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Abstract: Given a sample, E-Bayesian estimates, which are the expected Bayesian estimators over the
joint distributions of two hyperparameters in the prior distribution, are developed for the inverse
Weibull distribution rate parameter under the scaled squared error and linear exponential error
loss functions, respectively. The corresponding expected mean square errors, EMSEs, of E-Bayesian
estimators based on the sample are derived. Moreover, the theoretical properties of EMSEs are
established. A Monte Carlo simulation study is conducted for the performance comparison. Finally,
three data sets are given for illustration.
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1. Introduction

In the reliability inference and survival analysis, the Weibull distribution has been a
very popular distribution for the lifetime data analysis due to the flexibility of the prob-
ability density function (PDF) and hazard function (HF). Much research work has been
accomplished based on the Weibull distribution from the frequentist and Bayesian view
points. For example, the book by Johnson et al. [1] provides an excellent review and
Kundu [2] investigated Bayesian inference and reliability sampling plan for the Weibull
distribution. The PDF can be either decreasing or uni-model, and HF can be either de-
creasing or increasing depending upon the different values of the shape parameter. Hence,
Kundu and Howlader [3] and Singh et al. [4] mentioned that the Weibull distribution
could not be appropriate for the data analysis when the mortality study based on a data set
indicates the lifetime distribution could have a non-monotone hazard function, such as in
the studies of lung and breast cancer patients’ mortalities by Bennette [5] and Langlands
et al. [6], respectively. Therefore, it is important to search for an appropriate probability
model to analyze such kind of data sets. The inverse Weibull distribution (IWD) could be
an alternative probability model. The PDF and cumulative distribution function (CDF) of
the IWD are respectively given by

f (x) = αβx−(β+1)e−αx−β
, x ≥ 0, α > 0, β > 0, (1)

and

F(x) = e−αx−β
, x ≥ 0, α > 0, β > 0, (2)

where α and β are the rate and shape parameters, respectively. The survival function
(SF) is SF(x) = 1 − F(x) and HF(x) = f (x)

1−F(x) . The IWD has been studied and applied
to diverse fields ranging from Engineering to Medical science. For example, Keller and
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Kamath [7] and Keller et al. [8] derived the IWD as a suitable model to describe degradation
phenomena of mechanical components such as the dynamic components of diesel engines;
Erto [9] showed the IWD as goodness-of-fits to several data sets given in literature including
the times to breakdown of an insulating fluid subject to the action of a constant tension.
Kundu and Howlader [3] showed the IWD as a good of fit model for the survival times
of guinea pigs injected with different doses of tubercle bacilli. It can be shown that the
IWD hazard function is an unimodal but not a monotone one by using the derivative
of basic mathematics. Figure 1 shows more information about PDF, CDF, HF and SF for
various values of α and β = 1.0. Hence, when the empirical study demonstrates the
hazard function could be unimodal, the IWD will be an appropriate model instead of the
Weibull distribution.
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Figure 1. Plots of PDF, CDF, HF and SF of IWD for various values of α with β = 1.

The Bayesian method in statistical inference depends upon the choice of prior dis-
tribution and loss function. Many loss functions, such as squared error (SE) loss, linear
exponential (LINEX) loss, generalized entropy loss, scaled square error (SSE) loss and
precautionary loss functions, have been used to develop the Bayesian method estimates.
The SE loss function is the most widely used loss function that can easily be justified based
on the minimum variance unbiased estimation. The SE loss function is symmetric, and its
disadvantage is placing equal weight on over- and underestimates of same magnitudes.
The LINEX loss function is an asymmetric loss function, proposed by Varian [10] and
popularized by Zellner [11]. However, numerous scholars had pointed out that the LINEX
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The Bayesian method in statistical inference depends upon the choice of prior dis-
tribution and loss function. Many loss functions, such as squared error (SE) loss, linear
exponential (LINEX) loss, generalized entropy loss, scaled square error (SSE) loss and
precautionary loss functions, have been used to develop the Bayesian method estimates.
The SE loss function is the most widely used loss function that can easily be justified based
on the minimum variance unbiased estimation. The SE loss function is symmetric, and its
disadvantage is placing equal weight on over- and underestimates of same magnitudes.
The LINEX loss function is an asymmetric loss function, proposed by Varian [10] and
popularized by Zellner [11]. However, numerous scholars had pointed out that the LINEX
loss function is not as suitable for estimating scale (or rate) parameter as for the location
one. Hence, Basu and Ebrahimi [12] defined a modified LINEX loss function. Kundu and
Howlader [3] discussed the Bayesian inference under the SE loss function and constructed
the credible interval for future order statistics of the IWD based on Type-II censored data
through a Gibbs sampling procedure to draw Markov Chain Monte Carlo samples. Mean-
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while, they claimed other loss functions could be applied, too. In the study of Bayesian
estimations for the IWD parameters based on complete, type I and II censored samples,
respectively, Singh et al. [4] used the SE loss function and a suitable alternative to the modi-
fied LINEX loss function that is the general entropy loss function proposed by Calabria and
Pulcini [13]. The SSE loss function, proposed by Lehmann and Casella [14], is symmetric.
Norstrom [15] introduced an alternative asymmetric loss function called precautionary
loss function and provided a very detail discussion regarding risk analysis within the
Bayesian framework. It should be mentioned that the SSE loss function is different from
the precautionary loss function in the denominator and both loss functions have the SE
loss function as a special case when the denominator has zero power. Yahgmaei et al. [16]
investigated Bayesian estimates of scale parameter using quasi, gamma, and uniform priors
under the SE, entropy, and precautionary loss functions based on random sample. Calabria
and Pulcini [17] investigated the Bayes prediction of the ordered statistic of lifetimes for a
future sample, from the IWD without using loss function, under the type I or II sampling.

Moreover, in the Bayesian estimation procedure, the joint prior distribution of popula-
tion parameters often relies on the selection of hyperparameters. To resolve this issue, the
hierarchical Bayesian method was initially proposed by Lindley and Smith [18]. Han [19]
also investigated the hierarchical Bayesian method and proposed E-Bayesian estimation.
The hierarchical Bayesian procedure needs two steps of setting the joint prior. There-
fore, it makes Bayesian estimate less impact from the selection of hyperparameters. The
proposed E-Bayesian estimation method uses a suitable joint prior distribution for the
hyperparameters to prevent the impact of subjective selection. Since then, the E-Bayesian
estimation method has been studied by many researchers, for example, Han [20] utilized
the E-Bayesian estimation method to estimate the failure rate derived from exponential
distribution and discussed the relationship between E-Bayesian and hierarchical Bayesian
estimations. Han [21] developed the formulas of E-Bayesian and hierarchical Bayesian
estimations for the reliability derived from Binomial distribution. Han [22] investigated
the E-Bayesian and hierarchical Bayesian estimations of the shape parameter of Pareto
distribution under the known scale parameter. By utilizing there different joint priors for hy-
perparameters, Han [23] explored E-Bayesian estimation method to compute the estimates
of exponential distribution parameter and corresponding expected mean square errors
(EMSEs) based on a conjugate prior distribution under the SSE loss function. Han [24]
studied the E-Bayesian estimates for the Pareto index and EMSEs based on a conjugate
prior distribution under SE, weighted squared error (WSE) loss and precautionary loss
functions, respectively. Jaheen and Okasha [25] utilized the E-Bayesian method for evalu-
ating estimates of the parameter and reliability function of the Burr type XII distribution
based on type-II censored samples under SE and LINEX loss functions. Okasha [26] de-
veloped the E-Bayesian estimates for the parameter, reliability (series system and parallel
system) and hazard functions via type-II censored sample from the Weibull distribution
with known shape parameter based on a conjugate prior and SE loss function. To deal with
the hyperparameter choices, Karimnezhad and Moradi [27] used E-Bayes and robust Bayes
approaches for the Bayesian estimation of parameter and prediction based on type-II sam-
ple from the exponential distribution under precautionary loss function and Gamma prior.
Yousefzadeh and Hadi [28] explored the E-Bayesian and hierachical Bayesian estimations
of the parameter and the system reliability parameter of Pascal distribution under LINEX
and entropy loss functions. In view of existing research works, it can be noticed that the
hierarchical Bayesian estimation often involves in complicated integrals and the E-Bayesian
estimation method is relatively much simple.

Assuming the shape parameter is known, Gupta and Gupta [29] compared the
Bayesian and E-Bayesian estimators of exponentiated IWD rate parameter by using gamma
prior and Degroot, Al-Bayyati and minimum expected loss functions. For E-Bayesian
estimate, they used the uniform prior distribution over (0, 1) interval for shape hyperpa-
rameter and three different priors for rate hyperparameter. However, the uniform prior
distribution is less flexible for random variable over (0, 1). Basheer et al. [30] investigated
E-Bayesian and hierarchical Bayesian estimates for the rate parameter of IWD by using the
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LINEX loss function and exponential prior. For the E-Bayesian estimate, the three different
priors by Gupta and Gupta [29] were used for the rate hyperparameter in the exponential
prior. However, the exponential prior is not flexible enough to model a positive random
variable. It can be seen that the SSE loss function has an SE loss function as a special case
and LINEX loss function has an SE loss function as the special case in the limit concept.
Using SSE and LINEX loss functions and gamma prior for the Bayesian and E-Bayesian
estimates (with three different joint priors for hyperparameters) for the IWD rate parameter
has not been seen in the literature. The aim of this article is to investigate the Bayesian and
E-Bayesian estimation methods for the unknown IWD rate parameter by using gamma
prior under the SSE and LINEX loss functions and the related EMSEs. For E-Bayesian
estimator, Beta prior is used for shape hyperparameter and three different priors by Gupta
and Gupta [29] are used for rate hyperparameter of gamma prior. The current approach
has not been seen from the works by Gupta and Gupta [29] and Basheer et al. [30].

