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Abstract: Due to the time delay and some unavoidable noise factors, obtaining a real-time solution of
dynamic time-varying linear matrix equation (LME) problems is of great importance in the scientific
and engineering fields. In this paper, based on the philosophy of zeroing neural networks (ZNN), we
propose an integration-enhanced combined accelerating zeroing neural network (IEAZNN) model to
solve LME problem accurately and efficiently. Different from most of the existing ZNNs research,
there are two error functions combined in the IEAZNN model, among which the gradient of the
energy function is the first design for the purpose of decreasing the norm-based error to zero and the
second one is adding an integral term to resist additive noise. On the strength of novel combination in
two error functions, the IEAZNN model is capable of converging in finite time and resisting noise at
the same time. Moreover, theoretical proof and numerical verification results show that the IEAZNN
model can achieve high accuracy and fast convergence speed in solving time-varying LME problems
compared with the conventional ZNN (CZNN) and integration-enhanced ZNN (IEZNN) models,
even in various kinds of noise environments.

Keywords: time varying; linear matrix equation; zeroing neural network; finite-time convergence;
noise resistance
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1. Introduction

The advances in computer science have extended its use in various fields of applica-
tion, such as the robotics domain [1–3], adaptive neural tracking control [4] and image-
processing [5]. Among all the applications mentioned above, the linear matrix equation
(LME) is one of the most commonly seen problems. Therefore, how to solve the LME
is a crucial challenge. Numerous efforts have been made to solve LME difficulties more
effectively. A common way of dealing with LMEs is to use Newton’s iteration method [6–8].
However, there may be some problems related to the running time and the algorithm’s
complexity [9] in the case of high-dimensional or large-scale matrix operations, and the
complexity of the numerical iterative algorithm is proportional to the cube of the matrix
dimension [10]. In general, such numerical methods may not be able to meet the require-
ments of real-time applications due to their inherent iterative nature when used to solve
time-varying LME problems.

Recently, due to the intensive study of neural networks, many dynamic simulation
solvers based on recurrent neural networks (RNN) have been studied and developed to
process LMEs in parallel [11–14]. Different from numerical algorithms, the RNN is famous
for its parallel computing advantages, which helps greatly to promote computational
efficiency. As a result, neural dynamic methods are now considered a powerful alternative
to online computation of matrix problems due to their parallel distribution properties and
the convenience of hardware implementation [15,16]. As a typical RNN, the gradient-based
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neural network (GNN) is designed to solve the minimization problems [8,17–19]. However,
when coping with time-dependent cases, GNN produces relatively large lag errors [20]. As
a result, a new kind of continuous-time RNN called zeroing neural network (ZNN) has
emerged for solving various time-dependent problems, such as matrix inversion [21], the
Lyapunov equation [15,22] and the Sylvester equation [23]. From the perspective of solution
results, the state solution of ZNN can start from any initial state and converge globally
to the theoretical solution with exponential speed. In order to accelerate the convergence
speed, the finite-time zeroing neural network model (FTZNN) [24] was developed to solve
the time-varying matrix inversion problem, in which the upper bound of finite convergence
time was calculated theoretically.

Although ZNN can achieve finite-time convergence, its denoising ability is limited and
cannot qualify for solving accurately in the case of noisy systems [25]. Since external noise is
unavoidable and some noise will inevitably appear in the hardware implementation of the
neural network model [26], some anti-noise ZNN models have been developed [22,25–27].
The paper [26] presents a discrete-time zeroing neural algorithm for solving linear equations
using control techniques, focusing on solving discrete time-varying linear equations with
various noises. In the literature [22], a noise-tolerant zeroing neural network (NTZNN)
model is proposed to solve the nonstationary Lyapunov equation under various types
of noise interference. An integration-enhanced noise-tolerant zeroing neural network
(IENTZNN) model is defined and considered to calculate the outer inverse of time-varying
matrix in the presence of various noises [27]. By using a novel activation function (NAF),
the authors proposed a new interference-tolerant fast convergence zeroing neural network
(ITFCZNN) for solving dynamic matrix inversion (DMI) [25]. Additionally, the most classic
anti-noise model is IEZNN [28], which can be used to solve time-varying LME in various
noisy environments. Compared with the conventional ZNN, the main improvement of the
IEZNN model lies in introducing an integral term of error on the right side of ZNN to resist
additional injected noise. However, due to the intrinsic properties of linearity, the IEZNN
model can only achieve exponential convergence in theory [28]. In general, the CZNN with
nonlinear activation function can achieve finite-time convergence but cannot resist noise,
while the improved noise-resistant neural network models such as IEZNN cannot achieve
finite-time convergence. As a result, more and more research is focusing on developing
models that can effectively resist noise while solving the problem in a finite amount of time.

Different from other previous research methods, in this paper, we propose a new
interference-tolerant and fast convergence zeroing neural network for solving dynamic
matrix inversion using the gradient of the energy function as the first error function to
obtain the superior convergence; then, a new second error function is constructed for noise
resistance. To overcome the exponential convergence speed, the novel integration-enhanced
combined accelerating zeroing neural network (IEAZNN) model is developed to solve the
time-varying LME problem. From the comparison and experimental results, the proposed
IEAZNN model can exactly and efficiently solve the time-varying LME without lagging
error in a finite time, even in noisy environments.

