
Citation: Anwar, M.; Hassanien, A.E.;

Snás̃el, V.; Basha, S.H. Subgraph

Query Matching in Multi-Graphs

Based on Node Embedding.

Mathematics 2022, 10, 4830. https://

doi.org/10.3390/math10244830

Academic Editor: Ezequiel

López-Rubio

Received: 10 October 2022

Accepted: 8 December 2022

Published: 19 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Subgraph Query Matching in Multi-Graphs Based on
Node Embedding
Muhammad Anwar 1, Aboul Ella Hassanien 2,3, Václav Snás̃el 4 and Sameh H. Basha 1,5,*

1 Department of Mathematics, Faculty of Science, Cairo University, Giza 12613, Egypt
2 Faculty of Computers and Information, Cairo University, Giza 12613, Egypt
3 Scientific Research Group in Egypt (SRGE), Giza 12613, Egypt
4 Faculty of Electrical Engineering and Computer Science, VŠB-Technical University of Ostrava,

708 33 Ostrava, Czech Republic
5 Faculty of Science, Galala University, Suez 43511, Egypt
* Correspondence: samehbasha@cu.edu.eg or samehbasha@gu.edu.eg

Abstract: This paper presents an efficient algorithm for matching subgraph queries in a multi-graph
based on features-based indexing techniques. The KD-tree data structure represents these nodes’
features, while the set-trie index data structure represents the multi-edges to make queries effectively.
The vertex core number, triangle number, and vertex degree are the eight features’ main features.
The densest vertex in the query graph is extracted based on these main features. The proposed
model consists of two phases. The first phase’s main idea is that, for the densest extracted vertex
in the query graph, find the density similar neighborhood structure in the data graph. Then find
the k-nearest neighborhood query to obtain the densest subgraph. The second phase for each layer
graph, mapping the vertex to feature vector (Vertex Embedding), improves the proposed model. To
reduce the node-embedding size to be efficient with the KD-tree, indexing a dimension reduction, the
principal component analysis (PCA) method is used. Furthermore, symmetry-breaking conditions
will remove the redundancy in the generated pattern matching with the query graph. In both phases,
the filtering process is applied to minimize the number of candidate data nodes of the initiate query
vertex. The filtering process is applied to minimize the number of candidate data nodes of the initiate
query vertex. Finally, testing the effect of the concatenation of the structural features (orbits features)
with the meta-features (summary of general, statistical, information-theoretic, etc.) for signatures
of nodes on the model performance. The proposed model is tested over three real benchmarks,
multi-graph datasets, and two randomly generated multi-graph datasets. The results agree with the
theoretical study in both random cliques and Erdos random graph. The experiments showed that the
time efficiency and the scalability results of the proposed model are acceptable.

Keywords: multigraph mining; pattern mining; matching problem; core number; KD-tree; node
embedding

MSC: 05C85; 68R10; 05C60; 05C90

1. Introduction

Data are critical and essential to deal with in every field. Due to a huge amount of
internet and database applications, there is a need to deal with huge data. Many real-
world datasets can be represented by a graph which consists of set of vertices and set of
edgesepresenting nodes, and interaction between entities is represented as edges [1]. A
simple graph is a graph where only one edge is allowed between its vertices. Most of the
real-world datasets are represented by multi-graphs in which more than one edge type
between vertices are allowed in such graphs. Although dealing with multi-graph data
is very important, most of the research in graphs deal with a simple graph. The simple
graph represents many interaction systems such as social networks, Resource Description

Mathematics 2022, 10, 4830. https://doi.org/10.3390/math10244830 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10244830
https://doi.org/10.3390/math10244830
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-9600-8319
https://orcid.org/0000-0003-1079-0846
https://doi.org/10.3390/math10244830
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10244830?type=check_update&version=1

Mathematics 2022, 10, 4830 2 of 22

Framework (RDF) data, chemical compounds, protein–protein interaction (PPI) networks,
physical interactions, and complex networks. Moreover, the multi-graph represents the
more powerful presentation of real interaction systems because its presentation has many
relationships between objects of the system, so the multi-graph has a lot of information to
explore valuable patterns.

