
Citation: Jurdjevic, V. Rolling

Geodesics, Mechanical Systems and

Elastic Curves. Mathematics 2022, 10,

4827. https://doi.org/10.3390/

math10244827

Academic Editor: Margarida

Camarinha

Received: 20 September 2022

Accepted: 12 December 2022

Published: 19 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Rolling Geodesics, Mechanical Systems and Elastic Curves
Velimir Jurdjevic

Department of Mathematics, University of Toronto, Toronto, ON M5S 3G3, Canada; jurdj@math.toronto.edu

Abstract: This paper defines a large class of differentiable manifolds that house two distinct optimal
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1. Introduction

This paper is a continuation of my long-standing interest in the role of Lie groups
and Lie algebras in the theory of integrable systems and the equations of mathematical
physics. The interest in this topic originated in two seemingly unrelated phenomena,
the presence of elastica in the theory of rolling spheres ([1,2]), and the presence of the heavy
top in the equations describing the equilibrium configurations of an elastic rod ([3,4]). My
interest in these phenomena was further renewed by the subsequent studies ([5–7]) that
showed intriguing connections between rolling problems, elastic curves and problems in
mechanics. These studies also identified a class of variational problems on Lie groups,
called affine-quadratic that not only played a pivotal role in this theory, but also made a
significant impact on the theory of integrable systems ([8], Chapters 9, 10 and 11).

In this paper, we will shift emphasis to a new class of rolling problems associated with
homogeneous Riemannian spaces rolling isometrically on their tangent planes (based on
our recent study [9,10] ). We will show that each such isometric rolling has a well defined
length which then leads to natural definition for a rolling geodesic. The rolling problem
then consists of finding some necessary differential conditions that the rolling geodesics
must satisfy.

We will show that each rolling problem can be recast as a left-invariant optimal control
problem on a Lie group, and consequently, we will be able to regard the rolling geodesics as
the projections of the extremal curves generated by a suitable Hamiltonian obtained through
Pontryagin’s Maximum Principle. We will show several remarkable properties of the
aforementioned Hamiltonian. First we will show that any such Hamiltonian is completely
integrable, and secondly, we will show that the Hamiltonian system associated with an
affine-quadratic system may be regarded as an invariant subsystem of the Hamiltonian
differential system associated with the rolling problem. This discovery sheds new light on
the geometric origins of the affine-quadratic systems and their connections to mechanical
systems ([11,12]). These findings seem particularly remarkable considering the fact that the
control functions that define these optimal problems lie in mutually orthogonal spaces of
each other.

The general setting of the paper in which the above-mentioned problems will be
analyzed is defined by a semi-simple Lie group G and a compact subgroup K with a finite
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centre. Any such pair (G, K) is reductive in the sense that the Lie algebra g of G admits
a splitting g = k ⊕ p where p is a vector space complementary to the Lie algebra k of
K. In this paper, p will be the orthogonal complement of k relative to the Killing form
Kl(X, Y) = Tr(adX ◦ adY). We recall that the Killing form is non-degenerate on G and
also satisfies

Kl(X, [Y, Z]) = Kl([X, Y], Z)

for any elements X, Y, Z in g. This implies that [p, k] ⊂ p. We shall make another assumption
that k and p satisfy strong Cartan’s Lie algebraic conditions

[p, p] = k, [p, k] ⊆ p, [k, k] ⊆ k. (1)

Finally, we will assume that the Killing form is of definite sign on p. This last condition
is automatically satisfied when G is compact and is also satisfied by irreducible symmetric
Riemannian pairs (G, K) in the theory of symmetric spaces.

Let us now recall the definition of the affine-quadratic problem in this general set-
ting ([8]).

1.1. Affine-Quadratic Problem

Any element A in p generates an affine set Γ = {A + U : U ∈ k} in g, and this set
defines a left invariant differential system

dg
dt

= g(t)(A + U(t)), g(t) ∈ G, (2)

where U(t) is a bounded and measurable curve in k. We will think of (2) as a control system
with U(t) playing the role of control functions. We will assume that A is regular p, that is,
that the set of elements in p that commute with A forms an abelian subalgebra in g. Our
assumption [p, p] = k implies that g = g1⊕ g2 · · · ⊕ gm where each factor gi is a simple ideal
of the form gi = pi + [pi, pi]. It then follows that the projection of a regular element A on
each factor gi in (4) is non-zero which, in turn, implies that (2) is controllable, in the sense
that for any two points g0, g1 in G there is a solution g(t) on an interval [0, T] that satisfies
g(0) = g0 and g(T) = g1 (see [8], page 162 for a proof). Since any two Cartan subalgebras
in p are AdK conjugate, so are the systems defined by any two regular elements A1 and A2.

We will now let 1
2

∫ T
0 〈U(t), U(t)〉 dt be the energy functional associated with any

solution g(t) of (2) generated by a control U(t), where 〈A, B〉 = −Kl(A, B). Note that the
Killing form is negative semi-definite on the Lie algebra k of K when K is compact, and is
strictly negative when K has a finite centre (2). Therefore, our energy functional is positive
for any non-zero control U(t). This energy functional is called canonical relative to a more
general one 1

2

∫ T
0 〈P(U(t)), U(t)〉 dt defined by any positive linear operator P on k.

The above data induce a natural optimal control problem: find the solutions g(t) of (2)
that satisfy the given boundary conditions g(0) = g0, g(T) = g1 for which the energy of
transfer 1

2

∫ T
o 〈P(U(t)), U(t)〉 dt is minimal. The above optimal control problem will be

referred to as the affine-quadratic problem (reminiscent of linear-quadratic problems in the
control theory literature). In this paper we shall be interested only in the canonical case
P = I.

As we mentioned earlier, the pair (G, K) is reductive. Any reductive semi-simple Lie
algebra g also carries along a “hidden” semi-direct product g0 = po k for the following
reasons. Since [p, k] ⊆ p, K acts linearly on p by the adjoint action h→ Adh|p, h ∈ K, and in-
duces the semi-direct product G0 = po K with the group operation (A1, h1)(A2, h2) =
(A1 + Adh1(A2), h1h2). Then the Lie algebra g0 of G0 is equal to po k with the Lie bracket
given by

[(A1, B1), (A2, B2)] = ([B1, A2]− [B2, A1], [B1, B2]), (Ai, Bi) ∈ p× k.
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We will identify elements (A, B) ∈ p× k with the sums A + B under the identification
(A, B) = (A, 0) + (0, B) = A + B, in which case the Lie brackets in g0 are identified with

[A1 + B1, A2 + B2] = [B1, A2]− [B2, A1] + [B1, B2].

Thus, g as a vector space carries two Lie brackets:

[A1 + B1, A2 + B2]s = [B1, A2]− [B2, A1] + s[A1, A2] + [B1, B2],

defined by a single parameter s: s = 0 in the semi-direct case, and s = 1 in the semi-
simple case.

It follows that every affine space Γ = {A + U : U ∈ k} that defines an affine left-
invariant system on G also defines a corresponding left-invariant affine system on the
semi-direct product G0. Thus, behind every affine quadratic optimal problem on G there is
a corresponding affine-quadratic “shadow” problem on the semi-direct product G0.

When K is a compact group with finite centre, then the above optimal problems are
well defined in the sense that for any set of boundary points g0 and g1 there exists an
optimal trajectory that satisfies g(0) = g0 and g(T) = g1 for some T > 0.

Remarkably, the Hamiltonian associated with the shadow problem is particularly
relevant in the theory of mechanical systems (see [8], Ch. 10 for the mechanical problem of
Neumann on the sphere [13], Ch. 11 for Jacobi’s problem on the ellipsoid, and Ch. 13 for
the elastic problem and the pendulum). This phenomenon raises a natural question: what
is the geometric origin behind the affine-quadratic problem that properly accounts for its
relevance for the above mentioned problems? This question was partly addressed in the
literature on integrable systems where the drift vector was associated with a linear potential
V associated to an abstract “rigid body” with a Hamiltonian H(g, L) = 1

2 〈P−1(L), L〉+
V(g) on the tangent bundle of a Lie group G ([14]) but that association raised its own
questions, and at the end proved to be more enigmatic than useful.

In this paper, we will show that the Poisson systems generated by the canonical affine-
quadratic problem and the rolling problem provide new and original answers to the above
query: we will show that the Poisson system associated with the affine-quadratic problem
is an invariant subsystem of the Poisson system generated by the rolling problem on a
coadjoint orbit where the drift element A appears as a constant of motion for the rolling
problem (Propositions 5 and 6).

With this goal in mind, we will now turn our attention to the quotient space G/K and
the rolling problem.

1.2. Homogeneous Riemannian Manifolds

We will first need to introduce the Riemannian structure on the homogeneous manifold
M = G/K defined by G and K. To begin with we will regard G as a semi-Riemannian mani-
fold (in the sense of O-Neill [15]) with the left-invariant metric 〈〈gX, gY〉〉g = 〈X, Y〉, X, Y ∈
g induced by a scalar multiple of the Killing form 〈 , 〉 that is positive definite on p. Such
a choice is possible by our assumption. On compact Lie groups G, this multiple will be
a negative multiple of the Killing form and then the above metric on G coincides with
the canonical bi-invariant metric. However, on non-compact Lir groups, the Killing form
is indefinite and the above metric is semi-Riemannian. Here gX is a shorthand nota-
tion for the left-invariant vector field X(g) = deLg(X), where Lg is the left translation
Lg(h) = gh. The same shorthand notation applies to the right-invariant vector fields with
X(g) = Xg = deRg(X), Rgh = hg. We also recall that the Killing form is invariant under
any linear automorphism of g and hence the quadratic form 〈 , 〉 is AdG invariant.

