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Abstract: Boolean functions and vectorial Boolean functions are the most important nonlinear
components of stream ciphers. They should satisfy several criteria such as high nonlinearity, proper
resiliency and so on to guarantee the security of the whole system. However, there are some
constraints among the criteria, and how to achieve a trade-off between them is an important issue. In
this paper, some nonlinear Boolean functions possessing simple algebraic normal form with special
Walsh spectrum are proposed. By using these functions, we provide two construction methods on
balanced and resilient Boolean functions with high nonlinearity. In addition, based on the disjoint
linear codes and vector matrices with special properties, some resilient vectorial Boolean functions
with currently best-known nonlinearity have also been given.
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1. Introduction

Stream ciphers play an important role in the confidential communication of gov-
ernment, military and other important departments and various mobile communication
systems. Cryptographic functions, including Boolean functions and multi-output Boolean
functions, are usually used as the most important nonlinear component in symmetric
cryptosystems, especially in stream ciphers, and their properties directly affect the security
of the whole encryption system. For the known linear cryptographic attack, related attack,
Berlekamp–Massey attack, algebraic attack and other attack methods, it is necessary to
use functions with high nonlinearity, certain resiliency, high algebraic degree and so on.
However, there are some constraints among these criteria, and how to construct Boolean
functions with a good trade-off among some of the criteria is an interesting research prob-
lem, for instance, the trade-off between the resiliency and nonlinearity, the optimization
of algebraic immunity, the new class of Bent functions and the autocorrelation properties.
In this paper, we mainly focus on the good trade-off between nonlinearity and resiliency of
Boolean functions and vectorial Boolean functions.

In order to obtain Boolean functions satisfying certain criteria, modifications of the
Maiorana–McFarland (M–M) construction [1] by concatenating small functions are often
employed. The properties of the modified M-M functions absolutely depend on the small
functions. Thus, properly selecting the small functions is crucial for the method. For an n-
variable function (n = 2k), when the small functions are different k-variable linear functions
with number 2k, the constructed function is called Bent [2]. This kind of functions possess
the maximal nonlinearity 2n−1− 2n/2−1, but they are not balanced. In [3], balanced Boolean
functions with known best nonlinearity have been given by iteratively replacing all zero
linear functions in the M-M methods, and Dobbertin obtained the same result, respectively,
in [4]. However, how to construct a resilient Boolean function with high nonlinearity is an
interesting problem; many results have been provided by using modified M-M methods,
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see [5–16], and the nonlinearity of some resilient functions can be strictly larger than
2n−1 − 2n/2.

Vectorial Boolean functions are usually used to improve the production efficiency
of the key that generated stream ciphers. They can be viewed as a collection of Boolean
functions. An n-input and m-output vectorial Boolean function is referred to as an (n, m)
function. Similarly to the Boolean function, vectorial Boolean functions also need to
satisfy criteria such as nonlinearity, resiliency and so on. For (n, m) functions with n even,
the upper bound of the nonlinearity is still 2n−1 − 2n/2−1. However, they are not balanced
either. How to construct resilient (n, m) functions with nonlinearity lower than the upper
bound but larger than 2n−1− 2n/2 is also an important problem in recent years. By contrast,
fewer results have been obtained than the Boolean ones [17–21].

In this paper, we provide some techniques to generate balanced Boolean and resilient
Boolean and vectorial Boolean functions with high nonlinearity. For the Boolean case,
several kinds of nonlinear small functions with special algebraic normal forms are given.
These functions have simple spectral distributions and are suitable to use in the modified
M-M method. For the vectorial Boolean case, a construction method based on the disjoint
linear codes and vector matrices with special properties is given, and a class of resilient
(n, m) functions with nonlinearity larger than 2n−1 − 2n/2 are obtained. It is shown that
some of the functions even have currently best-known nonlinearity.

2. Preliminaries

An n-variable Boolean function f (x) is a mapping from Fn
2 toF2; x = (x1, · · · , xn) ∈ Fn

2
can be represented by the following algebraic normal form (ANF):

f (x1, x2, · · · , xn) = ∑
u∈Fn

2

λu(
n

∏
i=1

xui
i ). (1)

where λu ∈ F2, u = (u1, · · · , un). The algebraic degree of f (x), denoted by deg( f ), is the
maximal value of wt(u), where wt(u) denotes the Hamming weight of u such that λu 6= 0.
For any n-variable Boolean function f (x), the Walsh transform of f ∈ Bn at point ω is
denoted by W f (ω) and calculated as follows:

W f (ω) = ∑
x∈Fn

2

(−1) f (x)+ω·x, (2)

where the scalar product of ω and x is defined as ω · x = ω1x1 + · · ·+ ωnxn (mod 2).

