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Abstract: The current research on iterative learning control focuses on the condition where the system
relative degree is equal to 1, while the condition where the system relative degree is equal to 0
or greater than 1 is not considered. Therefore, this paper studies the monotonic convergence of
the corresponding dynamic iterative learning controller systematically for discrete linear repetitive
processes with different relative degrees. First, a 2D discrete Roesser model of the iterative learning
control system is presented by means of 2D systems theory. Then, the monotonic convergence
condition of the controlled system is analyzed according to the stability theory of linear repetitive
process. Furthermore, the sufficient conditions of the controller existence are given in linear matrix
inequality format under different relative degrees, which guarantees the system dynamic performance.
Finally, through comparison with static controllers under different relative degrees, the simulation
results show that the designed schemes are effective and feasible.

Keywords: linear repetitive process; relative degrees; dynamic iterative learning control; monotonic
convergence; linear matrix inequality
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1. Introduction

Iterative learning control (hereafter abbreviated as ILC) is suitable for executing repeti-
tive operation tasks in finite time. The strategy is to use the previous control experience and
output error to repeatedly adjust the present system input, and then the system output is
able to track the desired trajectory [1,2]. There are different application scenarios in the field
of ILC. The research in [3,4] studied state-observer-based ILC algorithms and PD-type ILC
algorithms, respectively, in systems with arbitrary relative degrees. The uncertain system
survey in [5,6] is also an important domain for ILC application. Additionally, monotonic
convergence and controller design have always been hot issues [7–9].

Linear repetitive processes under ILC are usually regarded as two-dimensional systems
on the time and batch axes. Research on ILC system-design methods and convergence
performance on the basis of 2D system theory has become an important direction for the
development of ILC technology [10,11]. Based on the theory of 2D systems, the work in [12,13]
discussed a comprehensive predictive ILC strategy to ensure the fast convergence performance
of the learning process under model error and uncertain disturbance. In [14,15], a high-order
ILC controller was proposed according to the stability theory of linear repetitive processes,
which optimized the monotonic convergence and robust performance of the system.

Based on discrete linear repetitive processes of actuator failure, the authors of [16,17]
proposed a comprehensive design method of an integrated iterative learning fault-tolerant
controller with state feedback and gave sufficient conditions for a closed-loop system to
remain stable in the case of failure using Lyapunov stability theory. In [18,19], a P-type ILC
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algorithm was proposed for high relative linear multivariable discrete systems with iterative
initial error.

These existing design methods use static state feedback and feedforward information
to improve the system performance. However, in some cases, the static iterative learning
controller may be highly conservative, and it is difficult to meet certain performance
requirements of the system. In this case, dynamic ILC control law is a better choice method.
In terms of the error convergence between channels, relevant applications showed that
the dynamic ILC outperforms the static controller. In [20,21], a dynamic ILC controller is
proposed to make the system tracking error converge rapidly along the iterative direction.

The authors of [22,23] used 2D system theory to design the controller, but the stability
analysis and applicable cases are not completely given. In [24,25], a dynamic filter is
designed; however, it is difficult to control the system stability for uncertain systems. For
the system with an uncertain ILC model, a dynamic filter was designed to make the system
error converge in [26,27], while both of these papers did not consider the system fault.

The research in [28] introduced an ILC method on the basis of the iterative moving-
average operator, which is applied in nonlinear dynamic systems with random variable test
lengths. The work in [29,30] designed a dynamic ILC law based on the repetitive process
setting method for three-dimensional cranes and space manipulator individually, while
the research on ILC in systems with a relative degree greater than 1 is relatively rare, the
above research only considers the ILC with a relative degree of 1 and does not consider the
situation where the system relative degree is equal to 0 or greater than 1.

In view of this, this paper studies the system monotonic convergence under the dynamic
ILC algorithm for discrete linear repetitive processes with different degrees of relativity. Com-
bined with 2D system theory, a 2D discrete Roesser model of an ILC system is established. The
stability theory of linear repetitive processes is used to analyze the system monotone conver-
gence condition. The sufficient condition for the controller existence is given in linear matrix
inequality (hereafter abbreviated as LMI) format, it guarantees the dynamic performance.