In order to make an easy passage to the techniques of optimal control, we will assume
that all curves are absolutely continuous, and all differential equations involving such
curves will be understood to be true only up to sets of measure zero without explicitly
saying so. With that convention in mind any curve g(t) in G is a solution of dg

dt = g(t)U(t)
for some bounded and measurable curve U(t) ∈ g. When U(t) takes values in p, g(t) is
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called horizontal, and when U(t) takes values in k g(t) is called vertical. Correspondingly,
the left-invariant distributions H(g) = {gX : X ∈ p} and V(g) = {gX : X ∈ k} will be
called horizontal and vertical, respectively. Thus, horizontal curves are tangent toH in the
sense that dg

dt ∈ H(g(t)). Likewise vertical curves are tangent to V . It follows that

H(g)⊕ V(g) = TgG, g ∈ G. (3)

We shall assume that G/K is endowed with a manifold structure so that the natural
projection π(g) = gK is a smooth surjection (such a structure exists ([15])). Then G/K with
this manifold structure will be denoted by M and o will denote the point in M such that
π(e) = o, where e is the group identity in G.

A curve g(t) in G is called a lift of a curve p(t) ∈ M if π(g(t)) = p(t). Such a lift is
said to be horizontal when g(t) is a horizontal curve. The projection p(t) of a vertical curve
g(t) is a single point π(g(0)) in M because any solution of dg

dt = g(t)U(t), U(t) ∈ k is of the
form g(t) = g(0)h(t), h(t) ∈ K.

If g(t) is any lift of a curve p(t), then dg
dt = g(t)U(t) = g(t)(Up(t) + Uk(t)) where

Up(t) and Uk(t) are the orthogonal projections of U(t) on p and k. Then, dg(t)π(g(t)U(t)) =

dg(t)π(Up(t)) =
dp
dt . The above shows that g̃(t), the solution of dg̃(t)

dt = g̃(t)Up(t), g̃(0) =
g(0), is a horizontal curve that projects on p(t), and secondly, it shows that dgπ(gU(t)) =
dp
dt for any horizontal lift g(t) of p(t). The isomorphismH(g)→ Tπ(g)M can then be used
to induce a metric on M

(dgπ(gV), dgπ(gW))π(g) = 〈〈gV, gW〉〉g, V, W ∈ p. (4)

Let now {τg : g ∈ G} denote the group of diffeomorphisms on M defined by the
group action

π(Lg(h)) = τg(π(h)), h ∈ G, Lg(h) = gh. (5)

Since G acts transitively on M, M can be represented by the orbit {τg(o) : g ∈ G}. It follows
that π(exp (tU)g) = τexp (tU)π(g) for any U ∈ g. Note that g → exp (tU)g is the flow
generated by the right-invariant vector field Ur(g) = Ug. The above equality shows that
the flow of Ur is π-related to the flow {τexp (tU), t ∈ R} in M.

In what follows, ~U will denote the infinitesimal generator of the flow {τexp (tU), t ∈
R}, and F will denote the family of vector fields {~U : U ∈ g}. The correspondence
Ur(g) → ~U(π(g)) is one to one and onto Tπ(g)M. Since the Lie brackets of vector fields
related by a mapping F are also F-related ([16]) , the Lie brackets [Ur, Vr] are dπ-related to
[~U, ~V]. Therefore the correspondence Ur(g)→ ~U(π(g)) is a Lie algebra homomorphism,
and hence F = {~U : U ∈ g} is a finite dimensional Lie algebra of vector fields that satisfies
F (p) = Tp M for each p ∈ M. Elements of F are generally known as the vector fields
generated by the group action.

Note that π(exp (tU)) = τe(tU)(o) = exp (t~U)(o) and therefore deπ(U) = ~U(o). Then
π(g) = τgπ(e) implies that

dg(π(gU)) = doτgdeπ(U) = doτg~U(o). (6)

Furthermore,

(~U(o), ~V(o))o = 〈〈Ur(e), Vr(e)〉〉e = 〈〈Ul(e), Vl(e)〉〉e = 〈U, V〉. (7)

Hence,

(~U(o), ~V(o))o = 〈U, V〉 = 〈〈gU, gV〉〉g =

(dgπ(gU), dgπ(gV))π(g) = (doτg~U(o), doτg~V(o))π(g).
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It follows that

(dgτg(V(p), dgτg(W(p))τg(p) = (V(p), W(p))p, (8)

for any g ∈ G and any tangent vectors V(p) and W(p) in Tp M.
Therefore, {τg : g ∈ G} acts on M by isometries, and consequently each vector field ~U

in F is a Killing vector field. Recall that the isometry group of M is a subgroup of Diff(M)
that leaves the metric invariant, also recall that a vector field is a Killing vector field if
its flow acts on M by isometries (the flow of ~U is given by τexp (tU), t ∈ R). See [15] for
additional details.

A homogeneous manifold M = G/K defined by the above data will be referred to as
semi-simple (it is defined by a semi-simple Lie group G, a compact subgroup K, and the
metric induced by the Killing form). It can be shown that any symmetric Riemannian
space with no Euclidean factors can be reduced to a semi-simple manifold (so that [p, p] = k

holds). Conversely, if G is simply connected then every semi-simple manifold is symmetric
(see [17], Proposition 6.27). In any event, the present exposition makes no use of geodesic
symmetry so there is no need to get distracted with the theory of symmetric spaces.

On semi-simple manifolds, parallel transport and covariant derivative are given by
nice formulas inherited from G. To elaborate, note that any semi-simple Lie group G with
its left-invariant metric a scalar multiple of the Killing form is a semi-Riemannian group
in the terminology of O’Neill ([15], p. 305) because the Killing form is AdG invariant (it is
only in the compact case that this semi-metric is Riemannian, i.e., equal to the canonical
bi-invariant metric on G).

Relative to this left-invariant semi-metric, ∇XY = 1
2 [X, Y], X and Y left-invariant, is

the (unique) bi-invariant affine connection that preserves the inner product and is torsion

free ([15]). The associated covariant derivative
Dg(t)

dt V(t) of a vector field g(t)V(t) defined
along a curve g(t) in G is given by

Dg(t)

dt
V(t) = g(t)(

dV
dt

(t) +
1
2
[V(t), U(t)]), g−1(t)

dg
dt

(t) = U(t). (9)

Since the metric on M is the pull-back of the metric on G, the covariant derivative and
parallel transport in M can be described in terms of the lifted objects in g via the following
formulas ([9]): any curve of tangent vectors v(t) along a curve p(t) in M can be represented
by v(t) = dg(t)π(g(t)V(t)) in terms of a unique curve V(t) ∈ p, where g(t) denotes a

horizontal curve in G that projects onto p(t). It follows that dg
dt = g(t)U(t), U(t) ∈ p and

dg(t)π(g(t)U(t)) = dp
dt . Then the covariant derivative

Dp(t)
dt v(t) of v(t) along p(t) is given

by
Dp(t)

dt
v(t) = dg(t)π(g(t)(

dV
dt

+
1
2
[U(t), V(t)]p)) = dg(t)π(g(t)

dV
dt

). (10)

where [U(t), V(t)]p denotes the orthogonal projection of [U, V] on p (because of our as-
sumption [p, p] ⊆ k, the orthogonal projection of [U, V] on p is zero). Hence, v(t) is parallel
along p(t) whenever v(t) is the projection of a curve g(t)V(t) with V(t) a constant in p.
With this background at our disposal we will now come to the rolling problem.

1.3. The Rolling Problem

The most direct route to the rolling problem is via the intrinsic definition of rolling,
introduced by R. Bryant and L. Hsu in ( [18]), and later used by A. Agrachev in ( [19]), Y.
Chitour in ( [20,21]) and Godoy Molina in ([22]). According to this definition a curve α(t)
on a Riemannian manifold M rolls on a curve α̂(t) on another Riemannian manifold M̂ if
there exists an isometry A(t) : Tα(t)M→ Tα̂(t)M̂ that satisfies:

dα̂

dt
= A(t)

dα

dt
, (11)
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and also satisfies the condition that A(t)v(t) is a parallel vector field in M̂ along α̂(t)
for each parallel vector field v(t) along α(t) in M. The triple (α(t), α̂(t), A(t)) is called a
rolling curve. It is clear that rolling is reflexive in the sense that if α(t) is rolled on α̂(t)
by an isometry A(t) then α̂(t) is rolled on α(t) by the isometry A−1(t), and therefore
(α̂(t), α(t), A−1(t)) is also a rolling curve. We will take M̂ = To M which we regard as a
Euclidean space with its metric (u, v)o defined by (4) and we address the rolling of curves
in M on curves in M̂. Recall that in any semi-Euclidean vector space parallel transport v(t)
along a curve α̂(t) in M̂ is done only by constant vector fields (translations).

Any curve α(t) in M is the projection of a horizontal curve g(t), that is, dg
dt =

g(t)U(t), U(t) ∈ p and α(t) = π(g(t)) = τg(t)(o). Then,

dα(t)
dt

= dg(t)π(g(t)U(t)) = doτg(t)~U(t)(o), (12)

where ~U(t) denotes the curve of Killing vector fields in To M defined by U(t). If we now let
α̂(t) be any solution in M̂ of dα̂(t)

dt = ~U(t)(o) and let A(t) = doτg(t) then A(t) is an isometry
that rolls α̂(t) on α(t) since the parallel transport condition is fulfilled (by Equation (10)).
Of course, then A−1(t) rolls α(t) on α̂(t).

It follows that each horizontal curve g(t) in G defines a family of curves α̂(t) in M̂, each
a solution of dα̂

dt = ~U(t)(o) associated with U(t) = g−1(t) dg
dt , that roll on α(t) = π(g(t)).