Definition 1 ([22]). The nonlinearity of a Boolean function f ∈ Bn, denoted by N f , is defined as
the least distance to the set of all affine functions, and it can be obtained through the Walsh transform
as follows:

N f = 2n−1 − 1
2

max
ω∈Fn

2

|W f (ω)|. (3)

The function of the original Maiorana–McFarland class is defined as follows:

Definition 2 ([1]). For any positive integers s and k such that n = s+ k, the Maiorana–McFarland
function is a function f ∈ Bn defined by

f (y, x) = φ(y) · x + π(y), x ∈ Fk
2, y ∈ Fs

2,

where φ is any mapping from Fs
2 to Fk

2 and π(y) ∈ Bs. When φ is a one-to-one mapping and s = k,
the function is bent.

A spectral characterization of correlation-immune Boolean functions has been derived.
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Theorem 1 ([23]). A Boolean function f (x) ∈ Bn is t-resilient, where 0 ≤ t ≤ n− 1, if and only
if its Walsh transform satisfies

W f (ω) = 0, for 0 ≤ wt(ω) ≤ t, (4)

where wt(ω) is the Hamming weight of the vector ω ∈ Fn
2 , i.e., the number of ones in ω.

It is shown that [24] for a t-resilient Boolean function f , the algebraic degree deg( f ) ≤
n− t− 1, and the maximum value is referred to as optimal algebraic degree.

The notion of algebraic immunity was introduced as a measure of resistance to alge-
braic attacks.

Definition 3 ([25]). The function g ∈ Bn is said to be an annihilator of f ∈ Bn if it satisfies
that f (x)g(x) = 0 for a nonzero g ∈ Bn. The algebraic immunity of f , denoted by AI( f ), is the
minimum degree of all nonzero annihilators of f and 1 + f .

An (n, m) function can be regarded as a mapping from Fn
2 to Fm

2 , which is F : Fn
2 → Fm

2 .
In addition, it can be viewed as a collection of m Boolean functions, namely F(X) =
( f1(X), f2(X), · · · , fm(X)), where f1, f2, · · · , fm ∈ Bn are component Boolean functions.

Definition 4 ([26]). The nonlinearity of an (n, m) function F(X) = ( f1(X), f2(X), · · · , fm(X))
is denoted by NF:

NF = min
c∈Fm∗

2

N fc , (5)

where fc = ⊕m
i=1ci fi, Fm∗

2 = Fm
2 \{0}.

Similarly, the nonlinearity of an (n, m) function can also be denoted by the Walsh
transform:

N f = 2n−1 − 1
2

max
ω∈Fn

2 ,c∈Fm∗
2

W fc(ω). (6)

Definition 5 ([27]). An (n, m) function F(X) = ( f1(X), f2(X), · · · , fm(X)) is t-resilient if and
only if for any c = (c1, c2, · · · , cm) ∈ Fm∗

2 , fc(Xn) = ⊕m
i=1ci fi(Xn) is t-resilient.

3. Construction of Boolean Function

In this section, we give several nonlinear functions with special constructions and
analyse their spectral distributions, respectively. These functions will be useful in the
M-M construction methods, and two methods are given to obtain a balanced and resilient
Boolean function with very high nonlinearity. First of all, we consider the case of a simple
function with only a single nonlinear term.

3.1. Small Functions with Special ANF

Lemma 1 ([10]). Let f (x) = x1x2 · · · xn, then

W f (α) =

{
2n − 2, if α = 0

(−1)ωt(α)+1 · 2 if α 6= 0
.

Remark 1. Let f = x1x2 · · · xk + a · Xn, where s + k = n, a = (ak, as) ∈ Fk
2 × Fs

2 and
Xn = (x1, x2, · · · , xn). Let α ∈ Fk

2, β ∈ Fs
2, then

W f (α, β) =


0, β 6= as
2s(2k − 2), β = as, α = ak
(−1)wt(αk+α)+12s+1, β = as, α 6= ak

.
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In Lemma 1 and Remark 1, both functions have only a single nonlinear term. Then,
we consider the spectral distributions of some functions with two nonlinear terms.

Theorem 2. Let f = x1x2 · · · xi + xjxj+1 · · · xn, i < j < n be an n-variable Boolean function,

and (α, β, γ) ∈ Fi
2 × Fj−i−1

2 × Fn−j+1
2 , then

W f (α, β, γ) =



2n − 2n−i+1 − 2j + 2j−i+1, α = 0, β = 0, γ = 0
(−1)wt(γ)+1(2j − 2j−i+1), α = 0, β = 0, γ 6= 0
(−1)wt(α)+1(2n−i+1 − 2j−i+1), α 6= 0, β = 0, γ = 0
(−1)wt(α)+wt(γ)2j−i+1, α 6= 0, β = 0, γ 6= 0
0, β 6= 0

.

Proof of Theorem 2. Let X = (Xi, Xj−i−1, Xn−j+1) ∈ Fi
2 × Fj−i−1

2 × Fn−j+1
2 , then

W f (α, β, γ) = ∑
X∈Fn

2

(−1) f+α·Xi+β·Xj−i−1+γ·Xn−j+1

= ∑
Xi

(−1)x1x2···xi+α·Xi · ∑
Xj−i−1

(−1)β·Xj−i−1 · ∑
Xn−j+1

(−1)xjxj+1···xn+γ·Xn−j+1 .