One of the most important mining problem patterns in dealing with graphs is the
subgraph-matching problem [2]. This problem can be represented as given G, which is a
graph (simple graph or multi-graph) (for more details see Definitions 1 and 2), and given q,
which is a query graph (simple graph or multi-graph). The subgraph-matching problem is
to find all matches of q in G. This problem has two directions: exact or inexact (approximate)
graph matching. Exact graph matching is known as graph isomorphism and requires the
function between two graphs’ vertices to preserve the adjacency. Moreover, it needs to
compute the optimal mapping. However, inexact graph matching is based on computing a
sub-optimal mapping as an assignment problem.

Generally, the subgraph isomorphism problem is a Non-deterministic problem (NP-
complete problem). However, some specific graphs can also have a small complexity [3],
for instance, the particular case in which the big graph is a forest and the small one to be
matched is a polynomial-complexity tree. Some existing scenarios deal with such a problem
as the feature-based indexing and the enumeration approach. In the feature-based indexing
approach, which is defined by mapping vertices of a graph to vector space (feature space),
which will be used to minimize the candidate set for each query vertex, this vector space is
used in similarity, classification, and clustering tasks. Feature-based indexing is followed by
filtering and verification. Some graph patterns are chosen as indexing features throughout
the filtering in order to reduce candidate graphs. In the verification, they are checking for
the subgraph isomorphism using the selected candidate.

The enumeration method relies on backtracking techniques. This approach aims to
find embedding by the growth of partial solutions and avoids using indexing. There exist
other approaches; one of them is based on defining the equivalence classes at query or
database level or both and defining them by exploiting vertex relationships.

Cordella et al. [4] presented the first version of their subgraph isomorphism algorithm,
where they examined its performance for the isomorphism of small and medium-size
graphs. The algorithm, using a set of feasibility rules, allows us to significantly prune the
search space and the computational cost of the matching process.

Most research in subgraph isomorphism problems focuses on obtaining small candi-
date sets, producing effective matching orders, and improving searching methods. Filtering
methods are used to obtain small candidate sets. Defining new data structures aims to
acquire small candidate sets as well as produce effective matching orders, while using
symmetry breaking has a main role in improving the searching methods.

In [5] they presented an algorithm for graph/subgraph isomorphism suited for dealing
with large graphs. The first version algorithm is improved by analyzing the features in
detail with special reference time and memory requirements. The technique offers a
wide range of applications because the graph topology is not constrained. A state-space
representation (SSR) of the matching process and five feasible rules for decreasing the search
tree are described. The selected representation enables one to simultaneously compare the
syntactic and semantic properties of the node–pair pairs that need to match. The primary
improvement made to an early implementation of the VF algorithm, described in [4], is
that the data structures utilised during the exploration of the search area are set up in a
way that significantly reduces memory requirements. As a result, the method may match
graphs with a lot of nodes and branches.

Moreover, some early subgraph-matching algorithms such as VF and other (see [4,6–9])
find candidate sest by using local filters that consider the neighborhood of vertices. On the
other hand, Turboiso and others such as [10–13] build auxiliary data structures on a query
and data graph to obtain small candidate sets and produce effective matching orders by
estimating as precise a search cost as possible.

Mathematics 2022, 10, 4830 3 of 22

In [14], the search process is performed via a backtracking algorithm that, at each step,
reduces the bit-vector domain. Before starting the search, it completes two preliminary
steps. The first one, Prematch, fills domains by using vertex invariant to select them based
on labels and topology. The second step avoids this by locally guaranteeing that two
pattern vertices cannot match the same target vertex. After the initial stages, the pattern’s
vertices are arranged as indicated by a static search method. The pattern vertex with the
most branches between it and the partial solution is the one that will be matched next.
The sequence begins with each pattern vertex that has a single, compatible target vertex.
It chooses the vertex with the biggest sum of its neighbours’ degrees when there are two
vertices that are equally qualified to be the following vertex in the ordering.

The constraint fulfilment issue with subgraph isomorphism can be explained. Finding
an assignment of values (target vertices) to all variables such that all criteria are met given
a collection of variables (pattern vertices) and a set of constraints constitutes a constraint
fulfilment problem for the subgraph isomorphism problem.

Christine Solnon in [15] showed that the constraint fulfilment issue with subgraph
isomorphism can be explained. Finding an assignment of values (target vertices) to all
variables such that all criteria are met given a collection of variables (pattern vertices) and
a set of constraints constitutes a constraint fulfilment problem for the subgraph isomor-
phism problem.