The rest of the article is organized as follows. Section 2 lists the time-varying LME to
be solved, and presents the traditional CZNN model and noise-resistant IEZNN model
with an integral term to solve the equation for comparison. In Section 3, the improved
ZNN model with accelerated solution is formed by a new error definition based on the
energy function gradient of time-varying LME, and a new IEAZNN model with both noise
resistance and finite-time convergence is obtained. Then, the convergence, finite time and
stability of the IEAZNN model are proved. The MATLAB simulation results are presented
in Section 4, in which the CZNN model, IEZNN model and the proposed IEAZNN model
are digitally verified with no noise, constant noise and dynamic linear noise, respectively.
The conclusions are summarized in the final section. Before ending this section, the main
contributions of this article are listed as follows:

(1) Specially for the design of IEAZNN model, the gradient of the energy function is used
as the first error function for superior convergence. To resist noise influences, a new,
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second error function is designed based on the IEZNN model. Then, the IEAZNN is
developed for the anti-noise and finite-time convergence.

(2) Different from other ZNN models, which are either for achieving anti-noise or fi-
nite time convergence, the presented IEAZNN model is noise-tolerant and has the
advantage of finite-time convergence at the same time.

(3) The theoretical analyses and experimental comparisons show that the proposed
IEAZNN model in this paper performs well in both convergence speed and solu-
tion accuracy under various noise disturbances.

2. Problem Formulation and Related Models

Consider the same time-varying LME in [29]:

A(t)X(t)B(t) = C(t) (1)

where A(t) ∈ Rm×m, B(t) ∈ Rn×n and C(t) ∈ Rm×n are smooth and differentiable time-
varying coefficient matrices. X(t) ∈ Rm×n is the time-varying unknown matrix that we
need to solve in real time to satisfy the time-varying problem (1). The problem (1) solving
is widely applied to many practical problems in control theory and has been mentioned in
many papers [5,29,30].

2.1. Conventional ZNN Model

The conventional ZNN (CZNN) [2,11,21,22,28,29,31] is designed to systematically
resolve time-varying matrix inversion in real time while eliminating the lagging errors. For
solving the above time-varying LME (1), the CZNN design formula can be written as

Ṡ(t) = −γ1S(t) (2)

where γ1 ∈ R is used to scale the convergence rate of the solution and γ1 > 0. In order to
achieve the time-varying unknown matrix X(t) of the time-varying LME problem (1), error
function S(t) should be defined as S(t) = A(t)X(t)B(t)−C(t). Then, take the derivative of
S(t) as Ṡ(t) and substitute it into the above CZNN design formula (2). Thus, by expanding
the formula (2), the following CZNN solver can be obtained to solve the time-varying LME
problem (1):

A(t)Ẋ(t)B(t) = −γ1(A(t)X(t)B(t)− C(t))− Ȧ(t)X(t)B(t)− A(t)X(t)Ḃ(t) + Ċ(t) (3)

However, the shortcoming of the above CZNN is that when there exists noise, the
solution of the model is difficult to converge or fails to converge to the theoretical ones.
Intuitively speaking, after adding noise to the right side of the design formula (2), one
can have Ṡ(t) = −γ1S(t) + noise. Evidently, when the CZNN model (3) is exploited to
solve (1), error S(t) = A(t)X(t)B(t)− C(t) does not really decrease to 0; so, X(t) will not
converge to the theoretical solution X∗(t).

2.2. Integration-Enhanced ZNN Model

In order to solve the above accuracy problem during the solving procedure in the
presence of noise, an integration-enhanced ZNN (IEZNN) model was proposed [28]. The
main improvement of IEZNN compared with CZNN is to add an integral term to the right
side of (2). The IEZNN design formula can be summarized as follows:

Ṡ(t) = −γ1S(t)−ω
∫ t

0
S(σ)dσ (4)

where γ1 is the same as defined in CZNN (2) and ω > 0 are the design parameters to scale
the convergence of IEZNN. By following the design formula of IEZNN (4) and considering
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S(t) = A(t)X(t)B(t)− C(t), an IEZNN model can be obtained for solving time-varying
LME (1) as follows:

A(t)Ẋ(t)B(t) =− γ1(A(t)X(t)B(t)− C(t))−ω
∫ t

0
(A(σ)X(σ)B(σ)− C(σ))dσ

− Ȧ(t)X(t)B(t)− A(t)X(t)Ḃ(t) + Ċ(t)
(5)

By the research investigations in [28], (5) is the complete form of the noise-resistant
IEZNN model, which has a high noise tolerance and is able to converge to a theoretical
solution of the time-varying matrix inversion problem. However, the IEZNN model cannot
achieve finite-time convergence because no nonlinear activation function [15] is used.

3. Noise-Enduring IEAZNN Model

When there exists external noise interference, the aforementioned CZNN model (3)
cannot solve with zero-free the time-varying LME (1) [22], while the IEZNN model (5) can
resist noise interference by means of adding an integral term but cannot achieve finite-time
convergence. Since noise interference is unavoidable in both nature and practice, in this
section, we design and implement an anti-noise interference model that can converge in a
finite amount of time, shown in Equation (9).

3.1. Model Design

In order to solve problem (1), as for CZNN (2) and IEZNN (4), the design formula
is constructed based on an error function S(t) ∈ Rm×n for solving time-varying LME (1).
Different from the design of CZNN and IEZNN, the error function S(t) will be replaced by
the gradient of an energy function depicted as the following steps:

(1) By the classical gradient-based algorithm [12,15,18,29] and the general construction
process [15], first, a non-negative scalar-valued norm basis energy function ε(X) can
be defined as ε(X) = ‖AXB − C‖2

F/2 = trace((AXB − C)>(AXB − C))/2 with t
omitted for written convenience.