Conversely, every solution (g(t), α̂(t)) of the differential system

dg
dt

= g(t)U(t),
dα̂(t)

dt
= ~U(t)(o), U(t) ∈ p (13)

defines a curve α(t) = π(g(t)) in M on which α̂(t) in M̂ is rolled by the isometry doτg(t).
The rolling problem will be defined on the configuration space G = G× M̂, M̂ = To M,

which will be regarded as a Lie group with the group operation gh = (g, p)(h, q) =
(gh, p + q), for all g = (g, p) and h = (h, q) in G. Then the Lie algebra G of G will be
naturally identified with g× To M with the Lie bracket [(X, ~U(o)), (Y, ~V(o))] = ([X, Y], 0).

Let now H(g, p) denote the left invariant distribution defined by Γ = {(U, ~U(o)) :
U ∈ p} that is,

H(g, p) = {(gU, ~U(o)) : U ∈ p}, (g, p) ∈ G. (14)

The distributionH will be referred to as the rolling distribution and its integral curves
will be called rolling motions. Any rolling motion g(t) = (g(t), p(t)) is a solution of

dg
dt

= g(t)U(t),
dp
dt

= ~U(t)(o), (15)

and can be associated with the rolling curve (α̂(t), α(t)), doτg(t)), where α(t) = τg(t)(o). The
reader may want to show that this intrinsic definition of rolling agrees with the extrinsic
descriptions [23] based on the formalism in [24].

Since Γ is a vector subspace in G that satisfies

Γ + [Γ, Γ] + [Γ, [Γ, Γ]] = G, (16)

the Lie algebra generated by the left-invariant vector fields tangent to H is equal to G,
and therefore, any two points in G can be connected by a rolling motion, and each rolling
motion inherits a natural length

∫ T
0

√
〈U(t), U(t)〉 dt from G. To put the matter in a control

theoretic context, let A1, . . . , Am be an orthonormal basis in p so that (Ai, ~Ai(o)) is an
orthonormal basis in Γ. Then an absolutely continuous curve g(t) = (g(t), p(t)) is a rolling
motion if and only if

dg
dt

= g(t)(
m

∑
i=1

ui(t)Ai),
dp
dt

=
m

∑
i=1

ui(t)~Ai(o), (17)
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for some bounded and measurable control functions u1(t), . . . , um(t), in which case the

length of g(t) is given by
∫ T

0

√
u2

1(t) + · · ·+ u2
m(t)dt. It then follows from (16) that the Lie

algebra generated by the left-invariant vector fields Xi(g, p) = (gAi, ~Ai(o)), i = 1, . . . , m is
of full rank in G. Since each left-invariant vector field Xi is complete, any pair of points
in G can be connected by an integral curve of H of minimal length ([19]). An integral
curve g(t) ofH is called a rolling geodesic if for any t0 and t1, sufficiently close to each other,
the length of g(t) in the interval [t0, t1] is minimal among all other integral curves ofH that
connect g(t0) to g(t1).

The rolling problem consists of characterizing the rolling geodesics in G induced by
H. Since each rolling geodesic is also a sub-Riemannian geodesic on the configuration
space G relative to the above length, the rolling problem can be equivalently phrased
as a sub-Riemannian problem in G where one looks for the solutions g(t) = (g(t), p(t))
on a fixed time interval [0, T] that satisfy the given boundary conditions g(0) = g0 and
g(T) = g1 along which the energy of transfer 1

2

∫ T
0 ∑m

i=1 u2
i (t) dt is minimal.

Return now briefly to the affine-quadratic problem introduced earlier with its dynam-
ics

dg
dt

= g(t)(A + U(t)), U(t) ∈ k (18)

and the energy (sometimes called the cost in the literature on optimal control) E =
1
2

∫ T
0 〈P(U(t)), U(t)〉 dt, induced by a positive definite operator P relative to the scalar

product 〈 , 〉. Since P can be diagonalized by an orthonormal basis B1, . . . , Bk in k, the affine-
quadratic problem can be restated as an optimal problem over the system

dg
dt

= g(t)(A +
k

∑
i=1

ui(t)Bi) = X0(g) +
k

∑
i=1

ui(t)Xi(g), (19)

with X0(g) = gA, Xi(g) = gBi, i = 1, . . . k, and E = 1
2

∫ T
0 ∑k

i=1 λiu2
i (t) dt the energy of

transfer (λ1, . . . , λn are the eigenvalues of P). In the canonical case E = 1
2

∫ T
0 ∑k

i=1 u2
i (t) dt.

Let us now single out some examples that are relevant for the results that follow.

1.4. Some Notable Examples

1. G = SL(n), K = SO(n). In this situation we will assume that the Lie algebra
g = sl(n), that consists of n× n matrices having zero trace, is endowed with the scalar
product 〈X, Y〉 = 1

2 Tr(XY). Then k = so(n) is the Lie algebra of K, and p = sym0(n) is
the space of symmetric matrices in g. It is easy to verify that 〈 , 〉 is positive on p and
negative on k = so(n). Therefore G with its left-invariant metric induced by 〈 , 〉 is a
semi-Riemannian manifold.

Then the quotient space M = G/K will be identified with Pn, the space of positive-
definite matrices of determinant one, through the action τg(P) = gPgT , g ∈ SL(n), P ∈ Pn,
where gT is the matrix transpose of g. Since any positive definite matrix P with Det(P) = 1
can be written as P = SST for some S ∈ SL(n) the action is transitive, and Pn can be
identified with the orbit through the identity I. Since the identity matrix I is both an
element of Pn and the group identity in G, it is equal to the point o (π(e) = o). Horizontal
curves are the solutions of dg

dt = g(t)U(t), U(t) ∈ sym0(n). Any curve α(t) in Pn is the
projection of a horizontal curve g(t) and the length of α(t) is given by

∫ T
0

√
〈U(t), U(t)〉 dt.

Killing vector fields are given by ~U(P) = UP + PUT , U ∈ sl(n) and P ∈ M. The rolling
distribution is given by

dg
dt

= g(t)U(t), U(t) ∈ sym0(n),
dp
dt

= ~U(t)(o) = 2U(t) (20)

The case n = 2 is somewhat special, for then P2 is isometrically diffeomorphic to the
Poincaré upper half plane P = {z + iy : y > 0} with its metric 1

y

√
ẋ2 + ẏ2. To elaborate,
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note that every g ∈ SL(2) can be written as g = PR where P is upper triangular and R is a

rotation matrix. In fact, if g =

(
a b
c d

)
is an element of SL(2) then

(
a b
c d

)
=

1√
c2 + d2

(
1 ac + bd
0 c2 + d2

)
1√

c2 + d2

(
d −c
c d

)
. (21)

Let now

F(x + iy) = ggT = PPT =
1
y

(
x2 + y2 x

x 1

)
, (22)

where P =

( y√
y

x√
y

0 1√
y

)
. We will now show that F is an isometry from P with its Poincaré

hyperbolic metric onto P2 with its G-invariant metric. If α̃(t) = F(α(t) then

˙̃α(t) = ṖPT + PṖT = P(P−1Ṗ + ṖT(P−1)T)PT ,

and therefore, || ˙̃α(t)|| = ||P−1Ṗ + ṖT(P−1)T ||. If Y = y√
y and X = x√

y , then an easy
calculation shows that

P−1Ṗ + ṖT(PT)−1 =

(
2 Ẏ

Y
XẎ+ẊY

Y2
XẎ+ẊY

Y2 −2 Ẏ
Y

)
=

1
y

(
ẏ ẋ
ẋ −ẏ

)
,

and hence || ˙̃α(t)|| = 1
y

√
ẋ2 + ẏ2. It follows that ||α̇(t)|| = || ˙̃α(t)|| and therefore F is

an isometry.
It then follows that the rolling distribution has its isometric analogue on P rolling on

the tangent space at i. In this scenario SL(2) acts on P via the Moebius transformations

τg(z) = az+b
cz+d , g =

(
a b
c d

)
, and P is represented by the orbit {τg(i) : g ∈ SL(2)}. Horizon-

tal curves are the solutions of dg
dt = g(t)

(
u1(t) u2(t)
u2(t) −u1(t)

)
and their projections on P are

given by z(t) = g(t)(i). Then

dz(t)
dt
|t=0 =

d
dt

g(t)(i)|t=0 =
d
dt

1
c2 + d2 (bd + ac + i)|t=0 = 2i(u1 − iu2).

Therefore, rolling motions are the solutions of

dg
dt

= g(t)
(

u1(t) u2(t)
u2(t) −u1(t)

)
,

dw
dt

= 2i(u1(t)− iu2(t)). (23)

2. G = SOε(n + 1), K = {1} × SO(n), ε = ±1, where SOε(1, n) denotes the connected
component of SO(1, n) that contains the group identity when ε = −1, and SOε(n + 1) =
SO(n + 1) , when ε = 1. Both cases can be treated in a uniform manner as follows.

Let Vε denote Rn+1 with the scalar product (x, y)ε = x0y0 + ε ∑n
i=1 xiyi. Each SOε(n +

1) acts on Vε by matrix multiplications, and each group is defined as the matrix group
whose elements have a positive determinant and preserve the bilinear form ( , )ε. It follows
that each g ∈ SOε(n+ 1) satisfies gT Dg = D where D is a diagonal matrix with its diagonal
entries equal to (1, ε, . . . , ε). Therefore, Det(gT)Det(g)Det(D) = Det(D) which implies
that Det(g) = 1. This shows that each of SOε(n + 1) is a subgroup of SL(n + 1).