Messmer and Bunke in [16] proposed a new method for graph and subgraph isomor-
phism detection based on a decision tree representation. The decision tree is generated
offline from a priori-known model graphs. At run time, the decision tree is used to detect all
graph and subgraph isomorphisms from an input graph to any of the model graphs in time
that is only polynomial in the graphs’ size and independent of the number of model graphs.

In [17] the authors introduced a symmetry-breaking node equivalence for pruning
the search space in backtracking algorithm for subgraph-matching problems, and also
proved that backtracking algorithm for the monomorphism search problem (i.e., a general
framework for subgraph matching) which is that its complexity equals the number of
one-to-one function between query and data graph vertices.

The subgraph-matching problem in multi-graphs is relatively new. Ingalalli et al. [18]
presented SuMGra, a feature-based indexing method that supports subgraph matching in
a multi-graph. SuMGra mapped nodes to a six-features vector such that one of them is a
structural feature and the remaining features are information of multi edges. SuMGra uses
a high-dimension R-tree index for indexing feature vectors and Ordered Trie with Inverted
List for multi indexing edges of nodes, which use file techniques.

Subgraph matching has many applications in different fields such as network anal-
ysis [19], RDF query processing [20], cheminformatics [21], bioinformatics [22,23], and
malware detection [24]. Moreover, the problem is used as a black box or subroutine in
finding frequent subgraphs [1,25], so the problem is a partner with the frequent subgraph
mining problem in applications of finding frequent subgraphs such as analysis and un-
derstanding of complex networks, finding motifs and graphlets [26], and biology [27].
Moreover finding frequent subgraph is useful in classification [28].

This paper proposes a node embedding-based solution for multi-graph matching. The
proposed model is composed of two stages. The first step’s primary concept is that the
density-like neighborhood structure is found in the data graph for the densest extracted
vertex in the query graph to obtain the densest subgraph, then the k-nearest neighborhood
query is found. For each layer graph, the second step, mapping the vertex to the feature
vector (Vertex Embedding), improves the model proposed. The principal component
analysis (PCA) approach is used to minimize the node embedding size to be effective with
the KD-tree indexing. To eliminate the redundancy in the generated pattern matching the
query graph, symmetry breaking conditions will also be used. The filtering method is
implemented to minimize the number of candidate data nodes of the initiate query vertex.
Finally, the effect of the concatenation of the structural features (orbits features) with the
meta-features (summary of general, statistical, information-theoretic, etc.) for signatures of

Mathematics 2022, 10, 4830 4 of 22

nodes on the model performance is tested. The proposed method guarantees that when a
query graph has a match in the data graph, the candidate set has at least one vertex arrive
at a solution. Using symmetry breaking helps to generate all distinct embeddings of the
query graph.

The rest of this paper is organized as follows: Theoretical background and steps of the
proposed model are presented in Section 2 and 3, respectively. Experimental scenarios and
discussions are introduced in Section 4. Finally, conclusions and future work are presented
in Section 5.

2. Theoretical Background

Firstly, it is assumed that all graphs are unweighted (i.e., edges have no weight) and
loop-free (which means no edges from any vertex to itself).

Definition 1. Unlabelled, Undirected Simple Graph. An unlabelled undirected simple graph is a
pair (V, E) such that V is the set of vertices and E is the set of undirected edges, E ⊆ (|V|2) edges.

A simple graph is a very simple concept in graph theory, but it is useful as a model of
some problems.

Definition 2. Unlabelled, Undirected Multigraph Graph. An unlabelled, undirected multi-graph
G is a tuple of four parts (V, E, LG, SG) where V is the set of vertices, E is the set of undirected edges,
E ⊆ V ×V, SG is the set of labels and LG : V ×V −→ 2SG , such that 2SG is the power set of SG.

The multi-graph is the more effective way to present real interaction systems because
it has many relationships between system objects, giving it a lot of information to look at
valuable patterns.

Furthermore, the multi-graph is a simple concept in graph theory and it is generalized
of a simple graph. However, it is very powerful, interesting, and useful as the model of a
lot of problems. A data multi-graph G is shown in Figure 1.

One of the most important features is the graph core number for each vertex. To cal-
culate the graph core number for each vertex the multigraph will be transformed into the
simplified graph.