Since a lifetime power function, which has a shape parameter, β, as the power, happens
in the exponential function for the two-parameter IWD density function, the E-Bayesian
estimate of shape parameter, β, is not trackable in this study. Kundu and Howlader [3]
mentioned that in many practical problems, it is not unreasonable to assume the shape
parameter β as a known constant. Nelson [31] also provided several reliability and survival
analysis applications of the inverse Rayleigh that is a member of the IWD with β = 2.
Therefore, the E-Bayesian estimate of the rate parameter, α, of the IWD will be the focus.
The definition of E-Bayesian estimator of the IWD rate parameter will be given in Section 2.
In Section 3, the EMSEs will be defined and the closed-form formulas of the E-Bayesian
estimators of the IWD rate parameter based on different loss functions and three joint
priors for two hyperparamters will be obtained. The theoretical properties of EMSEs for E-
Bayesian estimators are discussed in Section 4. Section 5 describes the simulation procedure
and results. Section 6 illustrates the applications of proposed methodologies by using three
application examples. Finally, conclusions and remarks are addressed in Section 7.

2. Bayesian Estimation

Let a random sample X = (x1, x2, . . . , xn) of size n be from the IWD that has PDF
given by (1), the likelihood function can be represented as,

L(α, β|X) = αnτ(β; X)e−αZ, (3)

where

τ(β; X) = βn
n

∏
i=1

x−(β+1)
i and Z ≡ Z(β; X) =

n

∑
i=1

x−β
i .

In the current model, it is difficult to investigate E-Bayesian estimation of shape parameter,
β, because of complicated power exponents. Therefore, β is assumed to be a known constant
for the IWD in this study. When β is known in the IWD, the maximum likelihood estimate
(MLE) of the parameter α, can be derived as the following closed form,

α̂MLE =
n
Z

. (4)

Thanks to a flexible probability modeling, gamma distribution has been often used as the
model of any positive random varaible. For the Bayesian estimation of the parameter α > 0,
the gamma conjugate prior density,

g(α | a, b) =
ba

Γ(a)
αa−1e−bα, α > 0, (5)

where a > 0 and b > 0 are two hyperparameters, is used. The gamma prior density has
the exponential distribution used by Han [24] as a special case. Following a Bayesian
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framework and the definition, the posterior density of α based on the given random sample,
X, can be obtained from (3) and (5) as

q(α|Z) = (b + Z)n+a

Γ(n + a)
αn+a−1e−(b+Z)α, α > 0. (6)

Under the SSE loss function, L(α, α̂) = (α−α̂)2

αk , proposed by Lehmann and Casella [14],
the Bayesian estimate of α can be shown, followed by the procedure of Lehmann and
Casella [14], as

α̂BSS(a, b) =
E(α1−k|Z)
E(α−k|Z)

=
n + a− k

b + Z
, (7)

where k ≥ 0 and

E(αν|Z) =
∫ ∞

0
ανq(α|a, b)dα =

Γ(n + a + ν)

(b + Z)νΓ(n + a)
, ν = −k, 1− k. (8)

In the practical application, k = 0, 1, 2, are usually considered. When k = 0, the SSE loss
function is called the SE loss function and (7) is the posterior mean E(α|Z) and the Bayesian
estimate under the SE loss function. When k = 1, the SSE loss function is named as the
WSE loss function and (7) is [E(α−1|Z)]−1. When k = 2, the SSE loss function is known

as the quadratic squared error (QSE) loss function and (7) is E(α−1|Z)
E(α−2|Z) . Han [23] provided

more detailed information about the SSE loss function that covers both the SE and WSE
loss functions used by Han [24] as two special cases.

Varian [10] introduced an asymmetric loss function, L(θ̂, θ) = exp
(
w(θ̂ − θ)

)
− w(θ̂ −

θ)− 1, for a given real number, w 6= 0, which is well known as the LINEX loss function.
The LINEX loss function has been considered for the Bayesian estimations by numerous
scholars, for example, Zellner [11], Basu and Ebrahimi [12], Pandy [32], Soliman [33] and
Nassar and Eissa [34]. Han [24] did not include the LINEX loss function. Under the LINEX
loss function, the Bayes estimate of α can be shown, following the same procedure of
Varian [10], as

α̂BL =
−1
w

ln(E(exp(−wα)|Z)) = −(n + a)
w

ln(
b + Z

b + Z + w
), (9)

where w 6= 0 and b + Z > −w to ensure b+Z
b+Z+w > 0 in the domain of logarithm function

based on e. Moreover, it can be shown that α̂BL → α̂BSS with k = 0 when w → 0 by using
defintion and basic calculus; that is, limw→0 α̂BL = α̂SE . Therefore, mathematically, when
w = 0, α̂BL can be defined as α̂SE to make α̂BL be a continuous function with respect to w
over w > −b− Z.

MSE for Estimators

Three widely used measures for an estimator performance evaluation are the ex-
pectation, variance and mean square error (MSE). It can be shown that Z has a gamma
(n, α) distribution for any given α and β regardless of being known or unknown by using
the transformation method. Therefore, the expectations and mean square errors for all
estimators mentioned above are obtained, respectively, as follows: for the MLE, α̂MLE , of α,

E(α̂MLE)(α) = E(α̂MLE |α) =
∫ ∞

0

n
z

αn

Γ(n)
zn−1e−αzdz =

n
n− 1

α,
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and

MSE(α̂MLE)(α) = E((α− α̂MLE |Z)
2|α)

= α2 − 2αE(α̂MLE |α) + E((α̂MLE)
2|α)

=
n + 2

(n− 1)(n− 2)
α2. (10)

Given a sample X, which implies given Z because β is a known constant, the Bayesian
estimator, α̂BSS(a, b), has the following result,

MSE(α̂BSS(a, b)|Z) = E((α− α̂BSS(a, b))2|Z)
= E(α2|Z)− 2α̂BSS(a, b)E(α|Z) + (α̂BSS(a, b))2

=
(n + a + 1)(n + a)

(b + Z)2 − 2
(

n + a− k
b + Z

)(
n + a
b + Z

)
+

(
n + a− k

b + Z

)2

=
n + a + k2

(b + Z)2 , (11)

and the Bayesian estimator, α̂BL(a, b), has the following result,

MSE(α̂BL(a, b)|Z) = E((α− α̂BL(a, b))2|Z)
= E(α2|Z)− 2α̂BL(a, b)E(α|Z) + (α̂BL(a, b))2

=
(n + a + 1)(n + a)

(b + Z)2 − 2
(

n + a
w

)
ln(1 +

w
b + Z

)
n + a
b + Z

+ (n + a)2
(

1
w

ln(1 +
w

b + Z
)

)2

=
n + a

(b + Z)2 +

(
n + a
b + Z

)2{
1− (b + Z)

w
ln(1 +

w
(b + Z)

)

}2

, (12)

It should be noticed that (12) is true for w 6= 0 and b + Z > −w. b + Z > −w is equivalent
to −1 < w/(b + Z). When −1 < w/(b + Z) < 1, (12) can be represented as

MSE(α̂BL(a, b)|Z) = n + a
(b + Z)2 +

(
n + a
b + Z

)2{ ∞

∑
i=2

w(i−1)(−1)(i−1)

i(b + Z)(i−1)

}2

,

where the series
{

∑∞
i=2

w(i−1)(−1)(i−1)

i(b+Z)(i−1)

}2

is absolutely convergent. When w = 0, it can be

defined that MSE(α̂BL(a, b)|Z) = MSE(α̂BSS(a, b)|Z) with k = 0 according to the asymptotic
link between α̂BL and α̂BSS with k = 0 when w → 0. When w/(b + Z) = 1, (12) can be
represented as

MSE(α̂BL(a, b)|Z) = n + a
(b + Z)2 +

(
n + a
b + Z

)2

(1− ln(2))2.

When w/(b + Z) > 1, (12) is continuous function of w. Therefore, it can be shown that for
the given Z and hyperparameters a > 0 and b > 0, (12) is a continuous function of w over
w > −(b + Z) by using basic calculus technique.

It should be mentioned that E(α̂MLE)(α) and MSE(α̂MLE)(α) are independent of Z
and depend upon random variable α, and MSE(α̂BSS(a, b)|Z) and MSE(α̂BL(a, b)|Z) are
independent of α but depend upon hyperparameters and Z.
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3. E-Bayesian and EMSE Estimations

According to Han [19], the prior parameters a and b should be selected to guarantee
that the prior g(α|a, b) in (5) is a decreasing function of α. The derivative of g(α|a, b) with
respect to α is

dg(α|a, b)
dα

=
ba

Γ(a)
αa−2e−bα[(a− 1)− bα].

Thus, for 0 < a < 1, b > 0, the prior g(α|a, b) is a decreasing function of α because
dg(α|a,b)

dα < 0 when 0 < a < 1 and b > 0. Assuming that the hyperparameters a and b are
independent random variables and their density functions are π1(a) and π2(b), respectively,
then the joint bivariate density function of a and b can be represented as follows,

π(a, b) = π1(a)π2(b).

When the SSE loss function is used, the E-Bayesian estimate of α, given Z, is defined as

α̂EBSS =
∫

$

∫
α̂BSS(a, b)π(a, b)dadb, (13)

and the related EMSE, given Z, is defined as

EMSE(α̂EBSS |Z) =
∫

$

∫
MSE(α̂BSS(a, b)|Z)π(a, b)dadb, (14)

where α̂BSS(a, b) is the Bayesian estimator of α given by (7), MSE(α̂BSS(a, b)|Z) is the MSE
of Bayesian estimator of α given by (11) and $ is the domain of a and b for which the prior
density is decreasing in α. When the LINEX loss function is used, the E-Bayesian estimate
of α, given Z, is defined as

α̂EBL =
∫

$

∫
α̂BL(a, b)π(a, b)dadb, (15)

and the related EMSE, given Z, is defined as

EMSE(α̂EBL |Z) =
∫

$

∫
MSE(α̂BL(a, b)|Z)π(a, b)dadb, (16)

where α̂BL(a, b) is the Bayesian estimator of α given by (9), MSE(α̂BL(a, b)|Z) is the MSE
of Bayesian estimator of α given by (12) and $ is the domain of a and b for which the
prior density is decreasing in α. For more details on E-Bayesian, readers may refer to
References [35,36].