(2) By the property of the trace, we can obtain the above derivative of ε(X), ∂ε(X)
∂X =

A>AXBB> − A>CB>, with respect to X.
(3) Define G(t) := ∂ε(X)

∂X to replace the error function S(t) in (2).

In the absence of noise interference, when the error function S(t) converges to 0, it
means that the solution X(t) of the time-varying LME problem (1) can converge to the
theoretical solution X∗(t) by the following ZNN model:

Ṡ(t) = −γ1S(t)− γ2S
q
p (t) (6)

However, X(t) is no longer the exact solution of the original LME problem (1) under
the interference of various external noises. In order to overcome this problem, in this
section, a new error function E(t) ∈ Rm×n, which is completely different from the error
S(t) = A(t)X(t)B(t)− C(t), is designed as follows:

E(t) = G(t) + ω
∫ t

0
(G(σ) + G

q
p (σ))dσ (7)

where p and q denote the positive odd integers satisfying p > q. The integral term is
composed of two parts, which can speed up the convergence of the model against noise to
a certain extent, and is equivalent to the role of the activation function [32]. Similarly, in
order to solve the time-varying problem (1) accurately and effectively, based on the new
error function E(t), an improved design idea is introduced as follows:

Ė(t) = −γ1E(t)− γ2E
q
p (t) (8)
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where the design parameter γ2 > 0, which is the same as γ1. As for Equation (8), the
first item (γ1E(t)) mainly affect the convergence speed, which controls dominantly the
convergence rate of the neural network for a related big residual error at the beginning of
the solution. However, when E(t) gradually closes to nearby the zero point, the conver-

gence speed of the neural network is mainly decided by the second term of (8) (γ2E
q
p (t)).

Therefore, the ZNN model based on (8) can have superior convergence properties. By the
new error function (7) and combining (8), the integration-enhanced combined accelerated
zeroing neural network (IEAZNN) model can be expressed as follows:

˙G(t) + ω(G(t) + G
q
p (t)) =− γ1(G(t) + ω

∫ t

0
(G(σ) + G

q
p (σ))dσ)

− γ2(G(t) + ω
∫ t

0
(G(σ) + G

q
p (σ))dσ)

q
p

(9)

For model (9), according to G(t) = A>(t)A(t)X(t)B(t)B>(t)− A>(t)C(t)B>(t), we
can obtain the following IEAZNN model for the time-varying problem (1), solving

A>(t)A(t) ˙X(t)B(t)B>(t) =

− γ1(A>(t)A(t)X(t)B(t)B>(t)− A>(t)C(t)B>(t) + ω
∫ t

0
(G(σ) + G

q
p (σ))dσ)

− γ2(A>(t)A(t)X(t)B(t)B>(t)− A>(t)C(t)B>(t) + ω
∫ t

0
(G(σ) + G

q
p (σ))dσ)

q
p

− ˙A>(t)A(t)X(t)B(t)B>(t)− A>(t) ˙A(t)X(t)B(t)B>(t)

− A>(t)A(t)X(t) ˙B(t)B>(t)− A>(t)A(t)X(t)B(t) ˙B>(t) + ˙A>(t)C(t)B>(t)

+ A>(t) ˙C(t)B>(t)−ω(A>(t)A(t)X(t)B(t)B>(t)− A>(t)C(t)B>(t)

+ (A>(t)A(t)X(t)B(t)B>(t)− A>(t)C(t)B>(t))
q
p ) + A>(t)C(t) ˙B>(t)

(10)

As discussed in the presentation nearby Equation (7), the IEAZNN model (10) is
a noise-resistant model evolved by the improved design idea (8). Consider that there
unavoidably exists noise in the practical engineering applications; thus, the IEAZNN (10)
could be further written as the following form associated with noise.

A>(t)A(t) ˙X(t)B(t)B>(t) =

− γ1(A>(t)A(t)X(t)B(t)B>(t)− A>(t)C(t)B>(t) + ω
∫ t

0
(G(σ) + G

q
p (σ))dσ)

− γ2(A>(t)A(t)X(t)B(t)B>(t)− A>(t)C(t)B>(t) + ω
∫ t

0
(G(σ) + G

q
p (σ))dσ)

q
p

− ˙A>(t)A(t)X(t)B(t)B>(t)− A>(t) ˙A(t)X(t)B(t)B>(t)

− A>(t)A(t)X(t) ˙B(t)B>(t)− A>(t)A(t)X(t)B(t) ˙B>(t) + ˙A>(t)C(t)B>(t)

+ A>(t) ˙C(t)B>(t)−ω(A>(t)A(t)X(t)B(t)B>(t)− A>(t)C(t)B>(t)

+ (A>(t)A(t)X(t)B(t)B>(t)− A>(t)C(t)B>(t))
q
p ) + A>(t)C(t) ˙B>(t) + noise

(11)

In this paper, we carry out the theoretical analysis and experiment simulation in three
cases (i.e., noise-free, constant noise and dynamic linear noise) for the noised model (11).

3.2. Theoretical Analyses

This section theoretically analyzes the convergence, stability and finite time for the
noise-resistant model (10), together with the detailed proof on the noised-model (11) for
achieving convergence to the theoretical solution even in a noisy environment.
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Theorem 1. The IEAZNN model (10) can globally converge to the theoretical time-varying solution
X∗(t) beginning from any initial state X0 = X(0) ∈ Rm×n by taking into account the coefficient
matrices A(t), B(t) and C(t) in the time-varying LME problem (1) under the assumption that
there is a single unique solution.