In this paper, for matrices X, XT and X⊥ are the transpositions and orthogonal comple-
ments, respectively; X > 0 and X < 0 mean that X is positive definite and negative definite
separately; I and 0 represent a unit and zero matrix, respectively; symbol “∀” represents
the element transposition in a symmetrical position; sym(X) = (X + XT) represents the
Hermitian part of the matrix X; and diag{·} represents a diagonal matrix.

2. Problem Description

We consider below the state space model with iteration as follows:{
x(t + 1, k) = Ax(t, k) + Bu(t, k)

y(t, k) = Cx(t, k) + +Du(t, k)
(1)

where the iteration period t satisfies 0 ≤ t ≤ T; system iteration times k ≥ 0; x(t, k) ∈ Rn,
u(t, k) ∈ Rm, and y(t, k) ∈ Rl are the system state, input and output at time t and batch k;
boundary condition x(0, k) = x0 represents the system initial status at batch k; A, B, C and
D are the corresponding system matrices of proper dimension.

Suppose that system (1) is stable and the relative degree r ≥ 0, which has the following
characteristics [31]:

(1) if D 6= 0 and the row is full of rank, then r = 0;
(2) r = 1 if the system meets the following conditions:

(a) for all i < r− 1, there are D = 0 and CAiB 6= 0;
(b) CAr−1B 6= 0 and the row is full of rank.

In ILC process of system (1), we make its desired trajectory yd(t) and define the
tracking error as follows:

e(t, k) = yd(t)− y(t, k). (2)

For a given state space model (1), considering the different relative degrees of the
system, this paper designs appropriate control inputs {u(t, k), 0 ≤ t ≤ T} to make the
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tracking error e(t, k) monotonic convergent along the batch direction. At the same time, the
system stability along the time axis is also guaranteed.

3. Iterative Learning Control for Linear Repetitive Processes

For batch k ≥ 0, state space model [32] of discrete linear repetitive processes running
on finite periods 0 ≤ t ≤ T is as follows:{

x(t + 1, k + 1) = Adx(t, k + 1) + Bdu(t, k + 1) + Bd0y(t, k)
y(t, k + 1) = Cdx(t, k + 1) + Ddu(t, k + 1) + Dd0y(t, k)

(3)

where x(t, k) ∈ Rn, u(t, k) ∈ Rm,, y(t, k) ∈ Rl represent system state, input, output at time t
and batch k, respectively. Set boundary conditions x(0, k + 1) and y(t, 0) as known vector
functions, the stability condition of linear repetitive processes (3) satisfies the below lemmas.

Lemma 1 ([32]). The linear repetitive process described in (3) is stable if and only if the following
inequality is established:

(i) ρ(Dd0) < 1, its modulus is strictly less than 1 to ensure convergence along the batch.
(ii) ρ(Dd0) < 1, its modulus is strictly less than 1 to ensure convergence along time.
(iii) All the eigenvalues modulus of transfer function G(z) = Cd ∗ (zI − Ad)

−1 ∗ Bd0 + Dd0
are strictly less than 1 on a unit circle of complex plane |z| = 1, thereby, ensuring convergence
along time and the batch.

Lemma 2 ([33]). Given a matrix with proper dimensions A, B and M, there is det
(
ejω I − A

)
6= 0

for ω ∈ R, and the below conditions are equivalent:
(1) There exists ω ∈ R to hold the below inequality:[ (

ejω I − A
)−1B

I

]T

M

[ (
ejω I − A

)−1B
I

]
≤ 0. (4)

(2) There exists Hermitian array P = PT to hold the below inequality:

M +

[
AT PA− P AT PB

BT PA BT PB

]
≤ 0. (5)

To make system (3) convergent, we propose Theorem 1.