We will let Sn
ε denote the Euclidean unit sphere when ε = 1 and the hyperboloid

{x ∈ Rn+1 : x2
0 = 1 + ∑n

i=1 x2
i , x0 > 0} when ε = −1. In each case, SOε(n + 1) acts on Sn

ε

by the left matrix multiplications on the points of Sn
ε written as column vectors. It can be
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shown that this action is transitive. When Sn
ε is represented by the orbit through e0 then the

isotropy group K = {g ∈ SOε(n + 1) : ge0 = e0} is equal to {1} × SO(n). Therefore,

Sn
ε = SOε(n + 1)/K.

with the natural projection π given by π(g) = ge0 = τg(e0).
We will regard G = SOε(n + 1) as a semi-Riemannian subgroup of SL(n + 1) with

its left-invariant metric introduced through the bilinear form 〈X, Y〉ε = − ε
2 Tr(XY) (this

metric is indefinite on gε when ε = −1 and is positive when ε = 1).
The following notations will be useful in describing the Cartan factors kε and pε.

If a and b are any points in Rn+1 then a ⊗ε b will denote the matrix defined by (a ⊗ε

b)x = (a, x)εb, x ∈ Rn+1, and then a ∧ε b will denote the matrix a ⊗ε b − b ⊗ε a. Since
((a ∧ε b)x, y)ε + (x, (a ∧ε b)y)ε = 0, a ∧ε b belongs to soε(n + 1) for any a, b in Rn+1.

It is easy to show that the Lie algebra k of K and its orthogonal complement pε are
given by the following expressions:

pε = {U = u ∧ε e0 : (u, e0)ε = 0}, (24)

k = {V = v ∧ε w : (v, e0)ε = (w, e0)ε = 0}, (25)

The preceding matrices can be also written as

U =

(
0 −εu∗

u 0

)
, V =

(
0 0
0 v ∧ w

)
, u, v, w in Rn.

Horizontal curves are the solutions of

dg
dt

= g(t)U(t), U(t) = u(t) ∧ε eo, u(t) ⊥ e0,

that satisfy

〈〈g(t)U(t), g(t)U(t)〉〉ε = 〈U(t), U(t)〉ε =
n

∑
i=1

u2
i (t).

Then ||α̇(t)||2ε = ε(α̇, α̇)ε = εα̇2
0 + ∑n

i=1 α̇2
i is the natural metric on Sn

ε . We then have

||α̇(t)||2ε = ε(α̇(t), α̇(t))ε = ε(g(t)u(t), g(t)u(t))ε =
n

∑
i=1

u2
i (t) = 〈U(t), U(t)〉ε,

hence the metric is SOε(n + 1) invariant, and Sn
ε with this metric is a semi-simple homoge-

neous manifold. It follows that the rolling distribution is given by

dg
dt

= g(t)u(t) ∧ε e0),
dp
dt

= (u(t) ∧ε eo)e0 = u(t), (26)

which agrees with 2.4 in ([6]).

2. Symplectic Background, Hamiltonian Systems

Let us now turn our attention to the extremal curves associated with our main prob-
lems. Because of the constraints present in these problems, the Maximum Principle of
optimal control, rooted in the Hamiltonian formalism, is the only tool available for arriving
to the appropriate extremal equations. However, in order to make an effective use of the
Maximum Principle we will need to work with the symplectic form in a special system
of coordinates that is well adapted for left-invariant optimal control problems (described
in [3,8]) which calls for a brief review of symplectic geometry. Below is a brief summary of
the symplectic material required for the main results.

Recall that a manifold M endowed with a non-degenerate and closed 2-form ω is
called symplectic. The symplectic form induces a correspondence between functions and
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vector fields: every function f corresponds to a vector field ~f defined by ω(~f , X) = d f (X).
In this context, ~f is called the Hamiltonian vector field generated by f . Every symplectic
manifold is even dimensional, and at each point of M there exists a neighbourhood with
coordinates (x1, . . . , xn, p1, . . . , pn) such that the Hamiltonian vector fields are given by

~f =
n

∑
i=1

∂ f
∂pi

∂

∂xi
− ∂ f

∂xi

∂

∂pi
. (27)

This choice of coordinates in which ~f is represented by (27) is called symplectic.
Any cotangent bundle T∗M is a symplectic manifold endowed with its canonical

symplectic form, usually written as ω = dp ∧ dx relative to a choice of symplectic coor-
dinates ∑n

i=1 pidxi. As a symplectic manifold the cotangent bundle is somewhat special,
it is a vector bundle at the same time. For that reason every vector field X on M can be
lifted to a unique Hamiltonian vector field ~fX in T∗M via the function fX(ξ) = ξ(X(x)),
ξ ∈ T∗x M. Vector field ~fX is called the Hamiltonian lift of X. The same procedure is applicable
to any time varying vector field, and by extension to any differential system on M. Thus,
any differential system in M can be lifted to a Hamiltonian system in T∗M. Then the
Maximum Principle singles out the appropriate Hamiltonian lifts that govern the optimal
solutions ([8]).

When the base manifold is a Lie group G, and when the underlying differential system
is either left or right invariant, then there is privileged system of coordinates based on
the realization of T∗G as G × g∗, with g∗ the dual of g, that preserves the left (or right)
invariant symmetries and elucidates the conservation laws of the associated Hamiltonian
system. The passage to these coordinates is explained below.

2.1. Left-Invariant Trivializations and the Symplectic Form

Having in mind applications involving left-invariant variational systems, the cotan-
gent bundle T∗G and the tangent bundle TG will be represented as G× g∗ and G× g via
the left-translations. That is, tangent vectors v ∈ TgG will be identified with the pairs
(g, V) ∈ G × g via the relation v = dLgV. Similarly, linear functions ξ ∈ T∗g G will be
identified with pairs (g, `) ∈ G× g∗ via ξ = dL−1

g
∗
`, i.e., ξ(v) = ξ(dLgV) = `(V). Then

T(T∗G) is naturally identified with the product (G× g)× (g∗ × g∗) ∼= (G× g∗)× (g× g∗),
with the understanding that an element ((g, `), (A, a)) ∈ (G× g∗)× (g× g∗) denotes the
tangent vector (A, a) at the base point (g, `).

Note that G× g∗ is a Lie group in its own right since g∗ is an abelian Lie group with
the group multiplication given by the vector addition. Then left-invariant vector fields
in G × g∗ are the left-translates of the pairs (A, a) in the Lie algebra g × g∗ of G × g∗.
In this formalism the flow associated with the left-invariant vector field (gA, a) in G× g∗

is given by (g exp(tA), `+ ta). In terms of left-invariant vector fields V1 = (A1, a1) and
V2 = (A2, a2), the canonical symplectic form on T∗G is given by the following formula:

ω(g,`)(V1, V2) = a2(A1)− a1(A2)− `([A1, A2]) (28)

The above differential form is invariant under left-translations in G × g∗, and is
particularly revealing for the Hamiltonian vector fields generated by left-invariant functions
on G× g∗, that is, functions that satisfy H(hg, `) = H(g, `) = H(e, `) for all g, h ∈ G and
all ` ∈ g∗. Evidently, left-invariant functions on G× g∗ are in exact correspondence with
functions in C∞(g∗).

Each left-invariant vector field X(g) = dLgX, X ∈ g, lifts to a linear function hX on
g∗ because

hX(ξ) = ξ(X(g)) = ξ ◦ (dLg)(X) = `(X), ξ ∈ T∗g G
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and each function H on g∗ generates a Hamiltonian vector field ~H on G× g∗ whose integral
curves are the solutions of

dg
dt

(t) = g(t)dH`(t),
d`
dt

(t) = −ad∗dH`(t)(`(t)). (29)

Equation (29) can be easily verified by the following argument: when H is a function
on g∗, then its differential at a point ` is a linear function on g∗, hence an element of g,
because g∗ is a finite dimensional vector space. If ~H(g,`) = (A(g, `), a(g, `)) for some vectors
A(g, `) ∈ g and a(g, `) ∈ g∗, then

b(dH`) = b(A)− a(B)− `[A, B],

must hold for any tangent vector (B, b) at (g, `). This implies that A(g, `) = dH`, and a =
−ad∗dH`(`), where (ad∗A)(B)(`) = `[A, B] for all B ∈ g. Hence, (29) holds.

In a more general case where H is a function of both g and `, the equations for ~H are
given by

dg
dt

(t) = g(t)dH`(t),
d`
dt

(t) = −ad∗dH`(t)(`(t))− dHg ◦ dLg, (30)

as can be easily verified through the relations

b(dH`) + dHg ◦ dLgB = b(A)− a(B)− `[A, B].

This situation typically occurs in problems of mechanics in the presence of potential
functions. For instance, the motion of a three-dimensional rigid body with a potential
function V : SO(3)→ R is described by the Hamiltonian

H(R, `) = H0(`) + V(α1, α2, α3)

where α1, α2, α3 denote the columns of the matrix transpose RT of the rotation R in SO(3).
If R(t) = RetX is a curve in SO(3) defined by an element X ∈ so(3), then αi(t) = R(t)Tei =
e−tXRTei = e−tXαi. Therefore,

dV(RX) =
3

∑
i=1

(
∂V
∂αi

,
dαi
dt

)|t=0 =
3

∑
i=1

(
∂V
∂αi

,−Xαi) =
3

∑
i=1
〈 ∂V

∂αi
∧ αi, X〉

where 〈 , 〉 is the standard inner product − 1
2 Tr(XY) in so(3). Thus, dHg ◦ dLg = ∑3

i=1
∂V
∂αi
∧

αi is the external torque exerted by V. The corresponding equations of motion are given by

dg
dt

(t) = g(t)dH0(`(t)),
d`
dt

(t) = −ad∗dH0(`(t))(`(t)) +
3

∑
i=1

αi ∧
∂V
∂αi

. (31)

These equations extend to an “n-dimensional rigid body” H(R, `) = H0(`)+V(α1, . . . , αn))
with the external torque ∑n

i=1 αi ∧ ∂V
∂αi

. This system of equations is usually written on the
tangent bundle of SO(n), represented as the product SO(n)× so(n), as

dR
dt = R(t)Ω(t), dM

dt = [Ω(t), M(t)] + ∑n
i=1 αi ∧ ∂V

∂αi
(32)

P(Ω(t)) = M(t), αi(t) = RT(t)ei, i = 1, . . . , n.