3.1. E-Bayesian Estimations of α

In this study, there are two hyperparameters a and b and the properties of E-Bayesian
estimates of α rely on different distributions of the hyperparameters a and b. Let the
distribution of a be Beta distribution with parameters u > 0 and v > 0,

π1(a) =
1

B(u, v)
au−1(1− a)v−1, 0 < a < 1

and three distributions for b be respectively given as follows,

π21(b) =
1
s

, 0 < b < s

π22(b) =
2
s2 (s− b), 0 < b < s



Mathematics 2022, 10, 4826 8 of 27

and
π23(b) =

2b
s2 , 0 < b < s

where B(u, v) is the beta function. It should be mentioned that Beta distribution is a flexible
distribution model for random varaiable over (0, 1) and the aforementioned three distribu-
tions have been proposed as priors for gamma rate parameter in E-Bayesian estimation.
See Han [24] and Okasha et al. [37]. Therefore, to investigate the E-Bayesian estimations of
α, the following three joint distributions, πj(a, b) = π1(a)π2j(b) of 0 < a < 1 and 0 < b < s
for j = 1, 2, 3, which ensure the gamma prior, g(α|a, b) of (5), is a decrease function of α, are
given as follows,

π1(a, b) = 1
sB(u,v) au−1(1− a)v−1,

π2(a, b) = 2
s2B(u,v) (s− b)au−1(1− a)v−1,

π3(a, b) = 2b
s2B(u,v) au−1(1− a)v−1.

 (17)

The E-Bayesian estimates of the parameter α, given X that implies given Z, under the SSE
loss function can be derived by using (7), (13) and (17). Therefore, given Z and under the
SSE loss function, the E-Bayesian estimates of α based on π1(a, b), π2(a, b) and π3(a, b) are,
respectively, given as follows,

α̂EBSS1 =
∫

$

∫
α̂BSS(a, b)π1(a, b)dadb

=
1

sB(u, v)

∫ s

0

∫ 1

0

(
n + a− k

b + Z

)
au−1(1− a)v−1dadb

=
1
s

(
n− k +

u
u + v

)
ln
(

s + Z
Z

)
, k = 0, 1, 2, (18)

α̂EBSS2 =
2
s

(
n− k +

u
u + v

)(
Z + s

s
ln
(

s + Z
Z

)
− 1
)

, k = 0, 1, 2, (19)

and

α̂EBSS3 =
2
s

(
n− k +

u
u + v

)(
1− Z

s
ln
(

s + Z
Z

))
, k = 0, 1, 2. (20)

The E-Bayesian estimates of the parameter α, given X that implies given Z, under the
LINEX loss function can be derived by using (9), (15) and (17). Hence, given Z and under
the LINEX loss function, the E-Bayesian estimates of α based on π1(a, b), π2(a, b) and
π3(a, b) are, respectively, given as follows,

α̂EBL1 =
∫

$

∫
α̂BL(a, b)π1(a, b)dbda

=
1

wsB(u, v)

∫ 1

0

∫ s

0
(n + a)au−1(1− a)v−1 ln(1 +

w
b + Z

)dbda

=
1

ws
(n +

u
u + v

)
∫ s

0
ln(1 +

w
b + Z

)db

=
1

ws
(n +

u
u + v

)

{
s ln(1 +

w
s + Z

)

+ (Z + w) ln(1 +
s

w + Z
)− Z ln(

Z + s
Z

)

}
, (21)
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α̂EBL2 =
∫

$

∫
α̂BL(a, b)π2(a, b)dbda

=
2

ws2B(u, v)

∫ 1

0

∫ s

0
(n + a)(s− b)au−1(1− a)v−1 ln(1 +

w
b + Z

)dbda

= (n +
u

u + v
)[

1
w

ln(1 +
w
Z
)− (s + Z)2

s2w
ln(1 +

s
Z
)

+
(s + Z + w)2

s2w
ln(1 +

s
Z + w

)− 1
s
], (22)

and

α̂EBL3 =
∫

$

∫
α̂BL (a, b)π3(a, b)dbda

=
2

ws2B(u, v)

∫ 1

0

∫ s

0
(n + a)au−1(1− a)v−1b ln(1 +

w
b + Z

)dbda

= (n +
u

u + v
)[

1
w

ln(1 +
w

Z + s
) +

Z2

s2w
ln(1 +

s
Z
)− (Z + w)2

s2w
ln(1 +

s
Z + w

) +
1
s
]. (23)

3.2. EMSE Estimations of α

In this section, the closed forms of EMSE estimators of the IWD rate parameter are
discussed. Using (11), (14) and (17), the EMSE estimates of the parameter α, given a
sample X, under the SSE loss function and based on π1(a, b), π2(a, b) and π3(a, b) can be,
respectively, obtained as

EMSE(α̂EBSS1 |Z) =
∫ s

0

∫ 1

0
MSE[α̂BSS(a, b)|Z]π1(a, b)dadb

=
1

sB(u, v)

∫ s

0

∫ 1

0

(n + a + k2)

(b + Z)2 au−1(1− a)v−1dadb

=
1
s

∫ s

0

db
(b + Z)2

∫ 1

0

(n + a + k2)

B(u, v)
au−1(1− a)v−1da

=
1

Z(Z + s)
(n + k2 +

u
u + v

), k = 0, 1, 2, (24)

EMSE(α̂EBSS2 |Z) =
2
s2 (n + k2 +

u
u + v

)

[
s
Z
− ln(1 +

s
Z
)

]
, k = 0, 1, 2, (25)

and

EMSE(α̂EBSS3 |Z) =
2
s2 (n + k2 +

u
u + v

)

[
ln(1 +

s
Z
)− s

Z + s

]
, k = 0, 1, 2. (26)

Using (12), (16) and (17), the EMSE estimates of the parameter α, given a sample X, under
LINEX loss function with −1 < w/Z and based on π1(a, b), π2(a, b) and π3(a, b) can be
respectively obtained as

EMSE(α̂EBL1 |Z) =
∫ s

0

∫ 1

0
MSE[α̂BL(a, b)|Z]π1(a, b)dadb

=
∫ s

0

∫ 1

0

(
n + a

(b + Z)2 +

(
n + a
b + Z

)2{
1− (b + Z)

w
ln(1 +

w
(b + Z)

)

}2)
× π1(a, b)dadb

=
∫ s

0

∫ 1

0

(
n + a
b + Z

)2{
1− (b + Z)

w
ln(1 +

w
(b + Z)

)

}2

π1(a, b)dadb

+ EMSE(α̂EBSS1 |Z)(k = 0), (27)
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EMSE(α̂EBL2 |Z) =
∫ s

0

∫ 1

0
MSE[α̂BL(a, b)|Z]π2(a, b)dadb

=
∫ s

0

∫ 1

0

(
n + a

(b + Z)2 +

(
n + a
b + Z

)2{
1− (b + Z)

w
ln(1 +

w
(b + Z)

)

}2)
× π2(a, b)dadb

=
∫ s

0

∫ 1

0

(
n + a
b + Z

)2{
1− (b + Z)

w
ln(1 +

w
(b + Z)

)

}2

π2(a, b)dadb

+ EMSE(α̂EBSS2 |Z)(k = 0), (28)

and

EMSE(α̂EBL3 |Z) =
∫ s

0

∫ 1

0
MSE[α̂BL(a, b)|Z]π3(a, b)dadb

=
∫ s

0

∫ 1

0

(
n + a

(b + Z)2 +

(
n + a
b + Z

)2{
1− (b + Z)

w
ln(1 +

w
(b + Z)

)

}2)
× π3(a, b)dadb

=
∫ s

0

∫ 1

0

(
n + a
b + Z

)2{
1− (b + Z)

w
ln(1 +

w
(b + Z)

)

}2

π3(a, b)dadb

+ EMSE(α̂EBSS3 |Z)(k = 0). (29)

It should be mentioned that for comparison purposes, the generalized entropy and
precautionary loss functions are not considered in this study because it is difficult to derive
nice closed forms of E-Bayesian estimation and EMSE for IWD under the generalized
entropy as well as precautionary loss functions.

4. Properties of EMSE Estimations of α

In this section, given a sample, X, and β > 0, which implies a given Z, the relations
among the EMSE estimations will be discussed.

Proposition 1. Let 0 < s, u > 0, v > 0 and EMSE(α̂EBSSj |Z), j = 1, 2, 3, be given by (24)–(26).
Then, given a sample X and β > 0 that implies a given Z, the following inequalities are true for any
given k ≥ 0, especially, k = 0, 1, 2,

EMSE(α̂EBSS3 |Z) < EMSE(α̂EBSS1 |Z) < EMSE(α̂EBSS2 |Z).

Remark 1. Proposition 1 shows that for i = 0, 1, 2
EMSE(α̂EBSS3 |Z)(k = i) < EMSE(α̂EBSS1 |Z)(k = i) < EMSE(α̂EBSS2 |Z)(k = i).

Proposition 2. For −1 < w/Z, EMSE(α̂EBL1 |Z), EMSE(α̂EBL2 |Z) and EMSE(α̂EBL2 |Z) are
given by (27), (28) and (29), respectively. Then, given a sample X and β > 0 that implies a given Z,
the following inequalities are true for any given u > 0, v > 0 and s > 0

EMSE(α̂EBL3 |Z) < EMSE(α̂EBL1 |Z) < EMSE(α̂EBL2 |Z).

Remark 2. Proposition 2 shows that for w > −Z
EMSE(α̂EBL3 |Z) < EMSE(α̂EBL1 |Z) < EMSE(α̂EBL2 |Z) under the LINEX loss function.