Theorem 1. If matrices P1 > 0, P2 > 0 exist, the following LMI is established:[
AT

d P1 Ad + CT
d P2Cd − P1 AT

d P1Bd0 + CT
d P2Dd0

∗ BT
d0P1Bd0 + DT

d0P2Dd0 − P2

]
< 0. (6)

Then, the linear repetitive process (3) is stable.

Proof of Theorem 1. Equation (6) can be written as[
Ad Bd0
Cd Dd0

]T[ P1 0
0 −P1

][
Ad Bd0
Cd Dd0

]
+ Θ < 0 (7)

where Θ =

[
Cd Dd0
0 I

]T[ P2 0
0 −P2

][
Cd Dd0
0 I

]
. From Lemma 2, we can obtain

( (
ejω I − Ad

)−1Bd0
I

]T

Θ

[ (
ejω I − Ad

)−1Bd0,
I

]
< 0, (8)
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which is [
G
(
ejω)
I

]T[ P2 0
0 −P2

][
G
(
ejω)
I

]
< 0. (9)

The G(ejω) is the frequency response matrix of transfer function matrix G(z) in
Lemma 1, and then we can obtain

G
(

ejω
)T

P2G
(

ejω
)
− P2 < 0. (10)

When P2 > 0, for ω ∈ R, there is ρ(G(ejω)) < 1, which satisfies condition (iii) of Lemma 1.
In addition, from (6), we find{

AT
d P1 Ad + CT

d P2Cd − P1 < 0
BT

d0P1Bd0 + DT
d0P2Dd0 − P2 < 0

. (11)

As P1 > 0, P2 > 0, the below inequalities CT
d P2Cd ≥ 0, BT

d0P1Bd0 ≥ 0 hold, and then
the following inequality is also true{

AT
d P1 Ad − P1 < 0

DT
d0P2Dd0 − P2 < 0

(12)

where ρ(Ad) < 1, ρ(Dd0) < 1, condition (ii) and (i) of Lemma 1 are also satisfied,
respectively.

4. Design of a Dynamic Iterative Learning Control System

To obtain the form of (6) to ensure system (3) is stable, we propose Theorems 2 and 3
for dynamic ILC algorithms in systems with different relative degrees.

Lemma 3 (The Projection Theorem [34]). Let Ψ, Λ and Σ be real matrices of appropriate dimen-
sion where Ψ = ΨT , and there is a matrix W that holds

Ψ + ΛTW ∑+
T

∑ WTΛ < 0 (13)

if and only if the following inequalities hold:{
Λ⊥TΨΛ⊥ < 0
∑⊥T Ψ ∑⊥ < 0

. (14)

Lemma 4 ([35]). Suppose that W, L and V are given matrices of appropriate dimension. W and V
are positive definite, and then LTVL−W < 0 is equivalent to[

−W LT

L −V−1

]
< 0 (15)

or [
−V−1 L

LT −W

]
< 0. (16)

For system (1), the below ILC law is defined as:

u(t, k) = u(t, k− 1) + ∆u(t, k) (17)

where u(t, 0) is the initial value of iterative control, and ∆u(t, k) is the iteration learning up-
date law, which is used to update the control system input signal. We simultaneously define

δk( f (t, k)) = f (t, k)− f (t, k− 1) (18)



Mathematics 2022, 10, 4824 5 of 13

where δk( f (t, k)) represents the difference of f (t, k) along batch axis.

4.1. Zero Relativity (r = 0)

Considering the relativity of system (1), there is D 6= 0. The state equation of a
dynamic iterative learning controller is as follows:

xc(t + 1, k) =Acxc(t, k) + Bcδk(x(t, k)) + Dce(t, k− 1) (19)

where xc(t, k) is the dynamic ILC state vector. The below dynamic ILC update law is
adopted as follows:

∆u(t, k) =K1δk(x(t, k)) + K2xc(t, k) + K3e(t, k− 1) (20)

where the corresponding static ILC update law is ∆u(t, k) = L1δk(x(t, k)) + L2e(t, k− 1).
In order to rewrite the dynamic ILC system into a discrete linear repetitive process, define