In order to obtain the value of the equation, the following cases are needed.
Case 1: When β 6= 0,

∑
Xj−i−1∈F

j−i−1
2

(−1)β·Xj−i−1 = 0.

Then,
W f (α, β, γ) = 0.

Case 2: When β = 0,

W f (α, β, γ) = 2j−i−1·∑
Xi

(−1)x1x2···xi+α·Xi · ∑
Xn−j+1

(−1)xjxj+1···xn+γ·Xn−j+1 .

Let f1(x) = x1x2 · · · xi be an i-variable Boolean function and f2(x) = xjxj + 1 · · · xn be an
(n− j + 1)-variable Boolean function, then

W f (α, β, γ) = 2j−i−1W f1(α)W f2(γ).

According to Lemma 1,

W f1(α) =

{
2i − 2, α = 0
(−1)wt(α)+12, α 6= 0

,

W f2(γ) =

{
2n−j+1 − 2, γ = 0
(−1)wt(γ)+12, γ 6= 0

.

So we have the next four cases:
Case 2.1: When α = 0, γ = 0, then

W f (α, β, γ) = 2j−i−1(2i − 2)(2n−j+1 − 2) = 2n − 2n−i+1 − 2j + 2j−i+1.

Case 2.2: When α = 0, γ 6= 0, then

W f (α, β, γ) = 2j−i−1(2i − 2)(−1)wt(γ)+12 = (−1)wt(γ)+1(2j − 2j−i+1).
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Case 2.3: When α 6= 0, γ = 0, then

W f (α, β, γ) = 2j−i−1(−1)wt(α)+12(2n−j+1 − 2) = (−1)wt(α)+1(2n−i+1 − 2j−i+1).

Case 2.4: When α 6= 0, γ 6= 0, then

W f (α, β, γ) = 2j−i−1(−1)wt(α)+12(−1)wt(γ)+12 = (−1)wt(α)+wt(γ)2j−i+1.

According to all cases above, the theorem is proved.

Theorem 3. Let f = x1x2 · · · xj + xixi+1 · · · xn, i < j < n be an n-variable Boolean function,

and (α, β, γ) ∈ Fi−1
2 × Fj−i+1

2 × Fn−j
2 , then

W f (α, β, γ) =



2n − 2i − (2n−j+1 − 4), α = 0, β = 0, γ = 0
(−1)wt(β)+1((2n−j+1 − 4) + 2i), α = 0, β 6= 0, γ = 0
(−1)wt(β)+wt(γ)+1(2i − 4), α = 0, γ 6= 0
(−1)wt(α)+wt(β)+1(2n−j+1 − 4), α 6= 0, γ = 0
4(−1)wt(α)+wt(β)+wt(γ), α 6= 0, γ 6= 0

.

Proof of Theorem 3. Let X = (Xi−1, Xj−i+1, Xn−j) ∈ Fi−1
2 × Fj−i+1

2 × Fn−j
2 . We have that

W f (α, β, γ) = ∑
X∈Fn

2

(−1) f+α·Xi−1+β·Xj−i+1+γ·Xn−j .

The mutual term between two polynomials x1x2 · · · xj and xixi+1 · · · xn is xixi+1 · · · xj.
The Walsh spectra will be discussed in the following situations:

Case 1: When α = 0, γ = 0,

W f (α, β, γ) = ∑
X∈Fn

2

(−1) f+β·Xj−i+1 .

In this case, it can be divided into the following two cases according to the value of β:
Case 1.1: When β = 0,

W f (α, β, γ) = ∑
X∈Fn

2

(−1)x1x2···xj+xixi+1···xn .

When Xn runs around Fn
2 , a total of 2n−j − 1 + 2i−1 − 1 = 2n−j + 2i−1 − 2 ones of the value

of x1x2 · · · xj + xixi+1 · · · xn are taken.
Therefore,

W f (α, β, γ) = 2n − 2n−j+1 − 2i + 4.

Case 1.2: When β 6= 0,

W f (α, β, γ) = ∑
X∈Fn

2

(−1)x1x2···xj+xixi+1···xn+β·Xj−i+1 .

It is known that β · Xj−i+1 is a balanced function, and when Xn runs around Fn
2 , there are

2n−j + 2i−1 − 2 ones of the value of x1x2 · · · xj + xixi+1 · · · xn. Note that when x1x2 · · · xj +
xixi+1 · · · xn take the value 1, xi · · · xj should be 1.

Therefore,
W f (α, β, γ) = (−1)wt(β)+1(2n−j+1 + 2i − 4).
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Case 2: When α = 0, γ 6= 0, then we have

W f (α, β, γ) = ∑
X∈Fn

2

(−1)x1x2···xj+xixi+1···xn+β·Xj−i+1+γ·Xn−j

= ∑
X∈Fn

2 ,Xj−i+1=1
(−1)x1x2···xj+xixi+1···xn+β·1+γ·Xn−j

+ ∑
X∈Fn

2 ,Xj−i+1 6=1
(−1)β·Xj−i+1+γ·Xn−j

= (−1)wt(β) ∑
Xi−1,Xn−j

(−1)x1x2···xi−1+xj+1xj+2···xn+γ·Xn−j

= (−1)wt(β) ∑
Xi−1

(−1)x1x2···xi−1 ∑
Xn−j

(−1)xj+1xj+2···xn+γ·Xn−j

= (−1)wt(β)(2i−1 − 2)(−1)wt(γ)+12

= (−1)wt(β)+wt(γ)+1(2i − 4).