Proposition 3. For any given s(> 0), EMSE(α̂EBSS1 |Z) given by (24) with π1(a, b) for k =
0, 1, 2 and for any given w(> −Z), EMSE(α̂EBL1) given by (27) with π1(a, b) have the following
properties for any given β > 0,

(i) Given a sample X, there exists w0 with 0 < w0/Z < 1 such that for |w| < w0
EMSE(α̂EBSS1 |Z)(k = 0) ≤ EMSE(α̂EBL1 |Z)
< EMSE(α̂EBSS1 |Z)(k = 1) < EMSE(α̂EBSS1 |Z)(k = 2);

(ii) limZ→∞ EMSE(α̂EBSS1 |Z) = 0, for given k(= 0, 1, 2);
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(iii) limZ→∞ EMSE(α̂EBL1 |Z) = 0.

Remark 3. Proposition 3 shows there exists w0(0 < w0/Z) such that for 0 < |w| < w0
EMSE(α̂EBSS1 |Z)(k = 0) < EMSE(α̂EBL1 |Z) < EMSE(α̂EBSS1 |Z)(k = 1)
< EMSE(α̂EBSS1 |Z)(k = 2).
When w = 0, EMSE(α̂EBSS1 |Z)(k = 0) = EMSE(α̂EBL1 |Z).

Proposition 4. For any given s > 0, EMSE(α̂EBSS2 |Z) given by (25) with π2(a, b) for k = 0, 1, 2
and for any given w > −Z, EMSE(α̂EBL2) given by (28) with π2(a, b) have the following properties
for any given β > 0,

(i) Given a sample X there exists w0 with 0 < w0/Z < 1 such that for |w| < w0
EMSE(α̂EBSS2 |Z)(k = 0) ≤ EMSE(α̂EBL2 |Z) < EMSE(α̂EBSS2 |Z)(k = 1)
< EMSE(α̂EBSS2 |Z)(k = 2);

(ii) limZ→∞ EMSE(α̂EBSS2 |Z) = 0, for any k = 0, 1, 2;
(iii) limZ→∞ EMSE(α̂EBL2 |Z) = 0.

Remark 4. Proposition 4 shows there exists w0 > 0 such that for 0 < |w| < w0
EMSE(α̂EBSS2 |Z)(k = 0) < EMSE(α̂EBL2 |Z) < EMSE(α̂EBSS2 |Z)(k = 1)
< EMSE(α̂EBSS2 |Z)(k = 2).
When w = 0, EMSE(α̂EBSS2 |Z)(k = 0) = EMSE(α̂EBL2 |Z).

Proposition 5. For any given s > 0, EMSE(α̂EBSS3 |Z) given by (26) with π3(a, b) for k = 0, 1, 2
and for any given w > −Z, EMSE(α̂EBL3) given by (29) with π3(a, b) have the following properties
for any given β > 0,

(i) Given a sample X, there exists w0 with 0 < w0/Z < 1 such that for |w| < w0
EMSE(α̂EBSS3 |Z)(k = 0) ≤ EMSE(α̂EBL3 |Z) < EMSE(α̂EBSS3 |Z)(k = 1)
< EMSE(α̂EBSS3 |Z)(k = 2);

(ii) limZ→∞ EMSE(α̂EBSS3 |Z) = 0, for given k = 0, 1, 2;
(iii) limZ→∞ EMSE(α̂EBL3 |Z) = 0.

Remark 5. Proposition 5 shows there exists w0 > 0 such that for 0 < |w| < w0
EMSE(α̂EBSS3 |Z)(k = 0) < EMSE(α̂EBL3 |Z) < EMSE(α̂EBSS3 |Z)(k = 1)
< EMSE(α̂EBSS3 |Z)(k = 2).
When w = 0, EMSE(α̂EBSS3 |Z)(k = 0) = EMSE(α̂EBL3 |Z).
From Propositions 3–5, Z → ∞ is equivalent to sample size n→ ∞ which can be verified through
the series concept.

5. Monte Carlo Simulation and Comparisons

Section 4 established the theoretical comparisons among all E-Bayesian estimators in
terms of EMSE, given a sample X and a shape parameter β > 0. The theoretical properties
for E-Bayesian estimates under SSE loss function are true for any given k ≥ 0 that implies
the properties for E-Bayesian estimates under SSE loss function must be true for k = 0,
k = 1 and k = 2, too. When comparing E-Bayesian estimates under LINEX loss function
and under SSE loss function with k = 0, 1, 2, the theoretical properties only conclude that
there exists a value w near zero for the E-Bayesian estimate under LINEX loss function
which is between E-Bayesian estimate under SSE loss function with k = 0 and E-Bayesian
estimate under SSE loss function with k = 1. However, the true value of w has not been
provided in a closed form. This section presents the Monte Carlo simulation procedure that
will be conducted to compare the performance of the proposed estimation methods over
the entire population.

To compare the performance among all E-Bayesian estimators, the expected EMSE
(α̂EBLj |Z) for j = 1, 2, 3 and EMSE(α̂EBSSj |Z)(k = i), for i = 0, 1, 2 over the sampling distri-
bution of sample X will be used. Meanwhile, the comparison among Bayesian estimators
and MLE will also be considered. For this purpose, the expected MSE(α̂BSS(a, b)|Z) and
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MSE(α̂BL(a, b)|Z)for all Bayesian estimators and the expected MSE(α̂MLE)(α) for MLE will
be calculated over the sampling distribution of Z and across over all populations of α by
using Beta distribution for a and the three distributions of b mentioned in Section 3.1.

The Monte Carlo simulation procedure is conducted for each combination setting of
sample size n = 25, 50, 75, 100, β = 0.9, 1.5, 3.0, three joint distributions, πj(a, b) j = 1, 2, 3
from (17) with s = 0.9, 10, 50, 100, 500, 1000, u = 3, 4 and v = 4, 5, three SSE loss functions
with k = 0, 1, 2, and a given w for LINEX loss function through the following steps by
utilizing Maple12:
Step 1: Set j = 1;
Step 2: For j ≤ 3, select a joint distribution, πj(a, b) = π1(a)π2j(b) of (17), with given

values of (u, v) and s; otherwise, go to Step 7;
Step 3: Randomly generate a and b from the beta prior, π1(a), and prior, π2j(b), respectively;
Step 4: For the values of (a, b) from Step 3, α is randomly generated from the gamma prior

of (5);
Step 5: For the value of α from Step 4, randomly generate a sample, X, of size n from the

IW(α, β) of (1);
Step 6: For j ≤ 3, evaluate the values of EMSE(α̂EBSSj |Z)(k), for k = 0, 1, 2, respectively,

and EMSE(α̂EBLj |Z);
Step 7: For j = 4,

(a) Evaluate the value of MSE(α̂MLE)(α), by using α from Step 4 and sample size
n, and

(b) Evaluate the value of MSE(α̂BSS(a, b)|Z) for k = 0, 1, 2 and the value of
MSE(α̂BL(a, b)|Z) by using a, b from Step 3 and the sample X;

Step 8: Repeat Step 3 to Step 7 for 10,000 times. The average of 10,000 calculated values for
EMSE(α̂EBSSj |Z)(k), for k = 0, 1, 2, and EMSE(α̂EBLj |Z) are calculated and labeled
as EMSE(α̂EBSSj), for k = 0, 1, 2, and EMSE(α̂EBLj), respectively. The the average
of 10,000 calculated values for MSE(α̂BSS(a, b)|Z) for k = 0, 1, 2, MSE(α̂BL |Z) and
MSE(α̂MLE)(α) are calculated and labeled as MSE(α̂BSS) for k = 0, 1, 2, MSE(α̂BL |Z)
and MSE(α̂MLE), respectively;

Step 9: Set j = j + 1 and repeat Step 2 to Step 8 until j > 4.
The structure of the simulation study can be simply represented by the following

flowchart.
The simulation procedure established here is different from the simulation procedure

used by Han [23] who assumed the two parameters from Pareto were known such that
a random sample could be drawn from the same Pareto distribution immediately. As
the rate parameter α for IWD is a random variable that has gamma distribution, α was
drawn before random sample was drawn. For each i = 0, 1, 2, EMSE(α̂EBSSj |Z)(k = i),
for j = 1, 2, 3 were calculated by using (24), (25) and (26), respectively. EMSE(α̂EBLj |Z)
for j = 1, 2, 3 were respectively calculated by using (27), (28) and (29), where the entire
double integral was obtained by Maple12 after Z, n and w were plug-in. For each k =
0, 1, 2, MSE(α̂BSS(a, b)|Z) were respectively calculated by using (11) for k = 0, 1, 2 and
MSE(α̂BL(a, b)|Z) was calculated by using (12).

Tables 1 and 2 only show the simulation results for β = 3, s = 0.9, u = 4 and v = 5
by using π1(a, b), π2(a, b) and π3(a, b) because these two tables show the same pattern
of comparisons from all simulation cases. For easy viewing of the comparison pattern,
Figure 2 displays the simulation results obtained by using the π1(a, b) of (17). In order to
view the impact from the range of b, the simulation results for a wide range, s, of b for the
same sample size 50, 72 are also included in Tables 3 and 4, respectively. More simulation
results were also placed in Appendix A.
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1 
 

 

Figure 2. The flowchart for using the proposed E-Bayesian estimation methods in Section 5.

