.

Based on (1) and the above parameters, a numerical simulation using MATLAB 2016b
is shown in Figure 2. It can be observed that the area of the pinched hysteresis loop
decreases monotonically as the frequency of the input voltage increases (the frequency f is
500 kHz, 1 MHz, 2 MHz and 5 MHz, respectively).
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3. Memristive-Based Colpitts Circuit

The proposed memristor emulator is used in the Colpitts oscillator circuit as an
application, shown in Figure 3. The small-signal high frequency model in Figure 3b of the
bipolar junction transistor (BJT) in the Colpitts oscillator is used, which consists of a voltage-
controlled non-linear resistor NR and a linear current-controlled current source while
taking into account the parasitic capacitance Cbe, where Is = 6.734 × 10−15 A, βF = 416.4
and Cbe = 147 pF [40].

iB′ = f (vbe) = Is[e
vbe
VT − 1]/βF (2)
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The memristor-based Colpitts circuit can be depicted by

dvce
dt = iL

Cce
− βF f (vbe)

Cce
− 2Is0 e−ρv0 sinhρvce)

Cce

dvbe
dt = (E−vbe)

RCbe
− iL

Cbe
− f (vbe)

Cbe

diL
dt = vbe

L −
vce
L

dv0
dt = 2Is0

(e−ρv0 cosh(ρvce)−1)
C0

(3)

Combined with (2), (3) can be described as:

dvce
dt = iL

Cce
− Is(e

vbe
VT −1)
Cce

− 2Is0 e−ρv0 sinh(ρvce)
Cce

dvbe
dt = (E−vbe)

RCbe
− iL

Cbe
− Is(e

vbe
VT −1)

Cbe βF

diL
dt = vbe

L −
vce
L

dv0
dt = 2Is0

(e−ρv0 cosh(ρvce)−1)
C0

(4)

When the left side of (4) is equal to 0, one obtains

iL = Is(e
vbe
VT − 1) + 2Is0e−ρv0sinh(ρvce)

iL = (E−vbe)
R − Is(e

vbe
VT −1)
βF

vbe = vce

e−ρv0 cosh(ρvce) = 1

(5)
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The equilibrium point can be obtained through the graphic analytic method. Based on (5),
two functions describing the relationship between vbe and iL can be depicted as:

iL = f1(vce) =
E−vce

R − Is(e
vce
VT − 1)

iL = f2(vce) = 2Is0 tanh(ρvce) +
Is(e

vce
VT −1)
βF

(6)

when the circuit parameters are set in Table 2 and the parameters of BJT are as above
mentioned. Adjusting the value of the resistor (R ∈ [200, 2000]), the intersection points
of vce and iL curves give the solver of (6). The values of v̂ce represent the locations of the
equilibrium points on the vce-axis, as shown in Figure 4. It can be observed that there is only
one intersection point of vce and iL curves with R changing. Therefore, v̂ce ∈ [0.6658, 0.7242]
when R is adjusting in the range [200, 2000]. Therefore, the equilibrium point P is calculated as

(
v̂ce, v̂be, îL, v̂0

)
= (v̂ce, v̂ce,

E− v̂ce

R
− Is(e

vce
VT − 1) ,−1

ρ
ln

1
cosh(ρv̂ce)

) (7)

Table 2. Typical circuit parameters of the memristor-based Colpitts circuit.

Parameters Significations Values

Cce Capacitance 2.2 nF
L Inductance 4.7 µH

C0 Capacitance 100 pF
E DC voltage source 5.89 V
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For the equilibrium point P, the Jacobian matrix is yielded

J =


− j1

Cce
− j3

Cce
1

Cce

j2
Cce

0 − 1
RCbe
− j3

Cbe βF
− 1

Cbe
0

−1/L 1/L 0 0
j2
C0

0 0 − j1
C0

 (8)

where j1 = 2ρIs0e−ρv0 cosh(ρvce), j2 = 2ρIs0e−ρv0 sinh(ρvce), j3 = Ise
vbe
VT /VT . The dissipa-

tivity of the proposed memristive Colpitts circuit shown in Figure 3a can be derived from

∇ =
.
∂vce
∂vce

+
.
∂vbe
∂vbe

+
.
∂iL
∂iL

+
.
∂v0
∂v0

= − j1
Cce
− 1

RCbe
− j3

CbebF
− j1

C0

= −( j1
Cce

+ 1
RCbe

+ j3
CbebF

+ j1
C0
)

(9)

The negative exponential function, exponential function, hyperbolic cosine function and
system parameters are always positive; therefore,∇ < 0, and the system (3) is dissipation.