Case 3: When α 6= 0, γ = 0,

W f (α, β, γ) = ∑
X∈Fn

2

(−1)x1x2···xj+xixi+1···xn+α·Xi−1+β·Xj−i+1

= ∑
X,Xj−i+1=1

(−1)x1x2···xj+xixi+1···xn+β·1+α·Xi−1

+ ∑
X∈Fn

2 ,Xj−i+1 6=1
(−1)β·Xj−i+1+α·Xi−1

= (−1)wt(β) ∑
Xi−1,Xn−j

(−1)x1x2···xi−1+xj+1xj+2···xn+α·Xi−1

= (−1)wt(β) ∑
Xi−1

(−1)x1x2···xi−1+α·Xi−1 ∑
Xn−j

(−1)xj+1xj+2···xn

= (−1)wt(β)(−1)wt(α)+12(2n−j − 2)

= (−1)wt(α)+wt(β)+1(2n−j+1 − 4).

Case 4: When α 6= 0, γ 6= 0,

W f (α, β, γ) = ∑
X∈Fn

2

(−1)x1x2···xj+xixi+1···xn+α·Xi−1+β·Xj−i+1+γ·Xn−j

= ∑
Xj−i+1=1

(−1)x1x2···xj+xixi+1···xn+β·1+α·Xi−1+γ·Xn−j

+ ∑
Xj−i+1 6=1

(−1)β·Xj−i+1+α·Xi−1+γ·Xn−j

= (−1)wt(β) ∑
X∈Fn

2 ,Xj−i+1=1
(−1)x1x2···xi−1+xj+1xj+2···xn+α·Xi−1+γ·Xn−j

= (−1)wt(β)(−1)wt(α)+12(−1)wt(γ)+12

= 4(−1)wt(α)+wt(β)+wt(γ).

Thus, the theorem is proved.

The above theorems give some nonlinear functions with special spectral distributions.
The following constructions shows that these nonlinear functions can be used as the small
functions in the modified M-M construction method, and two classes of balanced and
resilient Boolean functions with very high nonlinearity are obtained.
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3.2. Balanced Boolean Function with High Nonlinearity

Construction 1. Let n ≥ 8 be even, and φ be a bijective mapping from Fn/2
2 to Fn/2

2 . Let
φ(0) = 0 and φ(δ) = θ with δ be a fixed vector satisfying that wt(θ) > k for k ≤ n/2. Let
y = (y1, · · · , yn/2), x = (x1, · · · , xn/2). For any (y, x) ∈ Fn/2

2 × Fn/2
2 , a Boolean function

f ∈ Bn can be obtained as follows:

f (y, x) = ∑
b∈Fn/2

2

ybgb(x),

where

yb =

{
1, y = b
0, y 6= b

,

and for any {i1, · · · , ik} ⊆ {1, · · · , n/2}, {j1, · · · , jk} ⊆ {1, · · · , n/2},

gb(x) =


φ(b) · x, b /∈ {0, δ}
φ(δ) · x⊕ xi1 xi2 · · · xik , b = 0
φ(δ) · x⊕ xj1 xj2 xjk ⊕ 1, b = δ

.

Theorem 4. Let f be the function obtained by the above construction, and n is even, n ≥ 8. Then,
we have:

1. f is balanced;
2. deg( f ) = n/2 + k;
3. N f = 2n−1 − 2n/2 + 2n/2−2.

Proof of Theorem 4. For any (β, α) ∈ Fn/2
2 × Fn/2

2 , we have

W f (β, α) = ∑
(y,x)∈Fn

2

(−1) f (y,x)+(β,α)·(y,x)

= ∑
b∈Fn/2

2

(−1)β·b ∑
x∈Fn/2

2

(−1)gb(x)+α·x

= ∑
b∈Fn/2

2

(−1)β·b ·Wgb(α).

When b /∈ {0, δ},

Wgb(α) =

{
2n/2, α = φ(b)
0, α 6= φ(b)

.

Let α = (α1, · · · , αn/2), αi
′ = (αi1 , · · · , αik ), αi

′′ = (αik+1
, · · · , αin/2

), {i1, · · · , ik}∪{ik+1, · · · ,
in/2} ⊆ {1, · · · , n/2}. Let θi

′ = (θi1 , · · · , θik ), θi
′′ = (θik+1

, · · · , θin/2
).

When b = 0,

Wgb(α) =


2n/2 − 2n/2−2, α = φ(δ)
±2n/2−2, αj

′ 6= θj
′, αi
′′ = θi

′′

0, αi
′′ 6= θi

′′
.