Table 1. Simulated EMSE of α̂ with s = 0.9, β = 3, u = 4 and v = 5.

k = 0 w = 2 k = 1 k = 2

n j EMSE(α̂EBSSj) EMSE(α̂EBLj) EMSE(α̂EBSSj) EMSE(α̂EBSSj)

1 0.0034590 0.0034772 0.0035949 0.0040027
25 2 0.0034719 0.0034901 0.0036084 0.0040177

3 0.0034460 0.0034642 0.0035814 0.0039877

1 0.0017457 0.0017518 0.0017803 0.0018841
50 2 0.0017488 0.0017550 0.0017835 0.0018875

3 0.0017425 0.0017486 0.0017770 0.0018807

1 0.0011750 0.0011756 0.0011906 0.0012373
75 2 0.0011764 0.0011771 0.0011920 0.0012388

3 0.0011736 0.0011742 0.0011891 0.0012358

1 0.0008897 0.0008901 0.0008986 0.0009251
100 2 0.0008905 0.0008908 0.0008994 0.0009260

3 0.0008889 0.0008892 0.0008978 0.0009243
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Table 2. Simulated MSE of α̂ using Uniform b over [0, 1], β = 3, u = 4 and v = 5.

k = 0 w = 2 k = 1 k = 2

n MSE(α̂MLE ) MSE(α̂BSS ) MSE(α̂BL ) MSE(α̂BSS ) MSE(α̂BSS )

25 0.004151 0.003465 0.0034841 0.0036033 0.0040157
50 0.002059 0.001747 0.0017532 0.0017819 0.0018863
75 0.001318 0.001175 0.0011763 0.0011912 0.0012381

100 0.000986 0.000891 0.0008903 0.0008989 0.0009256

Table 3. Simulated EMSE of α̂ with n = 50, β = 3, u = 3 and v = 4.

k = 0 w = 2 k = 1 k = 2

s j EMSE(α̂EBSSj) EMSE(α̂EBLj) EMSE(α̂EBSSj) EMSE(α̂EBSSj)

1 0.0013464 0.0013515 0.0013731 0.0014532
50 2 0.0014647 0.0014701 0.0014937 0.0015809

3 0.0012281 0.0012329 0.0012524 0.0013255

1 0.0010935 0.0010982 0.0011152 0.0011803
100 2 0.0012641 0.0012691 0.0012891 0.0013643

3 0.0009231 0.0009274 0.0009414 0.0009963

1 0.0004388 0.0004425 0.0004476 0.0004737
500 2 0.0006285 0.0006324 0.0006410 0.0006784

3 0.0002492 0.0002526 0.0002541 0.0002690

1 0.0002513 0.0002548 0.0002563 0.0002712
1000 2 0.0003954 0.0003991 0.0004032 0.0004268

3 0.0001071 0.0001105 0.0001093 0.0001156

Table 4. Simulated EMSE of α̂ with n = 72, β = 3, u = 3 and v = 4.

j k = 0 w = 2 k = 1 k = 2

s EMSE(α̂EBSSj) EMSE(α̂EBLj) EMSE(α̂EBSSj) EMSE(α̂EBSSj)

1 0.0010140 0.0010154 0.0010280 0.0010701
50 2 0.0010782 0.0010796 0.0010931 0.0011377

3 0.0009498 0.0009512 0.0009629 0.0010022

1 0.0008646 0.0008661 0.0008765 0.0009123
100 2 0.0009648 0.0009662 0.0009781 0.0010181

3 0.0007644 0.0007658 0.0007749 0.0008066

1 0.0003979 0.0003994 0.0004034 0.0004199
500 2 0.0005408 0.0005422 0.0005482 0.0005706

3 0.0002551 0.0002566 0.0002586 0.0002692

1 0.0002378 0.0002394 0.0002411 0.0002510
1000 2 0.0003569 0.0003584 0.0003618 0.0003766

3 0.0001188 0.0001203 0.0001204 0.0001253

Generally, under Beta distribution for a and the three priors for b mentioned in
Section 3.1, the simulated average of MSEs for Bayesian estimates of α regardless of loss
functions considered in the study are less than the simulated average of MSEs for MLEs of
α across over the population of α and the simulated average of MSE for Bayesian estimate
of α under the LINEX loss function with w = 2 is between the simulated average of MSE for
Bayesian estimate of α under the SSE loss function with k = 0 and the simulated average
of MSE for Bayesian estimate of α under the SSE loss function with k = 1 across over the
population of α. It should be mentioned that for any j = 1, 2, 3, EMSE(α̂EBSSj) for k = 0, 1, 2
and EMSE(α̂EBLj) are considered as the MSEs for α̂EBSSj for k = 0, 1, 2 and α̂EBLj , respectively,
across over the population of α. When n increases, all simulated averages of MSEs decrease
and the E-Bayes estimates could turn to have the smallest average of simulated averages of
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MSEs across over population as compared with their corresponding Bayes estimates. For
the comparison among E-Bayes estimators, based on Tables 1–4 and Figure 3, the following
conclusions can be drawn:

(1) When sample size n is increasing the simulated average of EMSE is decreasing;
(2) Given a value of k from {0, 1, 2}, all simulated averages of EMSEs across over popula-

tion of α under SSE loss function preserve Proposition 1, i.e.,
EMSE(α̂EBSS3 |Z) < EMSE(α̂EBSS1 |Z) < EMSE(α̂EBSS2 |Z) for any given sample Z;

(3) Given a prior πj(a, b), j = 1, 2, 3, from (17), all four simulated averages of EMSEs
corresponding to three different SSE and LINEX loss functions, respectively, preserve
the Propositions 3–5, for carefully selected w,
i.e., EMSE(α̂EBSSj |Z)(k = 0) < EMSE(α̂EBLj |Z) < EMSE(α̂EBSSj |Z)(k = 1)
< EMSE(α̂EBSSj |Z)(k = 2) for any given sample Z;

(4) All three simulated averages of EMSEs under the LINEX loss function preserve Propo-
sition 2, i.e., EMSE(α̂EBL3 |Z) < EMSE(α̂EBL1 |Z) < EMSE(α̂EBL2 |Z) for any given Z;

(5) Tables 1 and 2 show that the sample size has no impact on the comparison results
among all EMSEs;

(6) Tables 3 and 4 show that s value has no impact on the comparison results among all
EMSEs;

(7) The shape parameter β of IWD has no impact on the comparison results among all
EMSEs. It can be shown from additional tables in Appendix A as well as from the
properties in Section 4.
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Figure 3. Relationship between n and EMSE(α̂) (k = 0, 1, 2).

6. Application Examples

In this section, a random sample generated from the IWD of parameters, (α, β) =
(3.5, 3.0) and two real data sets will be used to illustrate all the aforementioned estimation
methods for the IWD rate parameter, α. The first real data set contains 19 oberved times in
terms of minute to breakdown from an insulating fluid between electrodes at a voltage of
34 KV. The data set was presented by Nelson [31] for Weibull distribution and used by Abd
Ellah [37] for the IWD applications. However, Abd Ellah [37] did not examine the goodness-
of-fit of the IWD. The second real data set regarding the 72 survival times (in days) of
guinea pigs injected with different doses of tubercle bacilli was presented by Bjerkedal [38].
Kundu and Howlader [3] had indicated the IWD as a suitable model for the 72 guinea pigs
survival times by using the scaled total time on test (TTT) plot mentioned in Aarset [39] and
Kolmogorov–Smirnov (K-S) test before they applied the Bayesian estimation method for
the IWD parameters. Since guinea pigs have a high susceptibility to human tuberculosis, it
is worth using in this section to compare among all the proposed estimation methods of
the IWD rate parameter in the current study.

In this section, the scaled TTT and K-S test will be applied to the other two data sets.
Since the K-S test can be conducted through many current existing software, we only ad-
dress the scaled TTT transform briefly. The survival function is defined by S(t) = 1− F(t)
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and the scaled TTT transform is defined as g(t) = H−1(t)/H−1(1) where H−1(t) =∫ t
0 S(u)du and 0 ≤ t ≤ 1. The corresponding empirical scaled TTT transform will be

presented by gn(r/n) = H−1
n (r/n)/H−1

n (1) where H−1
n (r/n) =

[
∑r

i=1 t(i) + (n− r)t(r)
]
,

H−1
n (1) = ∑n

i=1 t(i), {t(i), i = 1, 2, · · · , n} denotes the order statistic of the lifetime sam-
ple {ti, i = 1, 2, · · · n} and r = 1, 2, · · · , n. Then, the empirical scaled TTT plot will be
{(x, gn(x))|0 ≤ x ≤ 1}. Aarset [39] mentioned that the scaled TTT transform is convex
(concave) if the hazard function is decreasing (increasing). Therefore, the hazard function is
bathtub (unimodal) if the scaled TTT transform changes from convex (concave) to concave
(convex). It should also be mentioned that there is only one sample provided in each
example. Therefore, Z is given for each example.

6.1. Example 1

A random sample of size n = 50 is generated from the IWD with α = 3.5 and β = 3.0
and displayed in Table 5 for easy reference. First, the empirical scaled TTT plot is applied to
check the empirical hazard function based on the data in Table 5 and the result is displayed
in Figure 4. Figure 4 appears concave in the lower left corner and convex in the upper right
corner. It indicates that the empirical hazard function has unimodal shape. Furthermore,
the K-S test statistic with distance 0.073433 and p-value is 0.932. The IWD is suitable for the
data set shown in Table 5.

Table 5. Data set.

1.1450 1.0068 1.5355 1.5518 2.1643 1.1408 1.4821 1.3860 7.6347 0.9647
2.3425 1.5504 1.4789 1.2727 2.1294 1.8121 1.5396 1.0495 1.9861 3.0104
2.0886 1.3526 5.8347 2.1953 2.3069 1.7666 1.7535 3.1018 1.9448 5.8905
2.0920 1.6807 1.6187 1.4530 1.7996 1.5155 2.2472 1.5043 3.7729 3.4927
1.3263 1.4951 1.2323 2.0319 1.3184 1.6993 1.9273 2.6462 1.7224 1.3065

0.0 0.2 0.4 0.6 0.8 1.0

0.
5

0.
7

0.
9

Figure 4. The empirical TTT Plot for Example 1.