The corresponding characteristic equation is expressed as

det(λI − J) = 0 (10)

Table 3 summarizes the equilibrium point P and the eigenvalues under different values
of R.

Table 3. Equilibrium point and eigenvalues under different values of R.

R/Ω Equilibrium Point P Eigenvalues

200 (0.7242, 0.7242, 0.0002, 0.5725) λ1 = −10.159× 107 λ2,3 = (2.528 ± 7.780i)× 107 λ4 = −0.596× 107

500 (0.7012, 0.7012, 0.0104, 0.5496) λ1,2 = (2.1464 ± 6.1750i )× 107 λ3 = −6.3494× 107 λ4 = −0.5959× 107

800 (0.6893, 0.6893, 0.0001, 0.5377) λ1,2 = (1.8463± 5.5196i )× 107 λ3 = −4.9868× 107 λ4 = −0.5953× 107

1200 (0.6790, 0.6790, 0.0001, 0.5274) λ1,2 = (1.5642 ± 5.0511 i )× 107 λ3 = −3.9993× 107 λ4 = −0.5945× 107

2000 (0.6658, 0.6658, 0.0001, 0.5143) λ1,2 = (1.2025 ± 4.5890i )× 107 λ3 = −2.9383× 107 λ4 = −0.5926× 107

Obviously, there are two negative real roots and two complex conjugate roots with
positive real part at P, indicating that P has two unstable saddle-foci with index 2, leading
to the occurrence of chaos.

4. Complex Dynamical Behaviors
4.1. Phase Portraits with Respect to Variables R

In order to demonstrate the complex dynamical behaviors of system model (4), we
choose parameter values as follows: Is = 6.734 × 10−15 A, βF = 416.4, Cbe = 147 pF,
C0 = 100 pF, IS0 = 6.543 × 10−5 A, n = 4.386, VT = 25 mV, E = 5.89, Cce = 2.2 nF, and
L = 4.7 µH. The Runge–Kutta algorithm (ode23) is utilized, and the initial conditions are
[0.1, 0, −1, 0.1]. The phase portraits are depicted in Figure 5; it can be observed that there
exist various types of chaotic and periodic orbits with the change in its parameter R, and
they reflect the complexity of system model (4). Further extensions to dynamical behavior
analyze the basins of attraction in the next section.
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4.2. Basins of Attraction

More information about coexisting attractors can be acquired by investigating basins
of attraction of different attracting sets. Based on the method in [30], we calculate the local
basin of attraction of system model (4).

Keeping the parameters fixed as shown in Section 4.1 and adjusting R, the attraction
basins in the y(0)–z(0) initial plane are plotted in Figure 6. The adjustable initial conditions
y0 and z0 are all scanned in the region of [–2, 2]. Figure 6 uses the different color (red and
blue) to intuitively mean two kinds of coexisting attractors in the system model (4), while
white zones denote unbounded motion.
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4.3. Coexisting Multiple Attractors

The coexisting multiple attractors reveal a rich diversity of stable states in nonlinear
systems [25]. Under certain parameters, different initial conditions may lead to different
trajectories of the system. Based on the above basin of attraction, we choose some initial
conditions to draw phase portraits of system model (4).