Figure 1. A data multi-graph G.

Definition 3. V(G) is the set of vertices of (multi)graph G, E(G) is the set of edges of (multi)graph
G and deg(v) = |N(v)|. Max degree is denoted by d.

Mathematics 2022, 10, 4830 5 of 22

Definition 4. Neighboring Graph. Given an unlabelled undirected simple graph H, the set of a
neighbor of a vertex v : N(v) = {u ∈ V(H) | (v, u) ∈ E(H)}.

Definition 5. Simple Subgraph. A simple subgraph h of H is a graph such that V(h) ⊆ V(H)
and E(h) ⊆ E(H).

Definition 6. K-core. Given an unlabelled, undirected simple graph H and an integer k, the K-core
of H is the maximal sub-graph h of H such that the minimum degree of h is at least k. That is, every
vertex in h is connected to at least k other vertices in h (i.e., deg(v) ≥ k, ∀v ∈ V(H)).

Definition 7. Core Number. Given the unlabelled, undirected simple graph H, the core number of
vertex v in H, denoted core(v), is the largest k such that the K-core of H contains v.

Definition 8. Simplified Graph. Given an unlabelled, undirected multigraph Graph G = (V, E,
LG, SG). Then, the simplified graph Σ(G) = (Vs, Es) such that Vs = V and Es = E, means the
simplified graph is the multigraph without multi-edges as in Figure 2.

Figure 2. A Simplified graph Σ(G).

The simplified graph is the multi-graph after replacing all multi-edges with one edge,
indicating the existence of relations between these vertices regardless of the exact number
of edges and their relationships. The simplified graph is used to obtain the core number.

The core number is used to build features of vertices. By definition of core number,
observe that core number is the dense measure of a vertex. If the core number is high, then
the vertex will be with high density. In the following sections, we will know the importance
and how to compute it by an efficient algorithm. For example, the core number of V(Q1)
of a simplified graph Σ(Q1), a multi-graph Q1 is shown in Table 1 which is extracted from
Figure 3.

Table 1. Core number and vertex signatures for the multigraph in Figure 3.

ui Core (ui) ω (u)

u1 1 {{5}}
u2 2 {{2},{5},{2,4}}
u3 2 {{2},{2,3}}
u4 2 {{2,3},{2,4}}

Mathematics 2022, 10, 4830 6 of 22

Figure 3. A query multigraph Q1.

Definition 9. Triangle number of the vertex. Given a simple unlabeled graph, the triangle number
of v(i.e., tr(v))is the number of triangles that v is in.

Remark 1. core(v) ≤ deg(v).

Definition 10. Multigraph homomorphism. Given a multigraph H = (VH , EH , LH , SH) and
a multigraph G = (VG, EG, LG, SG), the subgraph isomorphism from Q and G is a function
Φ : VH → VG such that : ∀(ui, uj) ∈ EH , then (Φ(ui), Φ(uj)) ∈ EG.

The multigraph homomorphism is computed implicitly in the proposed model

Definition 11. Multigraph isomorphsim. Given a multigraph H = (VH , EH , LH , SH) and a multi-
graph G = (VG, EG, LG, SG), the subgraph isomorphism from Q and G is a bijection function (i.e.,
one-to-one and onto function) Φ : VH → VG such that : ∀(ui, uj) ∈ EH iff (Φ(ui), Φ(uj)) ∈ EG.

Definition 12. Multigraph automorphism. Given a multigraph G = (VG, EG, LG, SG), the sub-
graph isomorphism from Q and G is a bijection function (i.e., one-to-one and onto function)
Φ : VG → VG such that : ∀(ui, uj) ∈ EG iff (Φ(ui), Φ(uj)) ∈ EG.

Remark 2. Given u,v ∈ V(G). Define an equivalence relation over V(G), ∃ an automorphism
such that Φ(u) = v, then u and v in a equivalent class. The equivalence classes are called orbits.

Definition 13. Subgraph isomorphism for multigraphs. Given a query multigraph Q = (VQ, EQ,
LQ, SQ) and a data multigraph G = (V, E, LG, SG), the subgraph isomorphism from Q and
G is an injective function (i.e., one-to-one function) Φ : VQ → V such that : ∀(ui, uj) ∈
EQ, ∃(Φ(ui), Φ(uj)) ∈ E, LQ(ui, uj) ⊆ LG(Φ(ui), Φ(uj))∀i 6= j.