Let αj
′ = (αj1 , · · · , αjk ), αj

′′ = (αjk+1
, · · · , αjn/2

), {j1, · · · , jk}∪{jk+1, · · · , jn/2} ⊆ {1, · · · , n/2}.
Let θj

′ = (θj1 , · · · , θjk ), θj
′′ = (θjk+1

, · · · , θjn/2
).

When b = δ,

Wgb(α) =


2n/2 − 2n/2−2, α = φ(δ)
±2n/2−2, αj

′ 6= θj
′, αj
′′ = θj

′′

0, αj
′′ 6= θj

′′
.
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Thus,
max|W f (α)| = 2n/2+1 − 2n/2−1.

That means
N f = 2n−1 − 2n/2 + 2n/2−2.

When b /∈ {0, δ}, we have

Wgb(0) = 0.

Since wt(θ) > k, when b = 0 and b = δ, we have

αi
′′ 6= θi

′′, αj
′′ 6= θj

′′.

This means Wg0(0) = 0 and Wgδ
(0) = 0. Thus, for any b ∈ Fn

2 , Wgb(0) = 0. So, we have
W f (0) = ∑b∈Fn/2

2
Wgb(0) = 0, and f is balanced.

Obviously, the terms y1y2 · · · yn/2xi1 xi2 · · · xik and y1y2 · · · yn/2xj1 xj2 · · · xjk are all in
the ANF of the function and cannot cancel each other out. Thus, deg( f ) = n/2 + k.

Remark 2. In this subsection, we provide some small nonlinear functions with special Walsh
spectrum which can be applied to construction method of M-M functions, and Construction 1
shows a method to obtain a balanced Boolean function using the small functions. It is known
that the best nonlinearity for a balanced function is given by Seberry et al. in [3] and Dobbertin
in [4]. When n < 10, the nonlinearity in Construction 1 can equal the best result, but when
n > 12, the nonlinearity will be smaller. Further research on the applications of the small function
in Theorems 2 and 3, such as using the high-meets-low technology [15], will be an interesting
challenge.

3.3. The Algebraic Immunity

Next, we discuss the algebraic immunity of the functions in Construction 1. Let
y = (y1, y2, · · · , yn/2), τ = (τ1, τ2, · · · , τn/2), then f (y, x) can be represented as

f (y, x) = f1(y, x) + f2(y, x),

where

f1(y, x) = ∑
τ∈Fn/2

2 \∆
(

n/2

∏
i=1

(yi + τi + 1))gcτ (x),

where gcτ (X) = cτ · X, wt(cτ) 6= 0, and ∆ = {0, δ}. We define f ′1(y, x) = φ(y) · x + π(y) as
an M-M bent function containing f1(y, x) as a part of its ANF. Then, f (y, x) can be rewritten
as the following form:

f (y, x) = f ′1(y, x) + f ′2(y, x).

Let f and g be two n-variable functions. Noticing

AI( f )− deg(g) ≤ AI( f + g) ≤ AI( f ) + deg(g),

we have

AI( f ′1(y, x))− deg( f ′2(y, x)) ≤ AI( f (y, x)) ≤ AI( f ′1(y, x)) + deg( f ′2(y, x)). (7)

As it is known that

AI( f ′1(y, x)) ≤ deg(φ) + AI(π(y)) + 1. (8)



Mathematics 2022, 10, 4822 9 of 15

By Inequations (7) and (8), it can be seen that the degree of the permutation φ and the
algebraic immunity of function π(y) will have a great effect on the AI( f (y, x)), and the
functions g0(x) and gδ(x) chosen in the constructions may also influence the algebraic
immunity of f (y, x). Simulations show that the usage of different φ, g0(x), gδ(x) and
π(y) will result in different algebraic immunity. Since the mapping φ, the functions π(y),
g0(x) and gδ(x) used in the construction do not need to be unique, so in our constructions,
for a fixed n, we can easily obtain a large number of balanced functions with the same
high nonlinearity but different algebraic immunity. The following examples list balanced
functions that possess good algebraic immunity and high nonlinearity.

Example 1. When n = 8, k = 3, and (y, x) ∈ F4
2 × F4

2, f (y, x) = ∑b∈F4
2

ybgb(x). According to
Theorem 4, it is a balanced Boolean function, and deg( f ) = n/2 + k = 4 + 3 = 7 is the known
optimal algebraic degree, N f = 2n−1 − 2n/2 + 2n/2−2 = 116 is equal to the best nonlinearity
in [3,4]. The truth table of f (y, x) is as follows:

0110100010010111||0101010101010101||0011001100110011||0110011001100110||
0000111100001111||0101101001011010||0011110000111100||0110100101101001||
0000000011111111||0101010110101010||0011001111001100||0110011010011001||
0000111111110000||0101101010100101||0011110011000011||1001011001101010.

3.4. Resilient Boolean Function with High Nonlinearity

Definition 6 ([11]). A set of Boolean functions {g1, g2, · · · , gc} ∈ Bn such that for any α ∈ Fn
2 ,

Wgi (α)Wgj(α) = 0, 1 ≤ i < j ≤ c, (9)

is called a set of disjoint spectra functions.