X(t, k) =
[

δk(x(t, k))
xc(t, k)

]
. (21)

Then, a 2D dynamic model is obtained as follows:{
X(t + 1, k) = A1X(t, k) + B1e(t, k− 1)
e(t, k) = C1X(t, k) + D1e(t, k− 1)

(22)

where A1 =

[
A + BK1 BK2

Bc Ac

]
, B1 =

[
BK3
Dc

]
, C1 =

[
−C− DK1 −DK2

]
, D1 =

I − DK3.

Theorem 2. Considering the 2D closed loop system (22) whose relativity r = 0, if positive definite
symmetric matrix Y11 > 0, Y13 > 0, Y2 > 0 are existing, well-dimensioned matrices W11, W12 and
W2 and matrices N1, N2, N3, NAc , NBc and NDc make the following linear matrix inequalities hold

−Y11 −Y12 0 AW11 + BN1 BN2 BN3
∗ −Y13 0 NBc NAc NDc
∗ ∗ −Y2 −CW11 − DN1 −DN2 W2 − DN3
∗ ∗ ∗ Y11 −W11 −WT

11 Y12 0
∗ ∗ ∗ ∗ Y13 −W12 −WT

12 0
∗ ∗ ∗ ∗ ∗ Y2 −W2 −WT

2

 < 0. (23)

Then, the 2D linear repetitive process (22) under dynamic ILC is stable along both the time
and batch axes, the system tracking error has monotonic convergence, and the system controller
matrices are {

Ac = NAcW−1
12 , Bc = NBcW−1

11 , Dc = NDcW−1
2

K1 = N1W−1
11 , K2 = N2W−1

12 , K3 = N3W−1
2

. (24)

Proof of Theorem 2. The inequality (23) can be rewritten to be

Φ1 + sym
{[

Π1
−I

]
WΛ1

}
< 0 (25)

where Φ1 =


−Y1 0 0 0
∗ −Y2 0 0
∗ ∗ Y1 0
∗ ∗ ∗ Y2

, Y1 =

[
Y11 Y12
∗ Y13

]
, Π1 =

[
A1 B1
C1 D1

]
,

Λ1 =

[
0 0 I 0
0 0 0 I

]
, W = diag{W1, W2}, W1 = diag{W11, W12} and take
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Λ⊥1 =
[

I I 0 0
]T . If inequality (25) is true, according to Lemma 3, the following

linear matrix inequalities are also true
[

I Π1
]
Φ1

[
I

ΠT
1

]
< 0(

Λ⊥1
)T

Φ1Λ⊥1 < 0
. (26)

In Theorem 2, according to the matrix Y11 > 0, Y13 > 0, we can conclude

Y1 =

[
Y11 Y12
∗ Y13

]
> 0 holds. Then, the inequality

(
Λ⊥1
)T

Φ1Λ⊥1 =

[
I I 0 0

]
−Y1 0 0 0
∗ −Y2 0 0
∗ ∗ Y1 0
∗ ∗ ∗ Y2




I
I
0
0

 = −Y1 −Y2 < 0 clearly holds.

According to inequality
[

I Π1
]
Φ1

[
I

ΠT
1

]
< 0, we obtain

[
I 0 A1 B1
0 I C1 D1

]
−Y1 0 0 0
∗ −Y2 0 0
∗ ∗ Y1 0
∗ ∗ ∗ Y2




I 0
0 I

AT
1 CT

1
BT

1 DT
1

 =

[
−Y1 0
∗ −Y2

]
+

[
A1 B1
C1 D1

][
Y1 0
∗ Y2

][
A1 B1
C1 D1

]T

< 0.

(27)

According to Lemma 4, we find
−Y1 0 A1 B1
∗ −Y2 C1 D1
∗ ∗ −Y−1

1 0
∗ ∗ ∗ −Y−1

2

 < 0 (28)

where we take P1 = Y−1
1 , P2 = Y−1

2 . Using Lemma 4 again, we can obtain the inequality in
the form of (6); thus, the condition is met, and (23) holds.