Definition 14. Vertex Signature. The vertex signature of vertex v is a multiset contains labels of
multi edges that are in the incident on v. Mathematically, ω(u) =

⋃
v∈N(u) L(u, v).

Remark 3. By definition of vertex signature, observe that deg(u) equals the number of sets in ω(u)
(i.e., Cardinality of the vertex signature).

For instance, in Q1, ω(u2) = {{2},{5},{2,4}}, all vertex signatures of vertices of the
multigraph of Figure 3 are depicted in Table 1.

Definition 15. Candidate set. Given a graph Q, then the candidate set of vertex u C(u) is defined
as C(u) = {v ∈ V(G)| ω(u) b ω(v)}, such that b is the subset operation on a multiset. Define b
operation as a function F from ω(u) to ω(v) as an injective function (i.e., one-to-one), F(x) = y,
x ⊆ y and ∀ v ∈ C(u) is similar to u.

Mathematics 2022, 10, 4830 7 of 22

The candidate set is an essential concept in many algorithms and techniques. It is like
a starting point for algorithms to obtain solutions. The difficulty is in obtaining a candidate
set and computing it efficiently. The next sections will give more details of importance, use,
and obtaining candidate sets in the algorithm.

3. Subquery Matching in Multigraph

In this section, the general framework of the proposed algorithm is presented. The pro-
posed algorithm consists of two phases: indexing for store feature vectors and multi-
edges (Section 3.4). Subgraph search space to enumerate all functions(i.e., embeddings)
(Section 3.5). In the two phases, K-core, core number, and vertex orbits counting are the
basic tools (Subsection 3.3).

3.1. Problem Definition (Sub-Multigraph Query Matching)

Given a connected query multi-graph Q such that the set of vertices of Q (|V(Q)|) ≥ 3,
data multi-graph G such that |V(G)| ≥ |V(Q)|, the sub-multigraph query matching prob-
lem is to enumerate all the embeddings of Q in G, so that each embedding is isomorphic to
the query Q. Mathematically, sub-multigraph query matching is to enumerate all possible
functions Φ from Q to G. Given G is shown in Figure 1 and Q2 is shown in Figure 4,
Algorithm 1 has to enumerate all possible embeddings (i.e., enumerate all possible func-
tions Φ) of Q2 to G. All embeddings are as follows:

Match1 := {(u1, v4), (u2, v5), (u3, v6), (u4, v7)}.

Match1 is a set of ordered pairs such that the first coordinate is the query vertex ui
and the second coordinate is the data vertex vj, which is the image of ui. Q2 in Figure 4 has
one embedding in G. If the query multi-graph has at least two embeddings in G then all
embeddings are isomorphic to each other.

Figure 4. A query multigraph Q2.

Algorithm 1 : The proposed algorithm framework

1: Building off-line index KD-tree
2: uinit = GetInitiate(V(Q))
3: U = OrderQueryVertices(V(Q))
4: Cuinit = SelectCandidate(uinit)
5: All Matching = ∅
6: for all v ∈ Cuinit do
7: Matchedq = uinit
8: Matchedg = v
9: Matched List = [Matchedq , Matchedg]

10: All Matching := RoutineSubgraphBacktracking (All Matching, Matched List, Q, G)
11: end for

Mathematics 2022, 10, 4830 8 of 22

3.2. Overview of the Proposed Algorithm

Generally, in the proposed Algorithm 1 the following steps are performed. Firstly,
build index KD-tree off-line (Line 1). Find initiate query vertex (uinit) through GetInitate
function by ordering query vertices using the proposed order (Section 3.5). In (Line 3),
order all query vertices by effective order, representing U to use it in a subgraph search.
Use index KD-tree to find candidate set Cuinit that matches for uinit (Line 4). Matching
starts with sub-match or partial matching by match uinit with v in Cuinit and calling Rou-
tineSubgraphBacktracking function (Sections 3.4 and 3.5) to match remain query vertices
(Lines 6–10).