Proof. According to (7), we can define a candidate Lyapunov function [15,33] as follows:

VE(t) =
1
2

E2(t), (12)

and the time derivative of (12) with respect to time t can be written as

V̇E(t) = E(t)Ė(t) = −γ1E2(t)− γ2E
p+q

p (t) (13)

Evidently, from (12) and (13), VE(t) ≥ 0 and V̇E(t) ≤ 0. According to the Lyapunov

stability principle [15,16], we can know that E(t) = G(t) + ω
∫ t

0 (G(σ) + G
q
p (σ))dσ will

eventually converge to 0. At that time, G(t) = −ω
∫ t

0 (G(σ) + G
q
p (σ))dσ, and Ġ(t) =

−ω(G(t) + G
q
p (t)) can be further obtained. Similar to (12), we proceed to define a new

candidate Lyapunov function as follows:

VG(t) =
1
2

G2(t) (14)

Obviously, VG(t) ≥ 0, and the derivative of VG(t) is formed as follows:

V̇G(t) = G(t)Ġ(t) = −ω(G2(t) + G
p+q

p (t)) (15)

From the above analysis, we can obtain V̇G(t) ≤ 0. According to the Lyapunov stability
principle [15], G(t) also will eventually converge to 0, which implies that the solution X(t)
can converge to theoretical solution X∗(t). This proof is thus completed.

Theorem 2. Starting from any initial value, the IEAZNN model (10) can globally converge
to the theoretical solution X∗(t) in a limited time; the upper bound of the convergence time is

T ≤ p
γ1(p−q) ln γ1E

p−q
p (0)+γ2
γ2

+ p
ω(p−q) ln(G

p−q
p (0) + 1), where E(0) and G(0) are the error

initial values.

Proof. During the convergence period, the total finite convergence time T can be divided
into two parts, namely, the time TE when E(t) decreases to 0 in (7) and the time TG when
G(t) decreases to 0 in (7)—that is, the total convergence time T = TE + TG. To compute TE,
combine (7) and (8); then, we have

Ė(t) =
dE(t)

dt
=− γ1E(t)− γ2E

q
p (t)

dt =
1

−γ1E(t)− γ2E
q
p (t)

dE(t)

∫ TE

0
dt =

∫ 0

E(0)

1

−γ1E(t)− γ2E
q
p (t)

dE(t)

TE =
p

p− q

∫ E
p−q

p (0)

0

1

γ1E
p−q

p (t) + γ2

dE
p−q

p (t)

=
p

γ1(p− q)
ln

γ1E
p−q

p (0) + γ2

γ2

(16)
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Thus, we can know that E(t) = G(t) + ω
∫ t

0 (G(σ) + G
q
p (σ))dσ converges to 0 within

TE = p
γ1(p−q) ln γ1E

p−q
p (0)+γ2
γ2

seconds. When E(t) converges to 0, we can know E(t) =

−ω
∫ t

0 (G(σ) + G
q
p (σ))dσ; thus, Ġ(t) can be written as follows:

Ġ(t) = −ω(G(t) + G
q
p (t)) (17)

Our ultimate goal is to obtain the X(t) to be solved by reducing G(t) to 0. Therefore,
we need to prove the convergence time TG from (17) at the time when E(t) is reduced to 0.
Thus, we have

Ġ(t) =
dG(t)

dt
=−ω(G(t) + G

q
p (t))

dt =
1

−ω(G(t) + G
q
p (t))

dG(t)

∫ TG

0
dt =

∫ 0

G(0)

1

−ω(G(t) + G
q
p (t))

dG(t)

TG =
p

ω(p− q)

∫ G
p−q

p (0)

0

1

G
p−q

p (t) + 1
dG

p−q
p (t)

=
p

ω(p− q)
ln(G

p−q
p (0) + 1)

(18)

As above derivations, we can obtain the time TG for the error G(t) converging to 0.

As a whole, the error E(t) is reduced to 0 within TE = p
γ1(p−q) ln γ1E

p−q
p (0)+γ2
γ2

seconds, and

starting from the time when E(t) = 0, the time TG = p
ω(p−q) ln(G

p−q
p (0) + 1) when G(t) is

reduced to 0. Therefore, the upper bound of the total convergence time of (10) is

T = TE + TG =
p

γ1(p− q)
ln

γ1E
p−q

p (0) + γ2

γ2
+

p
ω(p− q)

ln(G
p−q

p (0) + 1). (19)

Theorem 3. Assuming that the time-varying LME problem (1) has an optimal solution, the noise-
perturbed IEAZNN model (11) can stably converge to the theoretical solution from any initial value
under the presence of different noise disturbances.