4.2. Higher Order Relativity (r > 1)

Considering that system (1) has high-order relativity r > 1, the system model satisfies
D = 0, CAr−1B 6= 0, CAiB = 0(i = 0, . . . , r − 2). In order to compensate for higher
order relativity, the state equation and dynamic iterative learning update law are designed
as follows:

xc(t + 1, k) = Acxc(t, k) + Bcδk(x(t, k)) + Dce(t + r, k− 1) (29)

∆u(t, k) = K1δk(x(t, k)) + K2xc(t, k) + K3e(t + r, k− 1). (30)

The static iterative learning update law for high relativity is ∆u(t, k) = L1δk(x(t, k)) +
L2e(t + r, k− 1), and thus we can find

δk(x(t + 1, k)) = (A + BK1)δk(x(t, k)) + BK2xc(t, k) + BK3e(t + r, k− 1) (31)

and then

e(t + r, k) = e(t + r, k− 1)− Cδk(x(t + r, k))

= e(t + r, k− 1)− C(A + BK1)δk(x(t + r− 1, k))− CBK2xc(t + r− 1, k)− CBK3e(t + 2r− 1, k− 1)

= e(t + r, k− 1)− CA[(A + BK1)δk(x(t + r− 2, k)) + BK2xc(t + r− 2, k) + BK3e(t + 2r− 2, k− 1)]

= e(t + r, k− 1)− CA2δk(x(t + r− 2, k)) = · · · = e(t + r, k− 1)− CAr−1δk(x(t + 1, k))

= e(t + r, k− 1)− CAr−1[(A + BK1)δk(x(t, k)) + BK2xc(t, k) + BK3e(t + r, k− 1)]

= −CAr−1(A + BK1)δk(x(t, k))− CAr−1BK2xc(t, k) + (I − CAr−1BK3

)
e(t + r, k− 1).

(32)
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The corresponding 2D dynamic mode is{
X(t + 1, k) = A2X(t, k) + B2e(t + r, k− 1)
e(t + r, k) = C2X(t, k) + D2e(t + r, k− 1)

(33)

where X(t, k) =

[
δk(x(t, k))

xc(t, k)

]
, A2 =

[
A + BK1 BK2

Bc Ac

]
, B2 =

[
BK3
Dc

]
,

D2 = I − CAr−1BK3, C2 =
[
−CAr−1(A + BK1) −CAr−1BK2

]
.

Theorem 3. Considering the 2D closed loop system (22) whose relativity r ≥ 1, if positive
definite symmetric matrices Y11 > 0, Y13 > 0, Y2 > 0 are existing, well-dimensioned matrices
W11, W13 and W2 and matrices N1, N2, N3, NAc , NBc and NDc make the following linear matrix
inequalities hold

−Y11 −Y12 0 AW11 + BN1 BN2 BN3
∗ −Y13 0 NBc NAc NDc
∗ ∗ −Y2 −CArW11 − CAr−1BN1 −CAr−1BN2 W2 − CAr−1BN3
∗ ∗ ∗ Y11 −W11 −WT

11 Y12 0
∗ ∗ ∗ ∗ Y13 −W12 −WT

12 0
∗ ∗ ∗ ∗ ∗ Y2 −W2 −WT

2

 < 0. (34)

Then, the 2D linear repetitive process (22) under dynamic ILC is stable along both the time
and batch axes, the system tracking error has monotonic convergence, and the controller matrix of
the system is {

Ac = NAcW−1
12 , Bc = NBcW−1

11 , Dc = NDcW−1
2

K1 = N1W−1
11 , K2 = N2W−1

12 , K3 = N3W−1
2

. (35)

Proof of Theorem 3. The proving process is same with Theorem 2 and, thus, is omitted
here.