Numerical results of Tables 6–9 are obtained by using the sample displayed in Table 5.
Tables 8 and 9 show that the comparisons established in Proposition 1 that are compared
among α̂EBSSj , j = 1, 2, 3 for any given k =0, 1 or 2 and Proposition 2 that are compared
among α̂EBLj , j = 1, 2, 3 for w = 2 are true. Additionally, Table 8 indicates that the com-
parisons among α̂EBSSj for k = 0, 1, 2 and any given j = 1, 2 or 3 match Propositions 3, 4
and 5. However, Table 8 shows that EMSE(α̂EBLj |Z) with w = 2 is too large to fit between
EMSE(α̂EBSSj |Z)(k = 0) and EMSE(α̂EBSSj |Z)(k = 1) for j = 1, 2 or 3. Table 9 shows that
all Propositions are true except j = 1. Again, w = 2.0 is not really closed to 0 to make
EMSE(α̂EBL1 |Z) be between EMSE(α̂EBSS1 |Z)(k = 0) and EMSE(α̂EBSS1 |Z)(k = 1). The nu-
merical results of Tables 6 and 7 are used to compare MLE and all Bayesian estimators. For
the comparison, the hyperparameters a = 0.5 and b = 0.5 are selected obviously to make
the posterior mean not too far way the MLE. Table 6 shows that all Bayesian estimations are
below MLE and all E-Bayesian estimations are below all Bayesian estimations. However,
Table 7 shows that all the MSEs for Bayesian estimations are smaller than MSE of MLE
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except the MSE for the Bayesian estimation under LINEX loss function with w = 2 which
is the largest one after the adjustment from posterior distribution of α.

Table 6. Estimations of α, with s = 10, β = 3.0, u = 3 and v = 4.

α̂MLE α̂BL α̂BSS α̂BSS α̂BSS α̂EBLj α̂EBSSj α̂EBSSj α̂EBSSj

w = 2 k = 0 k = 1 k = 2 j w = 2 k = 0 k = 1 k = 2

1 2.67124 2.8216 2.76565 2.7097
3.7492 3.40901 3.64985 3.57758 3.5053 2 2.9062 3.08336 3.02222 2.96108

3 2.43628 2.55984 2.50908 2.45831

Table 7. Results of calculated MSE for α̂.

MSE(α̂MLE)(α) MSE(α̂BL |Z) MSE(α̂BSS |Z)
w = 2 k = 0 k = 1 k = 2

0.27083 0.32179 0.26379 0.26901 0.28468

Table 8. Results of calculated EMSE for α̂ using s = 10, β = 3.0, u = 3, v = 4.

EMSE(α̂EBLj |Z) EMSE(α̂EBSSj |Z)
j w = 2 k = 0 k = 1 k = 2

1 0.1869 0.16204 0.16525 0.17489
2 0.19692 0.19195 0.19575 0.20717
3 0.1371 0.13213 0.13475 0.14261

Table 9. Results of calculated EMSE of α̂ for different s with u = 3 and v = 4 using data from Table 5.

k = 0 w = 2 k = 1 k = 2

s j EMSE(α̂EBSSj |Z) EMSE(α̂EBLj |Z) EMSE(α̂EBSSj |Z) EMSE(α̂EBSSj |Z)

1 0.0597026 0.0658374 0.0608865 0.0644382
50 2 0.0884002 0.0886456 0.0901532 0.0954121

3 0.031005 0.0312504 0.0316198 0.0334643

1 0.0333639 0.0364579 0.0340255 0.0360103
100 2 0.0540445 0.0541064 0.0551162 0.0583313

3 0.0126833 0.0127451 0.0129348 0.0136893

1 0.0073662 0.0079861 0.0075123 0.0079505
500 2 0.0136526 0.0136551 0.0139234 0.0147356

3 0.0010797 0.0010822 0.0011012 0.0011654

1 0.0037316 0.0040415 0.0038056 0.0040276
1000 2 0.0071259 0.0071265 0.0072672 0.0076911

3 0.0003372 0.0003379 0.0003439 0.000364

6.2. Example 2. Breakdown Times at Voltage 34 KV

The 19 observed times in terms of minute to breakdown from an insulating fluid
between electrodes at a voltage of 34 KV given by Nelson [31] are represented as 0.96,
4.15, 0.19, 0.78, 8.01, 31.75, 7.35, 6.50, 8.27, 33.91, 32.52, 3.16, 4.85, 2.78, 4.67, 1.31, 12.06,
36.71, 72.89. The empirical scaled TTT plot is also applied to examine the empirical hazard
function based on these 19 observed times and the result is displayed in Figure 5. Figure 5
appears slightly concave in the lower left corner and convex in the upper right corner. It
indicates the empirical hazard function could be unimodal in shape or possibly strictly
decrease. Checking the K-S test, the distance statistic is 0.15796 and p-value is 0.6732.
Therefore, the IWD may be applied for these 19 observations.
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Figure 5. The empirical TTT Plot for Example 2.

Numerical results of Tables 10–13 are obtained by using these 19 breakdown times.
Tables 12 and 13 show that the comparisons established in Proposition 1 that are compared
among α̂EBSSj , j = 1, 2, 3 for any given k =0, 1 or 2 and Proposition 2 that are compared
among α̂EBLj , j = 1, 2, 3 for w = 0 are true for this data set. Table 12 only shows that the
comparisons among α̂EBSSj for k = 0, 1, 2 and any given j = 1, 2 or 3 match Propositions
3, 4 and 5. However, Table 12 shows that EMSE(α̂EBLj |Z) with w = 2 is too large to fit
between EMSE(α̂EBSSj |Z)(k = 0) and EMSE(α̂EBSSj |Z)(k = 1) for j = 1 or 2. Table 13 shows
that all Propositions are true except j = 1. Again, w = 2.0 is not really closed to 0 to
make EMSE(α̂EBL1 |Z) be between EMSE(α̂EBSS1 |Z)(k = 0) and EMSE(α̂EBSS1 |Z)(k = 1). The
numerical results of Tables 10 and 11 are used to compare MLE and all Bayesian estimators.
For the comparison the hyperparameters a = 0.5 b = 0.5 are selected obviously to make
posterior mean not too far way the MLE. Table 10 shows that all Bayesian estimations are
below MLE and all E-Bayesian estimations are below all Bayesian estimations. However,
Table 11 shows that all the MSEs for Bayesian estimations are smaller than MSE of MLE
after the adjustment from the posterior distribution of α.

Table 10. Estimations of α, with s = 10, β = 0.6434, u = 3 and v = 4.

α̂MLE α̂BL α̂BSS α̂BSS α̂BSS α̂EBLj α̂EBSSj α̂EBSSj α̂EBSSj

w = 2 k = 0 k = 1 k = 2 j w = 2 k = 0 k = 1 k = 2

1 1.27044 1.36071 1.29067 1.22063
1.92752 1.72143 1.88274 1.78619 1.6896 2 1.4081 1.51825 1.44011 1.36196

3 1.13279 1.2032 1.14123 1.07930

Table 11. Results of calculated MSE for α̂.

MSE(α̂MLE)(α) MSE(α̂BL |Z) MSE(α̂BSS |Z)
w = 2 k = 0 k = 1 k = 2

0.254969 0.207804 0.181781 0.191103 0.2190691

Table 12. Results of calculated EMSE for α̂ using s = 10, β = 0.6434, u = 3, v = 4.

EMSE(α̂EBLj |Z) EMSE(α̂EBSSj |Z)
j w = 2 k = 0 k = 1 k = 2

1 0.10867 0.09926 0.10437 0.11969
2 0.12394 0.12206 0.12834 0.14719
3 0.07834 0.07646 0.08039 0.09220
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Table 13. Results of calculated EMSE of α̂ for different s with u = 3 and v = 4 using the data set.

k = 0 w = 2 k = 1 k = 2

s j EMSE(α̂EBSSj |Z) EMSE(α̂EBLj |Z) EMSE(α̂EBSSj |Z) EMSE(α̂EBSSj |Z)

1 0.0329283 0.0350915 0.0346232 0.0397077
50 2 0.0508044 0.0508909 0.0534193 0.0612641

3 0.0150523 0.0151388 0.015827 0.0181513

1 0.0179415 0.0190278 0.0188649 0.0216353
100 2 0.0300516 0.0300733 0.0315984 0.0362387

3 0.0058313 0.005853 0.0061315 0.0070319

1 0.0038658 0.0040832 0.0040648 0.0046617
500 2 0.0072707 0.0072716 0.0076449 0.0087676

3 0.0004609 0.0004618 0.0004846 0.0005558

1 0.0019518 0.0020605 0.0020522 0.0023536
1000 2 0.0037621 0.0037623 0.0039558 0.0045367

3 0.0001414 0.0001416 0.0001487 0.0001705

6.3. Example 3. Survival Times of Guinea Pigs

The 72 survival times, in days, of guinea pigs injected with different doses of tubercle
bacilli mentioned in Bjerkedal [38] and Kundu and Howlader [3] are listed in Table 14
for easy reference. Kundu and Howlader [3] showed that the empirical hazard function
is unimodal through the scaled TTT transform plot of the data set and K-S test has K-S
distance 0.1364 and the p-value is 0.137. Hence, the IWD is a reasonable model for the 72
survival times of guinea pigs and the model fitting with α = 0.0169 and β = 1.4142.

Table 14. 72 Survival Times for Guinea Pigs.

12 15 22 24 24 32 32 33 34 38 38 43
44 48 52 53 54 54 55 56 57 58 58 59
60 60 60 60 61 62 63 65 65 67 68 70
70 72 73 75 76 76 81 83 84 85 87 91
95 96 98 99 109 110 121 127 129 131 143 146
146 175 175 211 233 258 258 263 297 341 341 376

Numerical results in Tables 15–18 are obtained by using the sample from Table 14.
Tables 17 and 18 show that the comparisons established in Propositions 1–5 are all true for
given this data set. The numerical results of Tables 15 and 16 are used to compare MLE
and all Bayesian estimators. For the comparison, the hyperparameters a = 0.5 b = 0.5 are
selected obviously to make the posterior mean not too far way the MLE. Table 15 shows
that almost all Bayesian estimations are slightly below MLE and all estimations are vary
closed. However, Table 16 shows that all the MSEs for Bayesian estimations are smaller
than MSE of MLE after the adjustment from the posterior distribution of α.