Obviously, the following set of all n/2-variable t-resilient affine functions

T1 = {gc(x) = c · x | c ∈ Fn/2
2 , wt(c) > t},

is a set of disjoint spectra functions.
Let x = (x′, x′′), where x′ ∈ Fn/2−2k

2 , x′′ ∈ F2k
2 and h(x′′) be a fixed 2k-variable

function. Then,

T2 = {gc′(x) = c′ · x′ + h(x′′) | c′ ∈ Fn/2−2k
2 , wt(c′) > p}

is also a set of disjoint spectra functions. If hc′(x′′) is q-resilient, then gc′(X) is (p + q + 1)-
resilient.

Construction 2. Let n ≥ 12, 1 ≤ t ≤ n/2− 2, 1 ≤ k < n/4 and p + q + 1 = t satisfying that
∑t

i=0 (
n/2

i ) ≤ ∑n/2−2k
i=p+1 (n/2−2k

i ) = |T2|. Let T′2 ⊆ T2 with |T′2| = ∑t
i=0 (

n/2
i ), and T = T1 ∪ T′2.

Let x ∈ Fn/2
2 , y ∈ Fn/2

2 and φ be a bijective mapping from Fn/2
2 to T. Then, we construct the

function f ∈ Bn as follows:

f (y, x) =
⊕

b∈Fn/2
2

ybφ(b), y ∈ Fn/2
2 , (10)

where yb is defined as in Construction 1.

Theorem 5. Let f (y, x) be as in Construction 2. Then,

1. f is t-resilient;
2. N f = 2n−1 − 2n/2 + 2n/2−2k Nh ;
3. deg( f ) = n/2 + deg(h).
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Proof of Theorem 5. Let (β, α) = Fn/2
2 × Fn/2

2 , Then,

W f (β, α) = ∑
y∈Fn/2

2

∑
x∈Fn/2

2

(−1) f (y,x)+α·x+β·y

= ∑
b∈Fn/2

2

(−1)β·b ∑
x∈Fn/2

2

(−1)φ(b)+α·x

= ∑
b∈Fn/2

2

(−1)β·bWφ(b)(α).

Note that the functions φ(b) are t-resilient. When 0 ≤ wt(β, α) ≤ t, we have 0 ≤ wt(α) ≤ t,
so Wφ(b)(α) = 0. Thus, W f (β, α) = 0, which means f (y, x) is t-resilient.

It is known that for any φ(b) ∈ T1, Wφ(b)(α) = 2n/2, and for any φ(b) ∈ T2, Wφ(b)(α) =

2n/2−2k(22k − 2Nh). Since T1 and T2 are two sets of disjoint spectra functions

max
(β,α)
|W f (β, α)| = 2n/2 + 2n/2 − 2n/2−2k+1Nh,

which means

N f = 2n−1 − 2n/2 + 2n/2−2k Nh.

Similar to the proof of Theorem 1, the algebraic degree is n/2 + deg(h).

Example 2. For n = 44, t = 2, let k = 7, p = 0 and q = 1. We have ∑2
i=0 (

44/2
i ) ≤ ∑8

i=1 (
8
i). Let

T′2 ⊆ T2 with |T′2| = 254. Let h be a 14-variable, 1-resilient function with nonlinearity 8100 and φ
be a bijective mapping from F22

2 to T = T1 ∪ T′2. By Construction 2, we can construct a 2-resilient
function f ∈ B20 with nonlinearity 243 − 221 − 214 − 212 − 211 − 210, which agrees with Theorem
2 and has nonlinearity larger than [11].

In this subsection, a construction method to obtain a resilient Boolean function with
high nonlinearity is given. Since this method is also a modified M-M class, the algebraic
properties are similar to the balanced case.

4. Construction of Vectorial Boolean Function

In this section, by using disjoint linear codes and vector matrices with special proper-
ties, a class of resilient (n, m) function with very high nonlinearity is given.

4.1. Disjoint Linear Codes and Vector Matrices

Definition 7 ([19]). Disjoint linear codes are a set of [u, m, t] linear codes C = {C1, C2, · · · , CN}
satisfying that:

Ci ∩ Cj = {0}, 1 ≤ i < j ≤ N.

where 0 is the all-zero vector.

We denote N(u, m, t) the number of [u, m, t] disjoint linear codes, where t is the mini-
mum weight of the [u, m] code.

Lemma 2 ([18]). Let θ0, · · · , θm−1 be a basis of a [u, m, t + 1] linear code C. Let β be a primitive
elememt of F2m , and let

(
1, β, · · · , βm−1) be a polynomial basis in F2m . Define a bijection φ :

F2m → C,

φ(b0 + b1β + · · ·+ bm−1βm−1) = b0θ0 + · · ·+ bm−1θm−1.



Mathematics 2022, 10, 4822 11 of 15

Define the matrix A that contains all the code words by

A =


φ(1) φ(β) · · · φ

(
βm−1)

φ(β) φ
(

β2) · · · φ(βm)
...