In this context, M(t) is the generalization of the angular momentum, Ω(t) is the
generalization of the angular velocity, and P is the generalization of the inertia tensor.
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2.2. Poisson Manifolds, Coadjoint Orbits

We will now address the Poisson structure on g∗ inherited from the symplectic form ω
given by (28). Recall that a manifold M together with a bilinear, skew-symmetric form

{ , } : C∞(M)× C∞(M)→ C∞(M)

that satisfies

{ f g, h} = f {g, h}+ g{ f , h}, (Leibniz’s rule), and

{ f , {g, h}}+ {h, { f , g}}+ {g, {h, f }} = 0, (Jacobi’s identity),

for all functions f , g, h on M, is called a Poisson manifold.
Every symplectic manifold is a Poisson manifold with the Poisson bracket defined

by { f , g}(p) = ωp(~f (p),~g(p)), p ∈ M. However, a Poisson manifold need not be sym-
plectic, because it may happen that the Poisson bracket is degenerate at some points of M.
Nevertheless, each function f on M induces a Poisson vector field ~f through the formula
~f (g) = { f , g}. It is known that every Poisson manifold is foliated by the orbits of its family
of Poisson vector fields, and that each orbit is a symplectic submanifold of M with its
symplectic form ωp(~f ,~h) = { f , h}(p). (This foliation is known as a the symplectic foliation
of M).

Proposition 1. The dual g∗ of a Lie algebra g is a Poisson manifold with the Poisson bracket

{ f , h}(`) = `([dh, d f ], f , h in C∞(g∗).

Proof. Functions on g∗ coincide with the left-invariant functions on G× g∗. Hence,

ω(g,`)(~f ,~h) = ω(g,`)((d f , 0), (dh, 0)) = −ad∗([d f , dh])(`) = `([dh, d f ]).

It follows that the Poisson bracket on g∗ is the restriction of the canonical Poisson
bracket on G × g∗ to the left-invariant functions. As such it automatically satisfies the
properties of a Poisson manifold.

In the literature on integrable systems, Poisson bracket { f , h}(`) = `([d f , dh]) is often
referred as the Lie-Poisson bracket ([14]). We have taken its negative so that Poisson vector
fields agree with the projections of the Hamiltonian vector fields generated by left-invariant
functions (and also agree with the sign convention in [7,8]).

It follows that each function H on g∗ defines a Poisson vector field ~H on g∗ through
the formula ~H( f )(`) = {H, f }(`) = −`([dH`, d f ]) = −ad∗dHl(d f ). The integral curves of
~H are the solutions of

d`
dt

(t) = −ad∗dH`(t)(`(t)) (33)

That is, each function H on g∗ may be considered both as a Hamiltonian on T∗G,
as well as a function on the Poisson space g∗. It follows that the Poisson equations of the
associated Poisson field are the projections of the Hamiltonian Equation (29) on g∗ .

Solutions of Equation (33) are intimately linked with the coadjoint orbits of G. We recall
that the coadjoint orbit of G through a point ` ∈ g∗ is given by Ad∗g(`) = {` ◦Adg−1 , g ∈ G}.

The following proposition is a paraphrase of A.A. Kirillov’ fundamental contributions
to the Poisson structure of g∗ ([25]).

Proposition 2. Let F denote the family of Poisson vector fields on g∗ and let M = OF (`0) denote
the orbit of F through a point `0 ∈ g∗. Then M is equal to the connected component of the coadjoint
orbit of G that contains `0. Consequently each coadjoint orbit is a symplectic submanifold of g∗.
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The fact that the Poisson equations evolve on coadjoint orbits implies useful reductions
in the theory of Hamiltonian systems with symmetries. Our main results will make use of
this fact.

2.3. Representation of Coadjoint Orbits on Lie Algebras- Semi-Simple vs. Semi-Direct

On semi-simple Lie groups, the Killing form, or any scalar multiple of it 〈 , 〉, is non-
degenerate, and can be used to identify linear functions ` on g with points L ∈ g via the
formula 〈L, X〉 = `(X), X ∈ g. Then Poisson Equation (33) can be expressed dually on g as

dL
dt

= [dH, L]. (34)

The argument is simple:

〈dL
dt

, X〉 = d`
dt

(X) = −`([dH, X]) = 〈L, [X, dH]〉 = 〈[dH, L], X〉.

Since X is arbitrary, Equation (34) follows.
Under the above identification coadjoint orbits are identified with the adjoint orbits

O(L0) = {gL0g−1 : g ∈ G}, and the Poisson vector fields ~fX(`) = −ad∗X(`) are iden-
tified with vector fields ~X(L) = [X, L]. Each vector field [X, L] is tangent to O(L0) at L,
and ωL([X, L], [Y, L]) = 〈L, [Y, X]〉, X, Y in g is the symplectic form on each orbit O(L0).

In a reductive semi-simple Lie group G with a subgroup K there is also the semi-direct
product G0 = po K, described earlier in the introduction. Then Poisson equations on
g∗0 = (po k)∗ can be also represented on g0 via the quadratic form 〈 , 〉 as in the semi-simple
case, but the resulting expression takes on a slightly different form. To see the difference,
let dH = dHp + dHk and L = Lp + Lk denote the decompositions of dH and L onto the
factors p and k. On the semi-direct product,

〈 dLp

dt , Xp〉+ 〈 dLk
dt , Xk〉 = 〈 dL

dt , X〉 = d`
dt (X) = −`([dH, X]) =

−〈L, [dH, X]〉 = −〈L, [dHp, Xk] + [dHk, Xp] + [dHk, Xk]〉
= −〈Lp, [dHp, Xk] + [dHp, Xk]〉 − 〈Lk, [dHk, Xk] =

〈Xk, [dHk, Lk] + [dHp, Lp]〉+ 〈Xp, [dHk, Lp]〉.

Hence, the Poisson equations are given by

dLk

dt
= [dHk, Lk] + [dHp, Lp],

dLp

dt
= [dHk, Lp]. (35)

This equation can be combined with the equations for the semi-simple case in terms of
the parameter s with

dLk

dt
= [dHk, Lk] + [dHp, Lp],

dLp

dt
= [dHk, Lp] + s[dHk, Lp], s = 0, 1. (36)

One can show that the coadjoint orbit through P0 ∈ p, Q0 ∈ k under the action of
G0 = po K consists of pairs (P, Q)

P = Adh(P0), Q = [Adh(P0), X] + Adh(Q0), (X, h) ∈ G0, (37)

when `0 ∈ g∗s is identified with L0 = P0 + Q0 in g0, and when ` = Ad∗(X,h)(`0) is identified
with L = P + Q ([8]).

The adjoint orbits of a non-compact semi-simple Lie group G are often symplectomor-
phic with the cotangent bundles of manifolds ([26]). It appears that the same is true for
coadjoint orbits under the action of semi-direct products. We will now single out two such
situations which are relevant for the connections to mechanical tops.

Return now to G = SOε(n + 1) and K = {1} × SO(n) introduced in Example 2.
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Proposition 3. The coadjoint orbit O(P0) through P0 = p0 ∧ε e0, (p0, e0)ε = 0, Q0 = 0 under
the action of the semi-direct product pε o K is diffeomorphic to the tangent bundle of the connected
component of the “sphere” Sn

ε = {p ∈ Rn+1 : (p, p)ε = (p0, p0)ε} that contains p0.

Proof. Let h ∈ K, and X = x ∧ eo, (x, e0)ε = 0. Then

P = Adh(P0) = h(p0) ∧ε h(e0) = p ∧ε e0, p = h(p0)

Q = [Adh(P0), X] = [p ∧ε e0, x ∧ε e0] = p ∧ε x = p ∧ε x⊥p ,

where x⊥p is the projection of x on the orthogonal complement of p in Rn+1. Therefore,

(p, x⊥p )⇒ p ∧ε e0 + p ∧ x⊥p

is the desired diffeomorphism from the tangent bundle of the connected sphere Sn
ε onto the

coadjoint orbit {Adh(P0) + [Adh(P0), X], (X, h) ∈ pε o K}.

The above diffeomorphism is actually a symplectomorphism from the cotangent
bundle of either the Euclidean sphere Sn when ε = 1, or the hyperboloid of one sheet when
ε = −1, to the appropriate coadjoint orbit, but we will not go into these details. ([8]).

We will now turn our attention to the reductive pair G = SL(n), K = SO(n) (Example 1)
and the coadjoint orbit through a symmetric matrix P0 with distinctive non-zero eigenvalues
α1, . . . , αk under the action of Go = po SO(n). We recall that sl(n) = so(n)⊕ p where p

is the space of symmetric n× n matrices of trace zero. Every symmetric n× n matrix S
can be written as S = S0 +

Tr(S)
n I, S0 ∈ p. An easy inspection of (37) shows that the orbit

through S differs by a constant factor Tr(S)
n I from the orbit through S0. So the zero-trace

requirement is inessential for the structure of coadjoint orbits.

Proposition 4. The coadjoint orbit through P0 given by

P = Adh(P0), Q = [Adh(P0), X], (X, h) ∈ po SO(n)

is diffeomorphic to the tangent bundle of the flag manifold F(1, 2, . . . , k) consisting of subspaces
V1 ⊂ V2 · · · ⊂ Vk with dimVi = i.

Sketch of the proof: Let P0 denote a symmetric matrix with distinct non-zero eigen-
values α1 < α2 · · · < αk. Then P0 can be identified with a point (V1 ⊂ V2 · · · ⊂ Vk) in
F(1, . . . , k) where each subspace Vi is equal to the linear span of unit eigenvectors a1, . . . , ai
of P0. If P0 is represented by the matrix ∑k

i=1 αi(ai ⊗ ai), then Adh(P0) is represented by
the matrix ∑k

i=1 αi(h(ai)⊗ h(ai)) that corresponds to the point Fh = (hV1 ⊂ hV2 · · · ⊂ hVk)
in F(1, . . . , k). The correspondence Adh(P0) → Fh is a diffeomorphism from the orbit
{Adh(P0), h ∈ SO(n)} onto F(1, . . . , k).