There are two main steps to implement the dynamic ILC for linear repetitive process:
step 1 is to use the LMI toolbox to obtain the dynamic ILC law factors K1, K2 and K3 shown
in Algorithm 1, and step 2 is to iterate the input according to the dynamic learning control
law along both the batch and time axes as demonstrated in Algorithm 2.

Algorithm 1 Linear repetitive process dynamic ILC law calculation

Input: System array A, B, C, D, relative degree r, select dynamic or static ILC law.
Output: Dynamic ILC law factor K1, K2 and K3 in (20).

1: switch relative degree r.
2: r = 0.
3: Substitute known matrices A, B, C, D and r into (23) of Theorem 2 to obtain matrices

N1, N2, N3, NAc , NBc , NDc , W11, W12 and W2.
4: Obtain dynamic ILC law K1, K2 and K3 according to (24) of Theorem 2.
5: r >= 1.
6: Substitute known matrices A, B, C, D and r into (34) of Theorem 3 to obtain matrices

N1, N2, N3, NAc , NBc , NDc , W11, W12 and W2.
7: Obtain dynamic ILC law K1, K2 and K3 according to (35) of Theorem 3.
8: end.
9: return K1, K2 and K3.
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Algorithm 2 Dynamic ILC for linear repetitive process algorithm

Input: System array A, B, C and D; relative degree r; simulation duration T; simulation
time step Ts; initial input signal u0; target trajectory yd(t); and dynamic ILC law factor
K1, K2 and K3 from Algorithm 1

Output: System input u∗ for each iteration, actual system output y∗

1: initialization: Iteration times k = 0, simulation time t = 0, ‖e0‖ > ε
2: Send the initial input signal u0, calculate the state vector Xc0 according to (19), obtain

the output y0 and corresponding error e0
3: Record input u0, state vector Xc0 and initial error e0
4: while not ‖ek‖ < ε do
5: Set k = k + 1 for next iteration.
6: while not t > T do
7: Set t = t + Ts to perform the next calculation.
8: Obtain and record state vector Xc(t, k) according to (19)
9: Update the input signal u(t, k) by u(t, k) = u(t, k− 1) + ∆u(t, k− 1), ∆u(t, k− 1) is

obtained from (20).
10: Send and the input signal u(t, k) to the simulation model and measure the output

trajectory y(t, k).
11: Obtain and record state vector X(t, k) according to (22)
12: Record the input signal u(t, k) and output trajectory error e(t, k) according to (2).
13: end while
14: end while
15: return u∗ = u(t, k) and y∗ = y(t, k)

5. Simulation Results

To verify the proposed dynamic ILC algorithm effectiveness, simulations were per-
formed in MATLAB with the LMI toolbox for the systems with different relative degrees.
For reasons of evaluating the system tracking error, the root mean square error is introduced
as follows:

RMS(k) =

√√√√ 1
T

T

∑
t=1

e2(k, t). (36)

5.1. Condition 1: Relativity r = 0

Considering the system relativity r = 0, the coefficient of its state equation is

A =

[
1 0.2

0.3 1

]
, B =

[
0.1
1

]
, C =

[
0.5 0.2

]
, D = 1. Suppose that each iteration

length of the system is T = 2s, and the expected trajectory is as follows:

yd(t) = sin(πt) + 0.25 sin(2πt). (37)

Using LMI (23) and (24) in Theorem 2, we can obtain{
Ac = −0.5491, Bc =

[
−0.0144 0.1329

]
, Dc = −0.1704

K1 =
[
−0.4874 −0.3796

]
, K2 = −0.2790, K3 = 0.5392

. (38)

To further explore the advantages of dynamic ILC, we consider the corresponding
static ILC under the same conditions, and the system law is

u(t, k) = u(t, k− 1) + L1δk(x(t, k)) + L2e(t, k− 1). (39)

Using the same LMI solution, parameters of static ILC can be obtained as{
L1 =

[
−0.4913 −0.3271

]
L2 = 0.3687

. (40)
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The simulation results are shown in Figures 1 and 2.
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Dynamic ILC
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Figure 1. The mean square error trajectory at relative degree r = 0.