Proof. According to Equations (8) and (11), we can obtain the simple expression of the
perturbed model

Ė(t) = −γ1E(t)− γ2E
q
p (t) + noise (20)

with E(t) = G(t) + ω
∫ t

0 (G(σ) + G
q
p (σ))dσ. Similarly, we define the candidate Lyapunov

function for (20) as follows:

L(t) =
(−γ1E(t)− γ2E

q
p (t) + noise)2

2
(21)

Then, the derivative ˙L(t) of L(t) can be written as follows:

˙L(t) = (−γ1E(t)− γ2E
q
p (t) + noise)2(−γ1 − γ2

q
p

E
p−q

p (t)) (22)
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By observing Equation (22), there is no question that (−γ1E(t)− γ2E
q
p (t) + noise)2 ≥

0. γ1, γ2, q and p are greater than 0; moreover, p > q are both odd, which promises that

−γ1 − γ2
q
p E

p−q
p (t) is negative—that is, L̇(t) ≤ 0, since L(t) is defined by Equation (21) and

L(t) ≥ 0. According to the Lyapunov stability principle [15], we can know that L(t) will

eventually converge to 0. At that time, (−γ1E(t)− γ2E
q
p (t) + noise) = Ė(t) = 0.

As E(t) = G(t) + ω
∫ t

0 (G(σ) + G
q
p (σ))dσ, expressed in Equation (7), when Ė(t) is

equal to 0, we can further obtain Ġ(t) = −ω(G(t) + G
q
p (t)) written in Equation (18), of

which the convergence has been proven. That is to say, we have successfully proved the
stability and convergence of the perturbed IEAZNN model (11), which can still accurately
solve the time-varying LME (1) in a noisy environment.

4. Comparative Verifications

This section would give out two illustrative examples to show the convergence perfor-
mance of the presented neural models. In the first example, we compared the convergence
effects of the CZNN model (3), the IEZNN model (5) and the IEAZNN model (10) under no
noise, constant noise and dynamic linear noise. Subsequently, the performance of IEAZNN
under random noise is analyzed. Additionally, under the condition that there is no noise,
the ZNN model (6) is applied to solve the image deblurring problem.

Example 1. In the previous sections, we presented the CZNN model (3), IEAZNN (10) and
perturbed IEAZNN (11), together with the theory analysis of convergence, finiteness of time and
model robustness. In order to further verify the superiorities of the proposed IEAZNN model (10) as
compared with the existing CZNN model (3) and the IEZNN model (5), an illustrative example is
given in this section with the following coefficient matrices in time-varying LME problem (1), the
same in [29]:

A(t) =
[

sin t cos t
− cos t sin t

]
, B(t) =

 2 sin t + cos t sin t
− cos t 2 cos t

sin t− 2 2− sin t 2− sin t

,

C(t) =
[

2 + sin t cos t− 2 cos t 3 cos t + sin t− sin t cos t sin t + 2 cos t− sin t cos t
− cos t + sin2 t− 2 sin t 2 + 2 sin t− sin2 t cos t + 2 sin t− sin2 t

]
.

The following theoretical solution X∗ can be obtained using the MATLAB tool [34]:

X∗(t) =
[

sin t − cos t 0
cos t sin t 1

]
,

which is used to verify the accuracy of the abovementioned three solvers under the following different
noise cases. Meanwhile, according to the above theoretical proof and model characteristics, p and
q will be set as 5 and 3, respectively, in the experiment. In order to better introduce the Matlab
application, a brief presentation of the algorithm is presented in Algorithm 1:

Algorithm 1: Matlab program core ideas.
γ1, γ2 ← 1, ω = 10
repeat IEAZNN model (10) until t=10
for i← 1 to 6
do figure(1); plot(t,Xi)
error← A(t)X(t)B(t)− C(t), theo← A†(t)C(t)B†(t)
for j← 1 to 6
do figure(1); plot(t,theoj)
figure(2); plot(t,norm(error))
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Case 1. No Noise: First of all, the CZNN model (3), the IEZNN model (5) and the IEAZNN
model (10) start from the same random initial value with the same other conditions. Figure 1
shows the convergence of the three models with different design parameters γ1 = γ2 = 1
and γ1 = γ2 = 10 under the absence of noise, where Figure 1a depicts the fitting rela-
tionship between the X(t) solved by the CZNN model (3), the IEZNN model (5) and the
IEAZNN model (10), and the theoretical solution X∗ (red line) when γ1 = γ2 = 1 and
ω = 10. It can be seen that the three models can eventually converge to the theoretical
solution when there is no noise interference. Figure 1b shows the convergence performance
of residual error ‖S(t) = A(t)X(t)B(t) − C(t)‖F, which corresponds to X(t) shown in
Figure 1a, in which all three models have good convergence accuracy. Compared with
Figure 1a, the design parameters γ1 and γ2 are increased to 10 in Figure 1c. Obviously,
X(t) by the CZNN model (3), the IEZNN model (5) and the IEAZNN model (10) can still
converge to the theoretical solution, and the convergence time is shorter in comparison
with Figure 1b with γ1 = γ2 = 1. Similarly, Figure 1d shows the residual error, which
corresponds to Figure 1c. It shows that although CZNN model (3) converges faster, the
IEAZNN model (10) has higher convergence accuracy reaching the 10−6 level, and is better
than those of the CZNN model (3) and the IEZNN model (5), both of which can only
reach the 10−4 level. It is worth mentioning that, when the design parameters increase, the
IEAZNN model (10) converges faster than the IEZNN model (5) with zero noise. The code
about this figure can be found in Appendix A.
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(c) State solution X(t)
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Figure 1. Comparisons among the CZNN model (3), IEZNN model (5) and IEAZNN model (10) for
solving time-varying LME (1) with γ1 = γ2 = 1 and γ1 = γ2 = 10 in the absence of noise. (a) Neural
states X(t). (b) Residual errors ‖S(t)‖F. (c) Neural states X(t). (d) Residual errors ‖S(t)‖F.