Let now Stn
k denote the Stiefel manifold of k-orthonormal frames [a1, . . . , ak] in Rn.

Points of Stn
k can be represented by n× k matrices M with columns a1, . . . , ak that satisfy

MT M = Ik, where MT denotes the matrix transpose of M, and where Ik is the k-dimensional
identity matrix. Let φ : Stn

k → F(1, . . . , k) be the embedding

M = [a1, . . . , ak]→ FM = (V1 ⊂ V2 · · · ⊂ Vk), Vi =< a1, . . . , ai > .

Then φ−1(FM) = MD, where D is a diagonal k× k matrix with its diagonal entries
equal to ±1. Therefore, F(1, . . . , k) is a covering space for Stn

k , and hence F(1, . . . , k) and
Stn

k are locally diffeomorphic, that is, every point M ∈ Stn
k admits an open neighbourhood

U such that the restriction of φ to U is a diffeomorphism onto φ(U). It follows that tangent
vectors at a point M can be identified with n× k matrices Ṁ that satisfy ṀT M + MT Ṁ = 0.
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Let now U be an open set in Stn
k such that φ restricted to U is a diffeomorphism onto

φ(U). For every Fh ∈ φ(U), Adh(P0) is identified with M = [m1, . . . , mk], mi = h(ai), i =
1, . . . , k. Then

Q = [Adh(P), X] =
k

∑
i=1

[αi(mi ⊗mi), X] =
k

∑
i=1

yi ∧mi,

with yi = αiX(mi). Since X is symmetric, αj(yi, mj) = αi(mi, yj). Moreover, yi could be
replaced by its orthogonal projection on m⊥i without altering the value of Q. So we may
assume that (yi, mi) = 0, i = 1, . . . , k.

It follows that MTQM + MTQT M = 0, hence Ṁ = QT M is a tangent vector at M.
The pairs (M, QT M) are parametrized by the entries of M and the entries of the matrix
Y. The columns yi = αiXmi of Y satisfy k(k + 1) constraints αj(yi, mj) = αi(yj, mi), i 6= j,
and (yi, mi) = 0. This implies that the manifold of pairs of n× k matrices (M, Y) subject to
the constraints

(mi, mj) = δij, αj(yi, mj) = αi(yj, mi), i 6= j, (yi, mi) = 0, (38)

is of the same dimension as the tangent bundle of Stn
k . Therefore, the correspondence

∑k
i=1 αi(mi ⊗ mi), ∑k

i=1 yi ∧ mi → (M, QT M) is one to one and onto the sub-bundle TU
over U.

Corollary 1. If P0 is the orthogonal projection on a k-dimensional vector space, i.e., if P0 =

∑k
i=1 ai ⊗ ai, for some orthonormal vectors a1, . . . , ak, then the coadjoint orbit through P0 under

the action of the semi-direct product po SOn is diffeomorphic to the tangent bundle of the oriented
Grassmannian Grn

k .

Here P0 is identified with the flag consisting of a single k-dimensional vector space
Vk spanned by a1, . . . , ak. Then {(hVk), h ∈ SO(n)} is diffeomorphic to the oriented Grass-
mannians Grn

k .

Note 1. Proposition 4 is a correction to Proposition 10.2 on page 170 in [8] which incorrectly states
that the coadjoint orbit through P0 is the Steifel Stn

k rather than the flag manifold F(1, 2, . . . , k).

3. Hamiltonian and Poisson Systems: Extremal Curves

We now come to the central part of the paper, the Hamiltonian systems associated
with our optimal control problems,

3.1. Rolling Hamiltonians

Recall the rolling problem Equation (17),

dg
dt

= g(t)(
m

∑
i=1

ui(t)Ai),
dp
dt

=
m

∑
i=1

ui(t)~Ai(o),

and the associated optimal control problem of minimizing the energy function
1
2

∫ T
0 ∑m

i=1 u2
i (t)dt. Our immediate aim is to use the Maximum Principle to obtain the

equations for the extremal curves in the cotangent bundle T∗G of the configuration space
G. To emphasize the structure of the problem, we will rewrite (17) as

dg
dt

=
m

∑
i=1

ui(t)Xi(g), (39)
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where each Xi a left-invariant vector field Xi(g) = (gAi, ~Ai(o)), g = (g, p). If g(t) is an
optimal trajectory then, according to the Maximum Principle, g(t) is the projection of an
extremal curve ξ(t) in T∗G along which the cost extended Hamiltonian

−λ

2

m

∑
i=1

u2
i (t) +

m

∑
i=1

ui(t)Hi(ξ(t)), λ = 0, 1

is maximal relative to all competing controls. In this notation, each Hi is the Hamiltonian lift
of Xi, i.e., Hi(ξ(t)) = ξ(t)(Xi(g(t)). In the abnormal case, λ = 0, the Maximum principle
results in the constraints

Hi(ξ(t)) = 0, i = 1, . . . , m, (40)

while in the normal case, λ = 1, the maximality condition implies that the optimal controls
are of the form ui(t) = Hi(ξ(t)), in which case the corresponding optimal solutions are the
projections of the solution curves of a single Hamiltonian vector field ~H generated by the
Hamiltonian

H(ξ) =
1
2

m

∑
i=1

H2
i (ξ). (41)

This Hamiltonian is left-invariant in the representation T∗G = G× G∗ and hence its
Hamiltonian equations are given by the Equation (29), that is,

dg
dt

=
n

∑
i=1

Hi(`(t))Xi(g(t)),
d`
dt

= −ad∗dH(`(t))(`(t))

We will now concentrate on the solutions of the associated Poisson equation

d`
dt

= −ad∗dH(`(t))(`(t)) (42)

Let us first expand on the structure of the coadjoint orbits in this situation. Since
M̂ is a Euclidean vector space, its tangent space at the origin can be identified with M̂.
Then the Lie algebra G can be identified with g× M̂, and its dual can be identified with
G∗ = g∗ ⊕ M̂∗, where

g∗ = {` ∈ G∗ : `( ṗ) = 0, ṗ ∈ M̂}, M̂∗ = {` ∈ G∗ : `(g) = 0}.

It then follows that every ` ∈ G∗ can be written as ` = `1 + `2 with `1 ∈ g∗ and
`2 ∈ M̂∗. Since M̂ is a vector space, and therefore an abelian algebra, the projection
`2 on M̂∗ is constant on each coadjoint orbit of G. The argument is straightforward: if
g = (g, p), then

Ad∗g(`)(X + ṗ) = `(Adg−1(X + ṗ)) = `(Adg−1(X) + ṗ) = `1(Adg−1(X)) + `2( ṗ),

It follows that the coadjoint orbits in G are of the form

{Ad∗g(`1) : g ∈ G}+ `2, for any ` = `1 + `2.

This fact can be also verified directly from Equation (42): we have

d`
dt

V = −`[dH, V], for any V = X + ṗ in G,

where dH = ∑m
i=1 Hi(`)(Ai + ~Ai(o)) and Hi(`) = `1(Ai) + `2(~Ai(o)). Therefore,

d`1

dt
(X) +

d`2

dt
( ṗ) = −(`1 + `2)([dH, X + ẋ]) = −

m

∑
i=1

Hi(`i)[Ai, X].
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from which follows that

d`1

dt
(X) = −

n

∑
i=1

Hi(`i)[Ai, X], X ∈ g,
d`2

dt
( ṗ) = 0.

Since ṗ is arbitrary d`2
dt = 0.

To uncover other constants of motion, identify G∗ with G via the natural quadratic
forms on each of the factors, and then recast the preceding equations on G. More precisely,
identify each `2 in M̂∗ with a tangent vector l = ∑m

i=1 li ~Ai(o) via the formula `2( ṗ) =
(l, ṗ), ṗ ∈ M̂. Similarly, identify `1 ∈ g∗ with L ∈ g via the formula `1(X) = 〈L, X〉, X ∈ g.
Then decompose L ∈ g into the sum L = Lp + Lk, Lp ∈ p and Lk ∈ k. Relative to the basis
A1, . . . , Am in p, Lp = ∑m

i=1 Pi Ai where Pi = `1(Ai) = 〈L, Ai〉. It follows that

Hi(ξ) = `(Ai + ~Ai(o)) = `1(Ai) + `2(~Ai(o)) = Pi + li,

and

d`1
dt (X) = 〈 dL

dt , X〉 = −〈L, [∑m
i=1(li + Pi)Ai, X]〉 = −〈[L, ∑m

i=1(li + Pi)Ai], X〉,

( dl
dt , ṗ) = d`2

dt (t)( ṗ) = 0

Since X and ṗ are arbitrary,

dL
dt

= [
m

∑
i=1

(li + Pi)Ai, L] = [A + Lp, L], A =
m

∑
i=1

li Ai,
dl
dt

= 0. (43)

Equation (43) constitutes the Poisson equations on G generated by the Hamiltonian
H = 1

2 ∑m
i=1 H2

i = 1
2 ∑m

i=1(li + Pi)
2. Note that in this identification of the Lie algebras with

their duals, coadjoint orbits {Ad∗g(`1) + `2 : g ∈ G} are identified with the affine sets
{Adg(L) + l : g ∈ G}. Coupled with

dg
dt

= g(t)(A + Lp),
dp
dt

=
n

∑
i=1

(li + Pi)~Ai(o), (44)

Equation (43) constitutes the extremal equations for the rolling geodesics. Each ex-
tremal curve projects onto a geodesic g(t) = (g(t), p(t)), and each geodesic further projects
onto the pair of curves α(t) = τg(t)(o) in M and β(t) = p(t) in M̂ that are rolled upon each
other by g(t).