Table 15. Estimations of α, with s = 10, β = 1.4142, u = 3, v = 4.

α̂MLE α̂BL α̂BSS α̂BSS α̂BSS α̂EBLj α̂EBSSj α̂EBSSj α̂EBSSj

w = 2 k = 0 k = 1 k = 2 j w = 2 k = 0 k = 1 k = 2

1 0.01628 0.01628 0.01606 0.01583
0.01620 0.016310 0.01631 0.01609 0.01586 2 0.01628 0.01629 0.01606 0.01584

3 0.016271 0.01628 0.01605 0.01583
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Table 16. Results of calculated MSE for α̂.

MSE(α̂MLE)(α) MSE(α̂BL |Z) MSE(α̂BSS |Z)
w = 2 k = 0 k = 1 k = 2

0.000004252543 0.000003670635 0.000003670621 0.00000372125 0.000003873138

Table 17. Results of calculated EMSE for α̂ using s = 10, u = 3, v = 4.

EMSE(α̂EBLj |Z) EMSE(α̂EBSSj |Z)
j w = 2 k = 0 k = 1 k = 2

1 0.000003659608 0.000003659595 0.000003710122 0.000003861702
2 0.000003662339 0.000003662337 0.000003712902 0.000003864596
3 0.000003656855 0.000003656853 0.000003707342 0.000003858809

Based on these values s(50, 100, 500, 1000), EMSEs estimates (EMSE(α̂EBLj |Z) with
w = 2, EMSE(α̂EBSSj |Z) for k = 0, 1, 2 and j = 1, 2, 3) are obtained and the results are
displayed in Table 17 which shows the comparison results established in Propositions 1–5
are true.

Table 18. Results of calculated EMSE of α̂ for different s with u = 3 and v = 4 using data from
Table 14.

k = 0 w = 2 k = 1 k = 2

s j EMSE(α̂EBSSj |Z) EMSE(α̂EBLj |Z) EMSE(α̂EBSSj |Z) EMSE(α̂EBSSj |Z)

1 0.00000362702 0.000003627033 0.000003677097 0.000003827329
50 2 0.000003640547 0.000003640548 0.000003690811 0.000003841603

3 0.000003613492 0.000003613493 0.000003663383 0.000003813054

1 0.000003587108 0.000003587121 0.000003636634 0.000003785212
100 2 0.000003613716 0.000003613717 0.00000366361 0.00000381329

3 0.000003560499 0.0160549201 0.000003609658 0.000003757134

1 0.000003296874 0.015442149903 0.000003342393 0.00000347895
500 2 0.000003414007 0.000003414007 0.000003461143 0.000003602552

3 0.000003179742 0.000003179742 0.000003223644 0.000003355349

1 0.000002994062 0.000002994071 0.0000030354 0.000003159415
1000 2 0.000003196352 0.000003196352 0.000003240483 0.000003372876

3 0.000002791772 0.000002791772 0.000002830317 0.000002945953

7. Conclusions

The E-Bayesian estimators of the rate parameter of the IWD were studied under the SSE
and LINEX loss functions. The formulas of E-Bayesian estimators’ EMSEs were developed.
Given a data set, many theoretical properties of EMSEs were established for comparison.
The simulation study also confirms the properties across overall the populations of α. Three
real-world examples were used to address the applications. All important results are
mentioned in Sections 5 and 6. When the shape parameter, β, is unknown, the MLE of β
cannot be obtained in a closed form. There is no conjugate prior for β, all the Bayesian
estimators of β will be difficult and not tractable in the study, either. A possible adjustment
would be suggested to provide a gamma prior for β > 0 because the gamma distribution is
a very common and flexible probability model for any non-negative random variable, since
all propositions in Section 4 are true for any given β > 0. Taking additional expectation
with respect to β over the gamma prior, all propositions of Section 4 would be still true
for α Bayesian estimators. Meanwhile, the E-Bayesian estimate method applied to both
parameters of the IWD simultanously is an open problem that is under investigation.

Furthermore, the extension to a censoring case is not simple because the survival
function for IWD is 1− F(x) = 1− e−αx−β

that makes the original structure of the likelihood
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function of random sample change to a different structure for any censoring. There is no
other transformation process that can release this complexity generated from any censoring
case. It is due to the space issue that the censoring case will be a future possible research
project. Additionally, releasing the prior condition and using the empirical Bayes approach,
which require higher-level mathematical skills, are currently under investigation.
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Appendix A

Table A1. Simulated EMSE of α̂ with s = 0.9, β = 1.5, u = 4 and v = 5.

k = 0 w = 2 k = 1 k = 2

n j EMSE(α̂EBSSj) EMSE(α̂EBLj) EMSE(α̂EBSSj) EMSE(α̂EBSSj)

1 0.0031796 0.0031943 0.0033045 0.0036794
25 2 0.0031911 0.0032067 0.0033164 0.0036926

3 0.0031681 0.0031839 0.0032927 0.0036662

1 0.0016043 0.0016096 0.0016361 0.0017315
50 2 0.0016071 0.0016125 0.0016389 0.0017345

3 0.0016015 0.0016068 0.0016332 0.0017285

1 0.0010798 0.0010802 0.0010941 0.0011371
75 2 0.0010811 0.0010815 0.0010953 0.0011383

3 0.0010785 0.0010791 0.0010928 0.0011357

1 0.0008176 0.0008177 0.0008257 0.0008501
100 2 0.0008183 0.0008184 0.0008264 0.0008509

3 0.0008168 0.0008171 0.0008250 0.0008494

Table A2. Simulated MSE of α̂ using Uniform b over [0, 1], β = 1.5, u = 4 and v = 5.

k = 0 w = 2 k = 1 k = 2

n MSE(α̂MLE ) MSE(α̂BSS ) MSE(α̂BL ) MSE(α̂BSS ) MSE(α̂BSS )

25 0.003813 0.003183 0.0031991 0.0033097 0.0036886
50 0.001891 0.001605 0.0016103 0.0016369 0.0017328
75 0.001211 0.001081 0.0010805 0.0010944 0.0011375

100 0.000906 0.000817 0.0008179 0.0008259 0.0011357
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Table A3. Simulated EMSE of α̂ with n = 50, β = 1.5, u = 3 and v = 4.

k = 0 w = 2 k = 1 k = 2

s j EMSE(α̂EBSSj) EMSE(α̂EBLj) EMSE(α̂EBSSj) EMSE(α̂EBSSj)

1 0.0276408 0.0287252 0.0281501 0.0297922
50 2 0.037579 0.0376224 0.0382628 0.0404948

3 0.0177025 0.0177459 0.0180374 0.0190896

1 0.0165196 0.0170773 0.0168268 0.0178084
100 2 0.0247934 0.0248046 0.0252497 0.0267226

3 0.0082457 0.0082569 0.0084039 0.0088942

1 0.0039191 0.0040315 0.0039926 0.0042256
500 2 0.0069906 0.0069911 0.0071212 0.0075366

3 0.0008475 0.000848 0.0008641 0.0009145

1 0.0020064 0.0020626 0.0020441 0.0021633
1000 2 0.0037358 0.0037359 0.0038058 0.0040278

3 0.000277 0.0002771 0.0002824 0.0002989

Table A4. Simulated EMSE of α̂ with s = 0.9, β = 0.9, u = 4 and v = 5.

k = 0 w = 2 k = 1 k = 2

n j EMSE(α̂EBSSj) EMSE(α̂EBLj) EMSE(α̂EBSSj) EMSE(α̂EBSSj)

1 0.0029011 0.0029145 0.0030151 0.0033572
25 2 0.0029111 0.0029245 0.0030255 0.0033687

3 0.0028912 0.0029045 0.0030048 0.0033457

1 0.0014634 0.0014681 0.0014924 0.0015795
50 2 0.0014659 0.0014705 0.0014949 0.0015821

3 0.0014610 0.0014656 0.0014899 0.0015768

1 0.0009849 0.0009852 0.0009979 0.0010371
75 2 0.0009860 0.0009863 0.0009991 0.0010382

3 0.0009838 0.0009841 0.0009968 0.0010359

1 0.0007457 0.0007458 0.0007531 0.0007754
100 2 0.0007463 0.0007464 0.0007537 0.0007760

3 0.0007451 0.0007452 0.0007525 0.0007747

Table A5. Simulated MSE of α̂ using Uniform b over [0, 1], β = 0.9, u = 4 and v = 5.

k = 0 w = 2 k = 1 k = 2

n MSE(α̂MLE ) MSE(α̂BSS ) MSE(α̂BL ) MSE(α̂BSS ) MSE(α̂BSS )

25 0.003477 0.002902 0.0029156 0.0030174 0.0033629
50 0.001725 0.001463 0.0014681 0.0014926 0.0015801
75 0.001105 0.000984 0.0009852 0.000998 0.0010372

100 0.000826 0.000745 0.0007458 0.0007531 0.0007754
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Table A6. Simulated EMSE of α̂ with n = 50, β = 0.9, u = 3 and v = 4.

k = 0 w = 2 k = 1 k = 2

s j EMSE(α̂EBSSj) EMSE(α̂EBLj) EMSE(α̂EBSSj) EMSE(α̂EBSSj)

1 0.0276071 0.0286878 0.0281903 0.0298347
50 2 0.0375269 0.0375701 0.0383261 0.0405617

3 0.0176872 0.0177305 0.0180545 0.0191077

1 0.0165017 0.0170576 0.0168479 0.0178307
100 2 0.0247629 0.024774 0.0252863 0.0267613

3 0.0082405 0.0082516 0.0084096 0.0089002

1 0.0039154 0.0040274 0.003997 0.0042301
500 2 0.0069835 0.006984 0.0071296 0.0075454

3 0.0008473 0.0008477 0.0008644 0.0009148

1 0.0020046 0.0020606 0.0020463 0.0021656
1000 2 0.0037322 0.0037323 0.00381 0.0040323

3 0.0002769 0.0002771 0.0002825 0.000299

Proof of Proposition 1. From (24)–(26), we have

EMSE(α̂EBSS2 |Z) − EMSE(α̂EBSS1 |Z) = EMSE(α̂EBSS1 |Z) − EMSE(α̂EBSS3 |Z)

= (n + k2 +
u

u + v
)

[
2
s2 (

s
Z
− ln(1 +

s
Z
))− 1

Z(Z + s)

]
Let t = s

Z , we get [
2
s2 (

s
Z
− ln(1 +

s
Z
))− 1

Z(Z + s)

]
=

2
t2Z2 (t− ln(1 + t))− 1

Z(Z + tZ)

=
1

tZ2 (1 +
1

t + 1
− 2 ln(1 + t)

t
) > 0.