Mathematics 2022, 10, 4828 10 of 17

Case 2. Constant Noise: Figure 2 shows the convergence performance of the CZNN model
(3), the IEZNN model (5) and the IEAZNN model (10) under constant noise c = 2, the
same as in [32]. Figure 2a depicts the fitting relationship between X(t) solved by the CZNN
model (3), the IEZNN model (5) and the IEAZNN model (10), and the theoretical solution
X∗ (red line) with γ1 = γ2 = 1 and ω = 10. It can be seen that under the condition
of constant noise c = 2, only the IEZNN model (5) and IEAZNN model (10) involved
with an integral term can converge to the theoretical solution, while the CZNN model (3)
without the integral term cannot resist noise. Figure 2b shows the residual error, which
corresponds to X(t), shown in Figure 2a. It shows that both the IEZNN and IEAZNN
have good convergence effects when γ1 = γ2 = 1, and the convergence accuracy of the
IEZNN model (5) reaches the 10−4 level, which is better than the IEAZNN’s 10−3 level.
Notably, when design parameters are not so large, such as γ1 = γ2 = 1, the IEAZNN
model (10) deals with noise by adding the integral term into the error, and the design idea
(8) has two parts controlled by design parameters, which makes the IEAZNN model (10)
have no advantages compared with the IEZNN model when solving LME (1) dynamically.
However, along with the increase of design parameters, γ1 = γ2 to 10. Obviously, the
IEZNN model (5) and IEAZNN model (10) can still converge to the theoretical solution, and
the convergence time is shorter than that of the case when γ1 = γ2 = 1. Although, when γ1
is increased to 10, the CZNN model (3) is still unable to resist noise, and the convergence
effect is better than that of the case when γ1 = 1 with a low error level. Additionally, as
shown in Figure 2d, compared with the IEZNN model (5), the IEAZNN model (10) can not
only greatly shorten the convergence time but also have better convergence accuracy with
the 10−5 level, which is better than the 10−3 level of IEZNN model (5).
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(c) State solution X(t)
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(d) Residual error ‖S(t)‖F

Figure 2. Comparisons among the CZNN model (3), the IEZNN model (5) and the IEAZNN model
(10) for solving time-varying LME (1) with γ1 = γ2 = 1 and γ1 = γ2 = 10 as the constant noise.
(a) Neural states X(t). (b) Residual errors ‖S(t)‖F. (c) Neural states X(t). (d) Residual errors ‖S(t)‖F.
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Case 3. Dynamic Linear Noise: Figure 3 shows the convergence performance of the CZNN
model (3), the IEZNN model (5) and the IEAZNN model (10) under dynamic linear noise
noise = 0.6t [32]. Likewise, the comparison experiments start from the same random initial
value, ensuring that all other conditions are the same. As shown in Figure 3a, it is obvious
that when the CZNN model (3) is used, X(t) cannot converge to the theoretical solution
X∗ when γ1 = γ2 = 1 and ω = 10, only X(t) of the IEZNN model (5) and IEAZNN model
(10) can converge to the theoretical solution. Figure 3b shows that the residual error of
the traditional CZNN model (3) decreases at the beginning, and then starts to increase
after several seconds with a divergent trend. On the other hand, the residual error of the
IEZNN model (5) and the IEAZNN model (10) can achieve convergence but the residual
convergence speed and convergence accuracy of the IEZNN model (5) are not as good
as those of the IEAZNN model (10). For example, when γ1 = γ2 = 1, the residual error
convergence accuracy of the IEAZNN model (10) can reach the 10−2 level, which is better
than the 10−1 of the IEZNN model (5). As shown in Figure 3c,d, although the residual
error of the traditional CZNN model (3) still cannot be reduced to 0, the increase is smaller
than that of the case when γ1 = 1. In addition, the convergence speed and convergence
accuracy of the residuals of the IEAZNN model (10) have been further improved, in which
the residual can converge to zero within 1 s and the convergence accuracy reaches the order
of magnitude of 10−3. In contrast, under the interference of dynamic linear noise, neither
the convergence accuracy nor the convergence time of the residual error of the IEZNN
model (5) are obviously improved with the increase in γ1, and the convergence accuracy
can only reach the 10−1 level.
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Figure 3. Comparisons among the CZNN model (3), the IEZNN model (5) and the IEAZNN model
(10) for solving time-varying LME (1) with γ1 = γ2 = 1 and γ1 = γ2 = 10 as the dynamic linear noise.
(a) Neural states X(t). (b) Residual errors ‖S(t)‖F. (c) Neural states X(t). (d) Residual errors ‖S(t)‖F.
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In order to simulate the irregular noise in nature as much as possible, the IEAZNN
model (10) is used to solve the LME (1) dynamically under the interference of random
noise. From Figure 4, it can be clearly seen that the IEAZNN model (10) performs very well
under the interference of random noise, not only with high convergence accuracy but also
with short convergence time. It can be seen from Figure 4b that when γ1 = γ2 = 1, the
residual error convergence accuracy of the IEAZNN model (10) can reach the 10−3 level.
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Figure 4. Results of solving LME (1) with IEAZNN model (10) at γ1 = γ2 = 1, ω = 10 under random
noise interference. (a) Neural states X(t). (b) Residual errors ‖S(t)‖F.