3.2. Affine-Quadratic Hamiltonian

Similar to the rolling problem, the Maximum Principle reveals that the normal ex-
tremals of the affine-quadratic system (18) are the integral curves of the Hamiltonian vector
field ~H associated with the Hamiltonian function

H(L) =
1
2
〈P−1Lk, Lk〉+ 〈A, Lp〉,

where as before L = Lp + Lk is the decomposition of L ∈ g onto the factors p and k. In the
canonical case P = I, and in the representation T∗G = G× g∗, the Hamiltonian equations
generated by H are then given by

dg
dt

= g(t)(A + U(t)), U(t) = Lk(t),
dL
dt

= [dH, L] = [A + Lk, L], (45)

The Poisson equation dL
dt = [dH, L] can be written in expanded form as

dLk

dt
= [A, Lp],

dLp

dt
= [Lk, Lp] + [A, Lk] = [A− Lp, Łk] (46)
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The “shadow” problem generates an analogous Hamiltonian on the tangent bundle of
the semi-direct product G0 = po K with its extremal equations given by:

dx
dt

= AdR(t)A,
dR
dt

= R(t)Lk(t),
dLk

dt
= [A, Lp],

dLp

dt
= [Lk, Lp]. (47)

Here g(t) = (x(t), R(t)), and dg
dt = g(t)(A+ Lk(t)) is the same as dx

dt = AdR(t)A, dR
dt =

R(t)Lk(t).
The propositions below reveal a remarkable fact that the Poisson equations of a

canonical affine-quadratic Hamiltonian can always be regarded as an invariant subsystem
of the Poisson equations associated with a rolling Hamiltonian. We will use bold letters
when referring to the variables in the rolling Hamiltonian in contrast to the variables in the
affine-quadratic Hamiltonian.

Proposition 5. Let g(t) = (g(t), p(t)), Lp(t), Lk(t) be any integral curve of the rolling Hamilto-
nian H = 1

2 ||A + Lp||2, that is,

dg
dt = g(t)(A + Lp(t)),

dp
dt = ∑m

i=1(li + Pi)~Ai(o),
dLk
dt = [A, Lp],

dLp

dt = [A + Lp, Lk], A = ∑m
i=1 liAi

Then

g̃(t) = g(t)h(t), Lp(t) = Adh−1(t)(Lp(t)), Lk = Adh−1(t)(Lk(t)) (48)

is an integral curve of the affine Hamiltonian H = 1
2 〈Lk, Lk〉+ 〈A, Lp〉, where A = Adh−1(t)(A +

Lp(t)), and h(t) is the solution of dh
dt = Lk(t)h(t) with h(0) = I.

Moreover, g̃(t) = (x(t), R(t)) in po K with R(t) = h(t) and x(t) a solution of dx
dt =

A + Lp(t) is the projection of an extremal curve

Lk(t) = Adh−1(t)Lk(t), Lp(t) = Adh−1(t)(Lp(t))− A, A = Adh−1(t)(A + Lp(t))

associated with the shadow Hamiltonian H = 1
2 〈Lk, Lk〉+ 〈A, Lp〉.

Proof. If A is any element in p then d
dt Adh(t)(A) = [Adh(t)(A), Lk]. Since d

dt (A + Lp(t)) =
[A + Lp(t), Lk(t)], Adh(t)(A) and A + Lp(t) are the solutions of the same differential equa-
tion they will be equal to each other whenever Adh(0)(A) = A + Lp(0), that is, when
A = A + Lp(0).

Assume that Adh(t)(A) = A + Lp(t). Then,

dg̃
dt = g(t)(A + Lp(t))h(t) + g(t)Lk(t)h(t) =

g̃(t)(Adh−1(t)(A + Lp(t)) + Adh−1(t)Lk(t)) = g̃(t)(A + Lk(t)).

Additionally,

dLp

dt = d
dt Adh−1(t)(Lp(t)) = Adh−1(t)([Lk, Lp]) + Adh−1(t)([A + Lp(t), Lk(t)])

= Adh−1(t)[A, Lk(t)] = [Adh−1(t)A, Adh−1(t)Lk(t)] = [A− Adh−1(t)Lp(t), Lk(t)] =

[A− Lp(t), Lk(t)],

and

dLk
dt = d

dt Adh−1(t)(Lk(t)) = Adh−1(t)[A, Lp(t)] = [Adh−1(t)A, Adh−1(t)(Lp(t)] =

[A− Adh−1(t)(Lp(t)), Adh−1(t)(Lp(t))] = [A, Lp(t)].



Mathematics 2022, 10, 4827 19 of 24

As to the proof of the second statement, note that ẋ(t) = AdR(t)A = A + Lp(t)

and dR
dt = Lk(t)R(t) = R(t)Lk(t) is a solution of dg̃

dt = g̃(t)(A + Lk(t)) as remarked in
Equation (47). An argument identical to the one above shows that

dLk

dt
= [A, Lp(t)],

dLp

dt
= [Lk(t), Lp(t)].

The converse also holds as this proposition demonstrates.

Proposition 6. Suppose that (g̃(t), Lp(t), Lk(t)) is an extremal curve of the affine Hamiltonian
H = 1

2 〈Lk, Lk〉+ 〈A, Lp〉. Then

g(t) = ((g̃(t)h−1(t), p(t)), dp
dt = ~A(o) +~Lp(o), dh

dt = h(t)(Lk(t))

Lp(t) = Adh(t)(Lp(t)), Lk(t) = Adh(t)(Lk(t)), A = Adh(t)(A− Lp(t))

is an extremal curve of the rolling Hamiltonian H = 1
2 〈A + Lp, A + Lp〉.

However, if g̃(t) = (x(t), R(t)), Lp(t) and Lk(t) is an extremal curve of the shadow Hamilto-
nian H, then

dg
dt = g(t)AdR(t)(A)), dp

dt = ~dx
dt (o)

Lp(t) = AdR(t)(A + Lp(t)), Lk(t) = AdR(t)(Lk(t))

is an extremal equation of the Hamiltonian H = 1
2 〈A + Lp, A + Lp〉 with AdR(t)A = A + Lp(t).

Proof. The proof of the first part is essentially the same as in the previous proposition.
In the second part, we have

dx
dt

= AdR(t)(A),
dR
dt

= R(t)Lk(t),
dLp

dt
= [Lk, Lp],

dLk

dt
= [A, Lp].

Then d
dt AdR(t)(Lp(t)) = AdR(t)([Lp, Lk]) + AdR(t)([Lk, Lp]) = 0.

Let AdR(t)(Lp(t)) = −A so that AdR(t)(A) = A + Lp(t). It follows that dg
dt = g(t)(A +

Lp(t)) and dx
dt = AdR(t)(A) = A + Lp(t). Hence,

dp
dt

= ~A(o) +~Lp(o) =
~dx
dt

(o).

Additionally,

dLp

dt = d
dt AdR(t)(A + Lp(t)) = AdR(t)([A + Lp, Lk]) + AdR(t)([Lk, Lp]) =

AdR(t)([A, Lk]) = [AdR(t)(A), AdR(t)(Lk)] = [A + Lp(t), Lk(t)],
dLk
dt = d

dt AdR(t)(Lk(t)) = AdR(t)([A, Lp(t)]) = [AdR(t)(A), AdR(t)(Lp(t)]) =

[A + Lp(t),−A] = [A, Lp(t)].

The above shows that the Poisson systems generated by any affine-quadratic Hamil-
tonian are invariant subsystems of the rolling Hamiltonians. To summarize, let L(t) =
Lp(t) + Lk(t) denote an integral curve of the rolling Hamiltonian H = 1

2 〈A + Lp, A + Lp〉.
If h(t) denotes the solution of dh

dt = Lk(t)h(t), h(0) = I, then define A ∈ p by Adh(t)(A) =
A + Lp(t). It follows from above that

Lp(t) = Adh−1(t)(Lp(t)), Lk(t) = Adh−1(t)(Lk(t)) (49)
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are integral curves of the affine quadratic Hamiltonian H = 1
2 〈Lk, Lk〉+ 〈A, Lp〉. However,

when
Lp(t) = Adh−1(t)(Lp(t))− A, Lk(t) = Adh−1(t)(Lk(t)) (50)

then Lp(t), Lk(t) are integral curves of the shadow Hamiltonian H.

3.3. Isospectral Representations and Integrability

An n× n matrix equation dL
dt = [M(t), L(t)] is called a Lax equation, and (M, L) is

called Lax pair. If (M, L) is a Lax pair, then the spectrum of L(t) is constant. The proof is
simple: g(t)L(t)g−1(t) = Λ, where Λ a constant matrix for any solution dg

dt = g(t)M(t) in
the general linear group Gl(n). Since the spectrum of Λ is equal to the spectrum of L(t),
the spectrum of L(t) must be constant.

It follows that the Poisson equation of any left-invariant Hamiltonian H is a Lax
equation on a semi-simple Lie algebra g (Equation (34)) and therefore, the eigenvalues of
L(t) are constants of motion for any left-invariant Hamiltonian on g and hence may be
regarded as the conservation laws on g.

A function h on a Poisson space is said to be invariant if {h, f } = 0 for any function
f . On semi-simple Lie algebras any spectral function is invariant. In particular functions
φk(L) = Tr(Lk), k = 1, 2, . . . form a family of invariant functions.