According to the analysis of basins of attraction in Section 4.1, we choose two initial
conditions (0.1, 0, −1, 0.1) and (0.1, 0, 1.68, 0.1). The phase portraits in the vbe–vce plane for
different initial conditions are illustrated in Figure 7. There exists a chaotic attractor with
tridentate structure and periodic-2 orbits with bicuspid structure (R = 966), as shown in
Figure 7a. There exist period-1 orbits with bicuspid structure and periodic-2 orbits with
tridentate structure (R = 1000), as shown in Figure 7b.
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To explore the nonlinear dynamics caused by the memristor, we compute the bifurca-
tion diagram and the largest Lyapunov exponent as R increases from 200 to 2000; bifurcation
diagrams and the corresponding largest Lyapunov exponent are shown in Figure 8. Obvi-
ously, the bifurcation diagram and the largest Lyapunov exponent are well-consistent with
each other. Two different moving trajectories are presented in Figure 8 when the initial
conditions are [0.1, 0, 1.68, 0.1] (Red) and [0.1, 0, −1, 0.1] (Blue). With respect to the increase
in the system parameter R (R ∈ [200, 952]), the trajectory of the red motion and the blue
motion are overlapped except for a few discrete points indicating unbounded motion. In
order to observe the local details, Figure 9 is the enlargement of Figure 8 (R ∈ [200, 300]).
By observing the trajectory of the motion in Figure 9, it can be observed that the system
is period-1 orbits at R = 200, period-2 orbits at R = 209 and period-4 orbits at R = 216,
then enters the chaotic state at R = 218 through the period-doubling bifurcation. It is
worth mentioning that in Figure 9a, some evident period windows exist within the chaotic
region, which is caused by chaos crisis and ended by tangential bifurcation [11], such as
R ∈ [221.3, 221.8], R ∈ [222, 222.3], R ∈ [227.4, 228.6], R ∈ [267.3, 267.8], R ∈ [271.3, 271.8]
and R = 277.2. Then the state degrades from chaos to period-2 (R = 288) and transforms into
period-1 orbits (R = 191.6) from the reverse period-doubling bifurcation. When v > 952, the
system exists in coexisting bifurcations as shown in Figure 10a. Figure 10 is the enlargement
of Figure 8 (R ∈ [900, 1000]).
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A two-parameter Lyapunov exponent is drawn using the control parameters R
(200 ≤ R ≤ 1000) and L (2≤ L≤ 12), and the other parameters are unchanged in Section 4.1.
Sample results under the initial conditions [0.1 0 −1 0.1] and [0.1 0 1.68 0.1] are described
in Figure 11a,b, respectively. Each color represents different values of the largest Lyapunov
exponents (refer to the colorbar on the right for details), while white zones denote that
the largest Lyapunov exponent is NaN (not a number). At the corresponding value of R
and L, the system model (4) under the different conditions has different largest Lyapunov
exponents, and it furtherly indicates that the proposed circuit can exhibit rich dynamical
behaviors.
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4.4. Intermittent Chaos and Transient Chaos

The irregular alternation of periodic and chaotic is known as intermittency, which
is caused by an interior crisis. The time-domain waveform of state variable vce is shown
in Figure 12. Figure 12b is the enlargement of Figure 12a; it can be seen that it alternates
between chaotic orbits and periodic orbits.
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Figure 12. Time-domain waveform of vce when R = 228.6 and the initial conditions are [0.1, 0, −1, 0.1]:
(a) t ∈ [0, 10,000], (b) t ∈ [200, 800].

Transient chaos describes the chaotic behaviors of the system on a finite time scale,
and ultimately evolves into regular behaviors such as fixed point or periodic orbit. The
time-domain waveform of state variable vce is chaotic in t ∈ [0, 120], and periodic in
t ∈ [120, 2000], as shown in Figure 13a. According to [41], the time Lyapunov exponent
spectrums are shown in Figure 13b.
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4.5. Offset Boosting

It is universally acknowledged that some chaotic systems exist with an interesting
offset boosting property that may be used for amplitude control [42].

The parameters are expressed as follows:

vce = xVT , vbe = yVT , iL = zVT/q, v0 = uVT , t = τ
√

LCce, q =
√

L/Cce,

a = qIs/VT , α = 2qIs0 /VT , b = Cce/Cbe, c = q/R, d = Cce/C0, e = E/VT
(11)

Therefore, the dimensionless equations can be described as follows:

.
x = z− a(ey − 1)− αe−u/2nsinh(x/2n)
.
y = b(c(e− y)− z− a(ey − 1)/βF)
.
z = y− x
.
u = αd(e−u/2n cosh(x/2n)− 1)

(12)

By introducing four extra controlled constants l, m, n and k to variables x, y, z and u,
respectively, the system (12) can be expressed by

.
x = (z + n)− a(e(y+m) − 1)− αe−(u+k)/2nsinh((x + l)/2n)
.
y = b(c(e− (y + m))− (z + n)− aIs(e(y+m) − 1)/βF)
.
z = (y + m)− (x + l)
.
u = αd(e−(u+k)/2n cosh((x + l)/2n)− 1)

(13)

where l, m, n and k are the real numbers. The other parameter values are the same as in
Section 4.1 and R = 800; the values of a, b, c, d and e can be calculated using (11).