It can be seen from the above comparative experiments that when γ1 = γ2 = 1, the
convergence time of the CZNN model (3), the IEZNN model (5) and the IEAZNN model
(10) are basically the same. However, when γ1 and γ2 increase to 10, the IEAZNN model
(10) can converge in about 1 s, and its comprehensive convergence effect is the best. For
comparing the experiment results more intuitively, the convergence precision of the CZNN
model (3), the IEZNN model (5) and the IEAZNN model (10) are summarized in Table 1
under different noise and design parameters. From Table 1, we have the following facts:

(1) In the case of zero-noise interference, the convergence effect of the CZNN model (3)
is stable and the accuracy is high whether γ1 = 1 or γ1 = 10. Once there is noise
interference, the CZNN model (3) cannot accurately solve the time-varying LME (1).
However, whether there exists noise or not, the IEZNN model (5) and IEAZNN model
(10) can always accurately solve the LME problem (1).

(2) Because of the different design formulas, the presented IEAZNN model (10) in this
paper has higher convergence accuracy and better convergence performance when
dealing with dynamic linear noise, whether γ1 = γ2 = 1 or γ1 = γ2 = 10, in
comparison with the other two ZNN models.

(3) With the increase in γ1 and γ2, among these three ZNN models, the convergence
accuracy of the IEAZNN model (10) proposed in this paper is the highest whether
there exists noise or not. It shows that the IEAZNN model (10) has advantages in
solving the time-varying LME problems.

Example 2. In the application of image blurring, we consider the time-invariant special case of
LME (1). A and B represent a 100 × 100-dimensional Toeplitz matrix [5], which is constructed
by formula (23) and A = B. X represents the original image, and C represents the blurred image.
We consider r = 8. The ZNN model (6) is used for image deblurring, and the results are shown in
Figure 5.

aij =


1

2r− 1
, |i− j| ≤ r

0, otherwise.
(23)
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Table 1. Comparison of solving accuracies of the CZNN model (3), IEZNN model (5) and IEAZNN
model (10) under different noise and design parameters.

No Noise Constant Noise Dynamic
Bounded Noise

CZNN 10−4 Cannot reach
convergence

Cannot reach
convergence

γ1 = γ2 = 1 IEZNN 10−5 10−4 10−1

IEAZNN 10−3 10−3 10−2

CZNN 10−4 Cannot reach
convergence

Cannot reach
convergence

γ1 = γ2 = 10 IEZNN 10−4 10−3 10−1

IEAZNN 10−6 10−5 10−3

(a) (b) (c)

Figure 5. The original, blurred and deblurred images. (a) The original image. (b) The blurred image.
(c) The deblurred image.

γ1 = γ2 = 1 is set for this experiment, and other conditions are the same as Example 1.
Compared with the original Figure 5a, although the deblurred Figure 5c has some minor
defects, it can restore the blurred image Figure 5b to a visible state, which is almost the
same as Figure 5a.

5. Conclusions

In order to achieve finite-time convergence, high convergence accuracy and anti-noise
robustness in LME solving in the presence of noise, an integration-enhanced combined
accelerating zeroing neural network (IEAZNN) is designed, verified and applied in this
paper. Different from the general existing ZNN models, IEAZNN first takes the gradient
of the energy function as the initial error, and then obtains the reconstructed error by
the help of the design idea of IEZNN. Next, this paper provides the proofs of global
stability and finite convergence time under zero noise and different noise situations for
the designed IEAZNN model. Finally, numerical simulations are conducted to verify the
convergence characteristic of the IEAZNN model, and comparisons among the CZNN
model and IEZNN model are performed to illustrate the superior performance of the
proposed method. Future studies might concentrate on how to apply the IEAZNN model
to practical engineering applications.
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Abbreviations

The following abbreviations are used in this manuscript:

LME linear matrix equation
RNN recurrent neural network
GNN gradient-based neural network
ZNN zeroing neural network
CZNN conventional zeroing neural network
FTZNN finite-time zeroing neural network
NTZNN noise-tolerant zeroing neural network
IEZNN integration-enhanced zeroing neural network
NAF novel activation function
DMI dynamic matrix inversion
IEAZNN integration-enhanced combined accelerating zeroing neural network

Appendix A

1 tic ;%%initial condition
2 format long;
3 close all ;
4 clear , clc ;
5 G=[1;10];
6 global k1 k2
7 tspan=[0 10];
8 %gamma=1
9 inte0=0*rand(6,1);

10 u1=(rand(6,1)−0.5*ones(6,1)) ;
11 for j=1:1
12 k1=G(1);k2=G(1);
13 [ t ,u]=ode23(@IEAZNNRightHandSide,tspan,[u1;inte0]);
14 %x
15 Num1=length(t);
16 x11=zeros(1,Num1); x12=zeros(1,Num1); x13=zeros(1,Num1);
17 x21=zeros(1,Num1); x22=zeros(1,Num1); x23=zeros(1,Num1);
18 for i=1:Num1
19 x11(i )=u(i ,1) ;
20 x12(i )=u(i ,3) ;
21 x13(i )=u(i ,5) ;
22 x21(i )=u(i ,2) ;
23 x22(i )=u(i ,4) ;
24 x23(i )=u(i ,6) ;
25 end
26 figure (1) ;subplot(2,3,1) ;xlim ([0,10]) ;ylim([−2,3]) ;plot( t ,x11’,’b-’,’linewidth’,1.5);hold

on
27 figure (1) ;subplot(2,3,2) ;xlim ([0,10]) ;ylim([−2,3]) ;plot( t ,x12’,’b-’,’linewidth’,1.5);hold

on
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28 figure (1) ;subplot(2,3,3) ;xlim ([0,10]) ;ylim([−2,3]) ;plot( t ,x13’,’b-’,’linewidth’,1.5);hold
on