...
. . .

...
φ
(

β2m−2
)

φ(1) · · · φ
(

βm−2)
.

Then, for any nonzero linear combination of all columns in matrix A, each nonzero code word of C
appears only once.

Lemma 3 ([20]). Let u, m, d be integers with 2 ≤ m ≤ u. Let α be a root of the primitive polynomial
p(x) = 1 + p1x + · · ·+ pk−1xk−1 + xu ∈ F2[x], and

(
1, α, α2, · · · αu−1) be a polynomial basis

of F2u . Define a bijection π : F2u → Fu
2 ,

π(b0 + b1α + · · ·+ bu−1αu−1) = (b0, b1, · · · , bu−1).

Define matrix B of size (2u − 1)×m by

B =


π(1) π(α) · · · π

(
αm−1)

π(α) π
(
α2) · · · π(αm)

...
...

. . .
...

π
(

α2u−2
)

π(1) · · · π
(
αm−2)

 =


B0
B1
...

B2u−2

.

It is known that for any nonzero linear combination of columns in matrix B, the nonzero vector in Fu
2

appears only once. If for any vector c ∈ Fm∗
2 such that wt(c · Bi) ≤ t, where i = 0, 1, · · · , 2u − 2.

Then, this row will be deleted from matrix B. Thus, we will obtain a new matrix B̃. The number of
rows of matrix B̃ is denoted by M(u, m, t + 1).

4.2. Resilient Vectorial Function with High Nonlinearity

Construction 3. Let n = 2u ≥ 12 be even. Let m, t, k be positive integers with m, t < bn/4c
and m < k < u. Let Xn =

(
X
′
u, X

′′
u

)
=
(

X
′
n−k, X

′′
k

)
∈ Fn

2 with X
′
u, X

′′
u ∈ Fu

2 , X
′
n−k
∈ Fn−k

2 ,

and X
′′
k
∈ Fk

2. Then, an (n, m) function can be constructed as

F(Xn) = [ f1(Xn), f2(Xn), · · · , fm(Xn)], (11)

where for any i = 1, 2, · · · , m,

fi(Xn) =

 ϕi

(
X
′
u

)
· X′′u, X

′
u ∈ E0

ψi

(
X
′
n−k

)
· X′′k , X

′
n−k ∈ E1

(12)

and ψi, ϕi, E0, E1 are defined as follows.
Let C1, C2, · · · , Cs be a set of [u, m, t + 1] disjoint linear codes satisfying that s = N(u, m, t +

1). Let A1, · · · , As be the matrices associated with C1, C2, · · · , Cs as defined in Lemma 2. For 1 ≤
j ≤ s and 1 ≤ i ≤ m, we denote Ai

j the i column of matrix Aj and

Ã =


A1

1 A2
1 · · · Am

1
A1

2 A2
2 · · · Am

2
...

...
. . .

...
A1

s A2
s · · · Am

s

.
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It is easy to know that the size of the matrix Ã is s · (2m − 1)×m. Let E0 = {e1, · · · , eδ} ⊂ Fu
2

and δ = s · (2m − 1). For any 1 ≤ i ≤ m, ϕi will be a bijective from E0 to Ã :
ϕ1(e1) ϕ2(e1) · · · ϕm(e1)
ϕ1(e2) ϕ2(e2) · · · ϕm(e2)

...
...

. . .
...

ϕ1(eδ) ϕ2(eδ) · · · ϕm(eδ)

 = Ã.

In Lemma 3, let π be a bijective from F2k to Fk
2, then a matrix B̃ of the size M(k, m, t + 1)×m

can be obtained. We define E1 = (Fu
2\E0)× Fu−k

2 = {ε1, · · · , εγ} ⊂ Fn−k
2 , then γ = |E1| =

2u−k · (2u − s · (2m − 1)) = 2u−k · (2u − N(u, m, t + 1) · (2m − 1)). For any 1 ≤ i ≤ m, ψi will
be a bijective from E1 to B̃γ :

ψ1(ε1) ψ2(ε1) · · · ψm(ε1)
ψ1(ε2) ψ2(ε2) · · · ψm(ε2)

...
...

. . .
...

ψ1(εγ) ψ2(εγ) · · · ψm(εγ)

 = B̃γ

where B̃γ consists of any γ rows of B̃.