In some situations, a Lax equation dL
dt = [M(t), L(t)] extends to a Lax equation dLλ

dt =
[Mλ(t), Lλ(t)] with a spectral parameter λ. Then a discrete spectrum of L is replaced by a
continuous spectrum of Lλ which results in additional constants of motion. In the case of
rolling spheres J. Zimmerman in his PhD thesis (2002, University of Toronto) discovered an
extension of the Lax equation which he called isospectral ([6]). Remarkably, Zimmerman’s
extension exists for the rolling problem on any semi-simple homogeneous manifold, for the
same reasons as in the rolling sphere problem. In fact, if X0(t) = A + Lp(t), X1(t) =
Lk(t), X2(t) = −A, X3 = 0, then the Poisson equations may be written as

dXi
dt

= [X0(t), Xi+1(t)], i = 0, 1, 2. (51)

This equation is invariant under a dilational change Xi → λi−1Xi. It then follows that

Lλ =
3

∑
i=0

λiXi = Lp(t) + λLk(t) + (1− λ2)A (52)

satisfies the equation

dLλ

dt
= [Mλ(t), Lλ(t)], Mλ(t) =

1
λ
(A + Lp(t)). (53)

Therefore, the spectrum of Lλ(t) is constant. We will refer to Lλ as the spectral curve
for H. Of course, the above implies that the Poisson system associated with the affine-
quadratic Hamiltonian also admits an isospectral representation. To be specific note that
after the substitutions from Equation (49),

Lλ = Adh(t)Lp + λAdh(t)Lk + (1− λ2(Adh(t)(A− Lp) =

Adh(t)(λ
2Lp + λLk + (1− λ2)A) = Adh(t)Lλ.

Then

dLλ
dt = d

dt (Adh(t)(Lλ) = Adh(t)[Lλ, Lk] + Adh(t)
dLλ
dt

= [ 1
λ (A + Lp), Lλ] = Adh(t)[

1
λ A, Lλ].
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Therefore,
dLλ

dt
= [Lk, Lλ] + [

1
λ

A, Lλ] = [
1
λ

A + Lk, Lλ].

To be consistent with my earlier publications, replace λ by − 1
λ to get

dLλ

dt
= [Mλ, Lλ], (54)

where Mλ = Lk − λA, and Lλ = Lp − λLk + (λ2 − 1)A. Equation (54) agrees with the
isospectral representation in ([8]) (obtained by other means).

To get the spectral curve Lλ for the shadow Hamiltonian, use Equation (50). In such a
case, Lk = Adh(Lk), Lp = Adh(Lp + A) and A = −AdhLp yields

Lλ = AdhLλ, Lλ = λ2Lp + λLk + A.

Then a calculation analogous to the one above gives dLλ
dt = [ 1

λ A + Lk, Lλ]. After the
rescaling λ→ − 1

λ we get a modified Lax pair

dLλ

dt
= [Mλ, Lλ], Mλ = Lk − λA, Lλ = Lp − λLk + λ2 A. (55)

Each spectral curve Lλ defines a family of functions

I = {φ(k)
λ (L) = Tr(Lk

λ), k = 1, 2, . . . } ∪ { f (L) = 〈L, X〉 : X ∈ k, [X, A] = 0}.

Proposition 7. The family I is involutive, that is, {h, g} = 0 for each g and h in I , and in the
case that A is regular, it is also complete, in the sense that it contains a subfamily I0 that is Liouville
integrable on each coadjoint orbit in g ([8], pp. 164–165).

See also related papers also [27–29]).
Since H belongs to I , the rolling problem is completely integrable when A is regular.

Corollary 2. Each affine-quadratic Hamiltonian H = 1
2 〈Lk, Lk〉+ 〈A, Lk〉 is completely integrable

on g when A is regular.

4. Symmetric Mechanical Tops

We will now relate the “top-like” equations

dR
dt = R(t)(P−1(M(t))), αi(t) = R(t)Tei, i = 1, . . . , n (56)

dM
dt = [P−1(M(t)), M(t)] + ∑n

i=1 αi(t) ∧ ∂V
∂αi

(57)

on the tangent bundle of SO(n), associated with the energy Hamiltonian
H = 1

2 〈P−1(M), M〉 + V(α1, . . . , αn), to the rolling equations. For simplicity of exposi-
tion, we will assume that the top is maximally symmetric, that is we will assume that all
principal moments of inertia are equal, which is the same as P = I. We will first consider
the case of linear potentials.

Linear potentials: V = −∑n
i=1 ci(αi, a), where a is a vector in Rn, and c1, . . . , cn are

constants. Then Equation (56) can be written as

dR
dt

= R(t)Ω(t),
dM
dt

= a ∧ p(t),
dp
dt

= −Ω(t)p(t) (58)
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where Ω(t) = M(t) and p(t) = ∑n
i=1 ciαi(t). Our proposition below relates Equation (58)

to the rolling equations

dg
dt = g(t)(A + Lp(t)), dx

dt = ~A(o) +~Lp(o), (59)
dLp

dt = [A + Lp(t), Lk(t)],
dLk
dt = [A, Lp(t)]. (60)

on SOε(n + 1)× To M, ε = ±1, where M = SOε(n + 1)/K, K = {1} × SO(n).
To set the stage for this proposition, we will need to embed Equation (58) in Rn+1

via the following embeddings. To begin with, v̂ ∈ Rn+1 will denote the embedding
v̂ = 0e0 + ∑n

i=1 viei for any v = ∑n
i=1 viei. Then a ∈ Rn will be identified with A = â ∧ε e0

and p ∈ Rn will be identified with Lp = p ∧ε e0 in pε. In addition R ∈ SO(n) will be

identified with h = {1} × R =

(
1 0
0 R

)
, and Ω will be identified with Lk =

(
0 0
0 M

)
, so

that dR
dt = R(t)Ω(t) is identified with dh

dt = h(t)Lk(t). Then

dLp

dt
(t) =

d
dt
( p̂(t) ∧ε e0) = −Łk(t) p̂(t) ∧ε e0 = [Lk(t), Lp(t)]

is the same as dM
dt = a ∧ p(t). It follows that Equation (58) can be paraphrased as

dh
dt

= h(t)Lk(t),
dLp

dt
= [Lk(t), Lp(t)]. (61)

However, then

d
dt

Adh(t)Lp(t) = Adh(t)[Lp(t), Lk(t)] + Adh(t)[Lk(t), Lp(t)] = 0,

and therefore Adh(t)Lp(t) is constant (same as d
dt (R(t)p(t)) = R(t)Ω(t)p(t)−

R(t)Ω(t)p(t) = 0).

Proposition 8. Top-like Equation (58) are isomorphic to the Equations (59) and (60) under the
identification

A = −Adh(t)Lp(t), Lp(t) = Adh(t)(A + Lp(t)), Lk(t) = Adh(t)Lk(t)),
dg
dt = g(t)Adh(t)A, dx

dt = ~A(o) +~Lp(o).

Proof. It follows that Adh(t)A = A + Lp(t) and dg
dt = g(t)(A + Lp(t)). Thus, (60) is

satisfied. We also have

dLp

dt = Adh(t)[A + Lp(t), Lk(t)] + Adh(t)[Lk(t), Lp(t)] =

Adh(t)[A, Lk(t)] = [A + Lp(t), Lk(t)],
Lk
dt = Adh(t)[A, Lp(t)] = [Adh(t)A, Adh(t)Lp(t)] = [A + Lp(t),−A] = [A, Lp(t)],

and Equation (59) are also satisfied.

Corollary 3. An n-dimensional symmetric top with a linear potential is completely integrable.

Quadratic potentials. We will now show that the rolling geodesic equations on
M = SL(n)/SO(n) can be identified with movements of the symmetric top under a
quadratic potential. For our purposes, an n-dimensional top with quadratic potential is
synonymous with the Hamiltonian

H(R, M) =
1
2
(P−1(M), M) +

1
2

n

∑
i=1

ai〈Sαi, αi〉,
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with R ∈ SO(n), M ∈ so(n), RTei = αi, S a symmetric n× n matrix, and a1, . . . , an arbitrary
numbers. In accordance with (32) the Hamiltonian equations of ~H are given by

dR
dt

= R(t)Ω(t),
dM
dt

= [Ω(t), M(t)] +
n

∑
i=1

aiαi(t) ∧ Sαi(t), (62)

Ω(t) = P−1(M(t)). In the symmetric case P = I and [Ω(t), M(t)] = 0 and the equations
reduce to

dR
dt

= R(t)Ω(t),
dM
dt

=
n

∑
i=1

aiαi(t) ∧ Sαi(t). (63)

To relate these equations to the rolling equations, let

Lp(t) =
n

∑
i=1

ai(αi(t)⊗ αi(t))−
1
n

n

∑
i=1

ai I.

Recall that a ⊗ a is a rank one matrix defined by (a ⊗ a)x = (a, x)a where (a, x) is
the standard Euclidean inner product in Rn. Therefore each matrix αi ⊗ αi is a symmetric
matrix with its trace equal to one, and consequently Lp is a symmetric matrix having zero
trace. Along each solution of (63)

d
dt

Lp(t) = −
n

∑
i=1

ai(Ω(t)αi(t)⊗ αi(t) + αi(t)⊗Ω(t)αi(t)) = [Ω(t), Lp(t)].

Additionally,

d
dt

AdR(t)Lp(t) = AdR(t)[Lp(t), Ω(t)] + AdR(t)[Ω(t), Lp(t)]) = 0.

Now let

A = −AdR(t)Lp(t), Lp(t) = AdR(t)(S + Lp(t)), Lk(t) = AdR(t)Ω(t). (64)

We then have

Proposition 9. Equation (63) are isomorphic to the Poisson equations of the rolling problem on
g = sl(n) (Equation (43)) associated with the extremal

dg
dt

= AdR(t)S = g(t)(A + Lp(t)),
dp
dt

= ~A(o) +~Lp(o).

Proof. By a straightforward calculation.

Corollary 4. Equations of a symmetric n-dimensional top with quadratic potential are com-
pletely integrable.

See also related results in [30–32]).
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