Figure 2. The tracking error curve of ILC at relative degree r = 0.

5.2. Condition 2: Relativity r = 1

Considering the system relativity r = 1, taking the injection speed control of the
injection molding process in [35] as the simulation objective, the constant matrix of its state

equation is given as follows: A =

[
1.582 −0.5916

1 0

]
, B =

[
1
0

]
, C =

[
1.69 1.419

]
.

Define the expected trajectory as

yd(t) =


sin(0.01πt), 0 ≤ t < 200

1 , 200 ≤ t < 300
4− 0.01t , 300 ≤ t < 400

. (41)

Using LMI (34) and (35) in Theorem 3, we can obtain{
Ac = −0.5884, Bc = [−0.2074− 0.0032], Dc = −0.4093
K1 =

[
−2.2461 −0.5908

]
, K2 = −0.0752, K3 = 0.3912

. (42)

The static ILC law under the same conditions is

u(t, k) = u(t, k− 1) + L1δk(x(t, k)) + L2e(t + 1, k− 1). (43)

The static ILC controller parameters are obtained using the same LMI solution method
as follows: {

L1 =
[
−2.2058 −0.5915

]
L2 = 0.3185

. (44)

The simulation results are shown in Figures 3 and 4.
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Figure 3. The mean square error trajectory at relative degree r = 0.

Figure 4. The tracking error curve of ILC at relative degree r = 1.

5.3. Condition 3: Relativity r = 2

Considering the system relativity r = 2, the selected state space model parameters

are as follows: A =

[
2 −0.25
1 −0.35

]
, B =

[
0
1

]
, C =

[
2 0

]
. Suppose that each iteration

length of the system is T = 2s and the sampling time Ts = 0.01s, then the expected trajectory
is as follows:

yd(t) = t2(1− 0.5t). (45)

The controller parameters can be obtained as{
Ac = −0.5880, Bc = [−0.1931− 0.1367], Dc = −0.4132
K1 =

[
−3.5641 −1.5628

]
, K2 = −0.0509, K3 = 0.3217

. (46)

The static ILC law under the same conditions is

u(t, k) = u(t, k− 1) + L1δk(x(t, k)) + L2e(t + 2, k− 1). (47)

The parameters of the static ILC controller are obtained{
L1 =

[
−3.5690 −1.5604

]
L2 = 0.2709

. (48)

The simulation results are shown in Figures 5 and 6.
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Figure 5. The mean square error trajectory at relative degree r = 2.

Figure 6. The tracking error curve of ILC at relative degree r = 2.

The simulation results show that the actual system output gradually tracks the desired
trajectory along an iterative axis, and the system remains stable under the dynamic ILC.
Under the same conditions, compared with the static iterative learning controller, the control
system using a dynamic iterative learning controller can achieve a better convergence effect.

6. Conclusions and Future Work

The monotonic convergence problem of dynamic ILC systems was studied in this
paper in discrete linear repetitive processes with different relative degrees. First, the
2D discrete Roesser model of ILC system was established based on 2D system theory;
secondly, the stability theory of linear repetitive processes was used to analyze the system
monotone convergence, and sufficient conditions for the controller existence were given
to simultaneously guarantee the dynamic performance; finally, the static controller and
dynamic controller were simulated under different conditions, and the comparison showed
the effectiveness of the dynamic ILC design schemes.

However, we know that the system matrix A, B, C and D has difficulty maintaining
accuracy for actual objects, and the system always has disturbances. For certain conditions,
the dynamic iterative learning controller proposed in this paper is not suitable. Additionally,
the ILC initial state issue studied in [36–38] is also critical for dynamic ILC algorithms, and
thus how to eliminate the impacts of parameter uncertainty, disturbances and the initial
state issue is one of our future jobs. Our subsequent research will also consider the actuator
fault diagnosis and the reaction method, which is a category of fault-tolerant control.
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