To better clarify the offset boosting behavior, different l, m, n and k are chose to plot
the phase portraits. Offset boosting behaviors with varying control parameter l, m, n and k
are can be captured in Figure 14 when the initial conditions are (0.1, 0, −1, 0.1). It is found
that the attractors are respectively boosted towards the x, y, z and u direction.
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Figure 14. Offset boosting of chaotic attractors for varying the control parameter. (a) l = 0 and l = ±30,
(b) m = 0 and m = ±30, (c) n = 0 and n = ±30 and (d) k = 0 and k = ±30.

In order to analyze the multistability, the novel non-invasive method of offset [43]
was exploited. The parameter values are the same as in Section 4.1 and R = 966. Let offset
boosting be applied to variable x, as shown below:

.
x = z− a(ey − 1)− 2αe−u/2nsinh((x + l)/2n)
.
y = b(c(e− y)− z− aIs(ey − 1)/βF)
.
z = y− (x + l)
.
u = 2αd(e−u/2n cosh((x + l)/2n)− 1)

(14)

When the initial conditions are [0.1, 0, −1, 0.1] and [0.1, 0, 1.68, 0.1], the dynamical be-
haviors of System (14) versus offset booster l (l ∈ [−30, 30]) are plotted in Figures 15 and 16.
The results are a further proof of the coexistence of two different properties of dynamics.
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Figure 15. Dynamical behaviors of System (14) on the initial condition (0.1, 0, −1, 0.1) versus offset
booster l (l ∈ [−30, 30]): (a) Lyapunov exponent spectrums, (b) distribution of Lyapunov exponents.
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5. Hardware Experiments

In order to further research the proposed memristive system shown in Figure 3,
hardware experiments on a breadboard containing a potentiometer, inductance, capacitor,
diode bridge U1B4B42, bipolar junction transistor 2N222 and DC voltage source were
conducted to verify dynamical behaviors of the proposed oscillator. In the experimental
circuit, the element parameters are measured and shown as Table 2. R is a variable resistance.
The experimental circuit in operation is captured in Figure 17. The FFT function of the
oscilloscope is exploited to analyze the power spectrum. The power spectrums are depicted
in Figure 18, and it can be observed that the frequencies are in the range of MegaHertz.
The experimental results are photographed using GDS2102a, as shown in Figure 19. The
oscilloscope traces from the proposed memristive Colpitts circuit in Figure 19 are similar to
Figure 6. Based on frequencies displayed on the oscilloscope interface, it is evidenced that
the proposed memristive Colpitts oscillator operates in high frequency.

Mathematics 2022, 10, x FOR PEER REVIEW 14 of 17 
 

 

  
(a) (b) 

Figure 16. Dynamical behaviors of System (14) on the initial condition (0.1, 0, 1.68, 0.1) versus offset 
booster l (l ∈ [−30, 30]): (a) Lyapunov exponent spectrums, (b) distribution of Lyapunov exponents. 

5. Hardware Experiments 
In order to further research the proposed memristive system shown in Figure 3, hard-

ware experiments on a breadboard containing a potentiometer, inductance, capacitor, di-
ode bridge U1B4B42, bipolar junction transistor 2N222 and DC voltage source were con-
ducted to verify dynamical behaviors of the proposed oscillator. In the experimental cir-
cuit, the element parameters are measured and shown as Table 2. R is a variable resistance. 
The experimental circuit in operation is captured in Figure 17. The FFT function of the 
oscilloscope is exploited to analyze the power spectrum. The power spectrums are de-
picted in Figure 18, and it can be observed that the frequencies are in the range of Mega-
Hertz. The experimental results are photographed using GDS2102a, as shown in Figure 
19. The oscilloscope traces from the proposed memristive Colpitts circuit in Figure 19 are 
similar to Figure 6. Based on frequencies displayed on the oscilloscope interface, it is evi-
denced that the proposed memristive Colpitts oscillator operates in high frequency. 
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6. Conclusions

This paper reports a memristive emulator with higher frequency that is composed
of a diode bridge and a capacitor. The mathematical modeling and MATLAB simulations
are presented in detail. Then a memristor-based Colpitts oscillator is constructed, and
simulations and experiment circuit results show the system has complex dynamic behaviors.
This study further verifies the realizability of the proposed memristor model and its
potential application value in the field of secure communication.
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