Theorem 6. Let F(Xn) = [ f1(Xn), f2(Xn), · · · , fm(Xn)] be the vectorial functions constructed
above. Then, we have

1. F is t-resilient;
2. N f = 2n−1 − 2n/2−1 − 2k−1.

Proof of Theorem 6. From the definitions of ϕi and ψi, it is known that both of them are
bijective. Let α =

(
β
′
, β
′′
)

=
(

γ
′
, γ
′′
)
∈ Fn

2 with β
′
, β
′′ ∈ Fu

2 , γ
′ ∈ Fn−k

2 and γ
′′ ∈ Fk

2.
For any c ∈ Fm

2 , let fc(Xn) = c · F(Xn). Then, we have

W fc(α) = ∑
Xn∈Fn

2

(−1) fc(Xn)⊕α·Xn = H1 + H2.

where

H1 = ∑
X′u∈E0

∑
X′′u ∈Fu

2

(−1)ϕc

(
X
′
u

)
·X′′u⊕

(
β
′
,β
′′)·(X

′
u ,X
′′
u

)

= ∑
X′u∈E0

(−1)β
′ ·X′u ∑

X′′u ∈Fu
2

(−1)
(

ϕc

(
X
′
u

)
+β
′′)·X′′u ,

and

H2 = ∑
X′n−k∈E1

(−1)γ
′ ·X′n−k ∑

X′′k ∈F
k
2

(−1)
(

ψc

(
X
′
n−k

)
+γ
′′)·X′′k .

When ϕ−1
c

(
β
′′
)
= ∅, we have H1 = 0, otherwise H1 = 2n/2 · (−1)β

′ ·ϕ−1
c

(
β
′′)

= ±2n/2. So

H1 ∈
{

0,±2n/2
}

, in the same way, H2 ∈
{

0,±2k
}

. Thus, the maximum value of |W fc | is
2n/2 − 2k.

According to (3),

N fc = 2n−1 − 2n/2−1 − 2k−1.
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Combined with (5), we can obtain that the nonlinearity of the constructed function F is

NF = 2n−1 − 2n/2−1 − 2k−1.

When 0 ≤ wt(α) ≤ t, we have wt
(

β
′′
)
≤ t and wt

(
γ
′′
)
≤ t. Therefore, for X

′
u ∈ E0

and X
′
n−k ∈ E1, by the definitions of ψi and ϕi, we can obtain wt

(
ψc

(
X
′
u

))
≥ t + 1 and

wt
(

ϕc

(
X
′
n−k

))
≥ t + 1. Obviously, ψc

(
X
′
u

)
+ β

′′ 6= 0 and ϕc

(
X
′
n−k

)
+ γ

′′ 6= 0. Thus,
H1 = H2 = 0, which means for any 0 ≤ wt(α) ≤ t, W fc(α) = 0. By Theorem 1, fc is a
t-resilient function and so is F.

Remark 3. In Construction 3, the numbers of rows of the matrixs Ã and B̃ should be enough
to ensure that both ϕi and ψi are bijective mappings. Hence, the following inequation must hold
N(u, m, t + 1) · (2m − 1) · 2u + M(k, m, t + 1) · 2k ≥ 2n, where the value of N(u, m, t + 1) and
M(k, m, t + 1) can be found in [19,20].

Example 3. Let n = 32, m = 4, t = 1 and k = 11. Note that N(16, 4, 2) = 4365, M(11, 4, 2) =
1957 and 4365× (24− 1)× 216 + 1957× 211 ≥ 232 holds. By Construction 2, a 1-resilient (32, 4)
functions with nonlinearity

(
32, 4, 1, 231 − 215 − 211) can be obtained. The nonlinearity of this

function is better than the results in [19,20].

Based on Construction 3, we list some results in Table 1:

Table 1. (n, m, t, NF) S-boxes with higher nonlinearity than [19].

Ours [19]

(22, 4, 1, 221 − 210 − 28) (22, 4, 1, 221 − 210 − 29)

(30, 4, 1, 229 − 214 − 210) (30, 4, 1, 229 − 214 − 211)

(32, 4, 1, 231 − 215 − 210) (32, 4, 1, 231 − 215 − 211)

(28, 5, 1, 227 − 213 − 210) (28, 5, 1, 227 − 213 − 211)

(38, 5, 1, 237 − 218 − 213) (38, 5, 1, 237 − 218 − 214)

(42, 5, 1, 241 − 220 − 213) (42, 5, 1, 241 − 220 − 214)

(32, 6, 1, 231 − 215 − 212) (32, 6, 1, 231 − 215 − 213)

(58, 7, 1, 257 − 228 − 218) (58, 7, 1, 257 − 228 − 219)

The table shows that our constructions can sometimes obtain functions with higher
nonlinearity than the known result. In other cases, our methods can at least provide the
same nonlinearity as the known result, and how to improve the nonlinearity in the equal
cases will be the future work.

5. Conclusions

This paper introduces three construction methods to obtain Boolean functions and vec-
torial Boolean functions with good properties. Firstly, several types of nonlinear functions
with special Walsh spectra are given. They can be used in the modified M-M construction
methods. For instance, the functions with only a nonlinear term are usually used to opti-
mize the algebraic degree, and in this paper we use them to obtain balanced and resilient
functions with high nonlinearity. How to use the other special functions provided is a very
interesting research problem. Secondly, a construction of resilient vectorial Boolean func-
tion with very high nonlinearity is proposed. The construction combines the disjoint linear
codes and the vector matrices with special properties together and provides some functions
with currently best-known nonlinearity. Further improvements towards increasing the
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output dimension as much as possible under the premise of ensuring the nonlinearity
appear to be an interesting research task.
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