The above inequality can be shown to be true for t > 0. Thus, for any given k ≥ 0
EMSE(α̂EBSS3 |Z) < EMSE(α̂EBSS1 |Z) < EMSE(α̂EBSS2 |Z), s > 0, u > 0, v > 0.

Proof of Proposition 2. From (27), (28) and (29), we have

EMSE(α̂EBL2 |Z) − EMSE(α̂EBL1 |Z) = EMSE(α̂EBSS2 |Z)(k = 0) − EMSE(α̂EBSS1 |Z)(k = 0)
EMSE(α̂EBL1 |Z) − EMSE(α̂EBL3 |Z) = EMSE(α̂EBSS1 |Z)(k = 0) − EMSE(α̂EBSS3 |Z)(k = 0)

Then Proposition 1 implies that EMSE(α̂EBL3 |Z) < EMSE(α̂EBL1 |Z) < EMSE(α̂EBL2 |Z)
when −1 < w/Z.

Proof of Proposition 3.

(i) From (24), put y1(x) = 1
Z(Z+s) (n + x2 + u

u+v ).

Let dy1
dx = 2x

Z(Z+s) = 0, we get x = 0. When x ≥ 0, dy1
dx = 2x

Z(Z+s) ≥ 0, thus y1(x)

increasing function of x. Also, d2y1
dx2 = 2

Z(Z+s) > 0. Therefore, when x = 0, y1(x) take the
minimum value

min[y1(k)] = y1(0) =
1

Z(Z + s)
(n +

u
u + v

).

For k = 0, 1, 2 and discussion above, we have
EMSE(α̂EBSS1 |Z)(k = 0) < EMSE(α̂EBSS1 |Z)(k = 1) < EMSE(α̂EBSS1 |Z)(k = 2).
From Equation (27), EMSE(α̂EBL1 |Z) - EMSE(α̂EBSS1|Z)(k = 0) > 0 for given w 6= 0 and
−1 < w/Z < 1.
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From (27) and discussion below (12) for −1 < w/(b + Z) < 1, we have

EMSE(α̂EBL1 |Z) =
∫ s

0

∫ 1

0

(
n + a
b + Z

)2{ ∞

∑
i=2

w(i−1)(−1)(i−1)

i(b + Z)(i−1)

}2

π1(a, b)dadb

+ EMSE(α̂EBSS1 |Z)(k = 0) (A1)

and { ∞

∑
i=2

w(i−1)(−1)(i−1)

i(b + Z)(i−1)

}2

=

{
−w

2(b + Z)2 + w2
∞

∑
i=3

w(i−3)(−1)(i−1

i(b + Z)i

}2

=
w2

4(b + Z)4 −
w3

(b + Z)2

∞

∑
i=3

w(i−3)(−1)(i−1)

i(b + Z)i

+ w4
{ ∞

∑
i=3

w(i−3)(−1)(i−1)

i(b + Z)i

}2

. (A2)

Therefore,

∫ s

0

∫ 1

0

(
n + a
b + Z

)2{ ∞

∑
i=2

w(i−1)(−1)(i−1)

i(b + Z)(i−1)

}2

π1(a, b)dadb

=

{
w2
∫ s

0

∫ 1

0

(n + a)2

4(b + Z)4 π1(a, b)dadb− w3
∫ s

0

∫ 1

0

(n + a)2

(b + Z)2

∞

∑
i=3

w(i−3)(−1)(i−1)

i(b + Z)i

× π1(a, b)dadb + w4
∫ s

0

∫ 1

0
(n + a)2

{ ∞

∑
i=3

w(i−3)(−1)(i−1)

i(b + Z)i

}2

π1(a, b)dadb
}

. (A3)

and

lim
w→0

∫ s

0

∫ 1

0

(
n + a
b + Z

)2{ ∞

∑
i=2

w(i−1)(−1)(i−1)

i(b + Z)(i−1)

}2

π1(a, b)dadb = 0.

Hence, there exists w0 with 0 < w0/Z < 1 such that when 0 < |w| < w0,

EMSE(α̂EBSS1 |Z)(k = 0) < EMSE(α̂EBL1 |Z) < EMSE(α̂EBSS1 |Z)(k = 1)
< EMSE(α̂EBSS1 |Z)(k = 2).

The discussion at the end of Section 2 implies that for w = 0
EMSE(α̂EBSS1 |Z)(k = 0) = EMSE(α̂EBL1 |Z).

(ii) limZ→∞ EMSE(α̂EBSS1 |Z) = limZ→∞
1

Z(Z+s) (n + k2 + u
u+v ) = 0.

(iii) For 0 ≤ b ≤ s and |w| ≤ w0, | f racwZ| ≤ w0
Z < 1, Eqaution (A2) can be represented as

w2

4(b + Z)4 −
w3

(b + Z)5

∞

∑
i=3

w(i−3)(−1)(i−3)

i(b + Z)i−3 +
w4

(b + Z)6

{ ∞

∑
i=3

w(i−3)(−1)(i−3)

i(b + Z)i−3

}2

0 ≤ w2

4(b + Z)4 ≤
w2

4Z4 ,

| w3

(b + Z)5

∞

∑
i=3

w(i−3)(−1)(i−3)

i(b + Z)(i−3)
| ≤ |w|

3

3Z5

∞

∑
i=3

|w|(i−3)

Z(i−3)
=
|w|3
3Z5

1
(1− |wZ |)

| w4

(b + Z)6

{ ∞

∑
i=3

w(i−3)(−1)(i−3)

i(b + Z)i−3

}2

| ≤ w4

3Z6

{ ∞

∑
i=3

|w|(i−3)

Z(i−3)

}2

=
w4

3Z6
1

(1− |wZ |)
.
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Therefore,

|
∫ s

0

∫ 1

0

(
n + a
b + Z

)2{ ∞

∑
i=2

w(i−1)(−1)(i−1)

i(b + Z)(i−1)

}2

π1(a, b)dadb|

≤
∫ s

0

∫ 1

0
(n + a)π1(a, b)dadb

{
w2

4Z4 +
|w|3
3Z5

1
(1− |wZ |)

+
w4

3Z6
1

(1− |wZ |)

}
and

lim
Z→∞

|
∫ s

0

∫ 1

0

(
n + a
b + Z

)2{ ∞

∑
i=2

w(i−1)(−1)(i−1)

i(b + Z)(i−1)

}2

π1(a, b)dadb| = 0

Hence, limZ→∞ EMSE(α̂EBL1 |Z) = 0.

Proof of Proposition 4.

(i) From (25), put y2(x) = 2
s2 (n + x2 + u

u+v )(
s
Z − ln(1 + s

Z )),

where ( s
Z − ln(1 + s

Z )) > 0. By using the same argument for the proof of (i) in Proposi-
tion 3, the following can be proven, there exists w0 with 0 < w0/Z < 1 such that when
0 < |w| < w0,

EMSE(α̂EBSS2 |Z)(k = 0) < EMSE(α̂EBL2 |Z) < EMSE(α̂EBSS2 |Z)(k = 1)
< EMSE(α̂EBSS2 |Z)(k = 2).

The discussion at the end of Section 2 implies that for w = 0
EMSE(α̂EBSS2 |Z)(k = 0) = EMSE(α̂EBL2 |Z).

(ii) limZ→∞ EMSE(α̂EBSS2 |Z) = limZ→∞
2
s2 (n + k2 + u

u+v )(
s
Z − ln(1 + s

Z )) = 0.
(iii) Following a similar procedure for the proof of Proposition 3,

limZ→∞ EMSE(α̂EBL2 |Z) = 0 is proved.

Proof of Proposition 5.

(i) From (26) put y3(x) = 2
s2 (n + x2 + u

u+v )

[
ln(1 + s

Z )−
s

Z+s

]
,

where (ln(1 + s
Z )−

s
Z+s ) > 0. By using the same argument of the proof for (i) in Propo-

sition 3, the following can be proved, there exists w0 with 0 < w0/Z < 1 such that when
0 < |w| < w0,

EMSE(α̂EBSS3 |Z)(k = 0) < EMSE(α̂EBL3 |Z) < EMSE(α̂EBSS3 |Z)(k = 1)
< EMSE(α̂EBSS3 |Z)(k = 2).

The discussion at the end of Section 2 implies that for w = 0
EMSE(α̂EBSS3 |Z)(k = 0) = EMSE(α̂EBL3 |Z).

(ii) limZ→∞ EMSE(α̂EBSS3 |Z) = limZ→∞
2
s2 (n + k2 + u

u+v )

[
ln(1 + s

Z )−
s

Z+s

]
= 0.

(iii) Following a similar procedure for the proof of Proposition 3,
limZ→∞ EMSE(α̂EBL3 |Z) = 0 is proved.
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