29 figure (1) ;subplot(2,3,4) ;xlim ([0,10]) ;ylim([−2,3]) ;plot( t ,x21’,’b-’,’linewidth’,1.5);hold
on

30 figure (1) ;subplot(2,3,5) ;xlim ([0,10]) ;ylim([−2,3]) ;plot( t ,x22’,’b-’,’linewidth’,1.5);hold
on

31 figure (1) ;subplot(2,3,6) ;xlim ([0,10]) ;ylim([−2,3]) ;plot( t ,x23’,’b-’,’linewidth’,1.5);hold
on

32 %err
33 Num1=length(t);
34 for i=1:Num1
35 X=[u(i,1) ;u(i ,2) ;u(i ,3) ;u(i ,4) ;u(i ,5) ;u(i ,6) ];
36 A (:,:, i )=MatrixA(t(i)) ;
37 B (:,:, i )=MatrixB(t(i)) ;
38 C (:,:, i )=MatrixC(t(i)) ;
39 Vec_M=kron(B(:,:,i) .’, A (:,:, i ) ) ;
40 [m,n]=size(C (:,:, i ) ) ;Vec_C=reshape(C(:,:,i) ,m*n,1);
41 vec_err=Vec_M*X−Vec_C;
42 NORM(i)=norm(vec_err);
43 end
44 figure (2) ;plot( t ,NORM,’b-’,’linewidth’,1.5);text(0.5,1.5,’error’);text(9,1,’t(s)’);xlim([0

10]) ;ylim([0 13]) ;hold on
45 NORM=0;
46 end
47 %theo
48 figure (2) ; legend(’CZNN’,’IEZNN’,’IEAZNN’);
49 figure (1) ;subplot(2,3,1) ; text (4.6,3, ’x11’);text (8,−1.5, ’t(s)’);xlim([0 10]) ;ylim([−2 2]) ;plot( t ,

sin( t ) ,’r-’,’LineWidth’,1.5);hold on;
50 figure (1) ;subplot(2,3,2) ; text (4.1,3, ’x12’);text (8,−1.5, ’t(s)’);xlim([0 10]) ;ylim([−2 2]) ;plot( t

,−cos(t ) ,’r-’,’LineWidth’,1.5);hold on;
51 figure (1) ;subplot(2,3,3) ; text (5.1,3, ’x13’);text (8,−0.75, ’t(s)’);xlim([0 10]) ;ylim([−1 1]) ;plot( t

,0+t−t,’r-’,’LineWidth’,1.5);hold on;
52 figure (1) ;subplot(2,3,4) ; text (3.8,3, ’x21’);text (8,−1.5, ’t(s)’);xlim([0 10]) ;ylim([−2 2]) ;plot( t ,

cos(t ) ,’r-’,’LineWidth’,1.5);hold on;
53 figure (1) ;subplot(2,3,5) ; text (4.9,3, ’x22’);text (8,−1.5, ’t(s)’);xlim([0 10]) ;ylim([−2 2]) ;plot( t ,

sin( t ) ,’r-’,’LineWidth’,1.5);hold on;
54 figure (1) ;subplot(2,3,6) ; text (4.6,3, ’x23’);text (8,0.25, ’t(s)’);xlim([0 10]) ;ylim([0 2]) ;plot( t

,1+t−t,’r-’,’LineWidth’,1.5);hold on;
55 figure (1) ; legend(’CZNN’,’IEZNN’,’IEAZNN’,’theo’);
56 time=toc;
57 save nn_com.mat;
58

59 %IEAZNNRightHandSide
60 function output=IEAZNNRightHandSide(t,u)
61 global k1 k2
62 X1=[u(1);u(2);u(3) ;u(4) ;u(5) ;u(6) ];
63 inte=[u(7);u(8) ;u(9) ;u(10);u(11);u(12) ];
64 X=X1;
65 A=MatrixA(t);B=MatrixB(t);C=MatrixC(t);
66 dotA=DiffA(t);dotB=DiffB(t);dotC=DiffC(t);
67 [ma,na]=size(A);
68 [mb,nb]=size(B);
69 [mc,nc]=size(C);
70 vecACB=reshape(A.’*C*B.’,mc*nc,1);
71 vecA_CB=reshape(dotA.’*C*B.’,mc*nc,1);
72 vecAC_B=reshape(A.’*dotC*B.’,mc*nc,1);
73 vecACB_=reshape(A.’*C*dotB.’,mc*nc,1);
74 q=3;
75 p=5;
76 w1=10;
77 M=kron(B*B.’,A.’*A);
78 M1=M*X−vecACB;
79 err=M1+w1*inte;
80 inte=inte+M1+M1.^(q/p);
81 noise=0*ones(size(err)) ;
82 %noise=2*ones(size(err));
83 %noise=0.6*t*ones(size(err)) ;
84 %noise=rand(size(err));
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85 dot_X=M\(−k1*err−k2*(err).^(q/p)−w1*(M1+M1.^(q/p))−kron(B*B.’,dotA.’*A)*X−kron(B*B.’,A.’*
dotA)*X−kron(B*dotB.’,A.’*A)*X−kron(dotB*B.’,A.’*A)*X+vecA_CB+vecAC_B+vecACB_
+noise);

86 output=[dot_X;M1];
87 t
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