3.3. K-Core, Core Number and Vertex Orbits Counting

A graph’s k-core has interesting properties: applications such as community search,
locating influential, keyword extraction from text, link spam detection, real-time story
identification, dense subgraphs, and clustering. The k-core of a graph is the maximal
subgraph with a minimum degree of at least k (k-core is well-defined) [29]. It is readily
demonstrated that this subgraph is unique by contradiction (i.e., maximal propriety).
The maximum k such that G has a k-core, which is the maximum core number of G.
There are a lot of algorithms to compute and obtain a k-core graph and core number of
vertices [29]. The core number of vertices, can be found in polynomial time (O(n2)), but can
actually be obtained in O(m) time such that n = |V(G)| and m = |E(G)|, by modifications
on bin sorting in implementation (where O(.) refers to the time complexity). However,
the algorithm in [30] is embedded in the Algorithm 2 which has an O(m) complexity.

Peeling technique can be performed with a list (or array) linear heap data structure
or CoreD-Local (or CoreD-Local-opt) algorithm with h-index in O(mh− index(G)) [31].
The peeling algorithm’s idea attractively removes (i.e., peels) the minimum-degree node
of a graph. The step of obtaining min from the set of nodes which are not visited nodes
by the linear heap data structure can be achieved in constant time O(1). Algorithm 2 is
the fastest one applied to the suggested datasets. So, the Algorithm 2 is used to acquire
the core number feature for each vertex in the data and query graph. The relation between
core number and degree of a vertex is not necessarily positive correlation (or correlated)
(for example, the star graph is a simple graph of order n such that each vertex has degree
equals 1 except that one of them has degree equal to n − 1. Then, the core number of each
vertex is 1, . . .). However, this property is satisfied in some datasets.

Vertex orbits counting in simple graph, given orbit θ and vertex v, θi(v) = number of
occurrences of v in orbit θi as subgraph. Θi(v) = number of occurrences of v in orbit θi as
induced subgraph such that i ∈ {0, 1, 2, . . . , 72} [32].

Algorithm 2 : The Core Number Algorithm

1: Compute the degrees of vertices, deg.
2: order the set of vertices V(G) in increasing order of their degrees.
3: for all v in V(G) in the order do
4: core[v] = deg[v].
5: end for
6: for all u in N(v): Neighbour of vertex v do
7: if deg[u] > deg[v] then
8: deg[u] = deg[u] − 1.
9: reorder V(G).

10: end if
11: end for
12: Return the list of core numbers

Mathematics 2022, 10, 4830 9 of 22

3.4. Indexing

This subsection shows how to use indices (i.e., KD-tree and set-trie) and features
usefully in the proposed algorithm. It also details how to compute them effectively. The
indexing is split into two phases, offline and on-line indexing, as follows:

1. offline indexing: In this phase, we compute the useful and efficient features and build
indices on data graph G (i.e., indexing feature vectors of data vertices and multi edges).

2. On-line indexing: In this phase, using indices to find candidate sets for matching
query Q in graph G.

Firstly, our criteria are choosing the features such that they are not constant in each
vertex of the data graph for at most cases of a graph, distinct features, and no two different
features are equivalent. Secondly, splitting the features into two kinds of density features
and similarity features. They assume that density features have more priority than similarity
features to reach into the dense subgraph before obtaining similar data vertices. By the word
“dense”, we mean roughly that the subgraph contains a many edges and it is well connected.

Surely, there exist features that will be the density and similarity feature.

3.4.1. Off-Line KD-Tree Index

Mapping each vertex of the data graph into D-vector (D = 8) space and each coor-
dinate corresponds to the features for reducing the sub-problem of graph mining to the
geometric problem. Mathematically, ζ : V(G)∪ {uinit}→ N8. Table 2 shows features and
its descriptions.

Table 2. Features that were used in our proposed algorithm.

Feature fi Description of Feature

f1 Core number
f2 Cardinality of vertex signature (i.e., degree)
f3 Triangle number
f4 The number of unique edge types in the vertex signature
f5 The number of all occurrences of the edge types (repetition allowed)
f6 Minimum index value of the edge type alphabet (position of the sequenced alphabet)
f7 Maximum index value of the edge type alphabet (position of the sequenced alphabet)
f8 Maximum cardinality of the vertex sub-signature

The density features f1, f2, and f3 are used to reach the dense subgraph. The similarity
features fi such that 4 ≤ i ≤ 8 are used to obtain the similar vertices given query vertex in
the query graph Q. In other words, f1, f2 and f3 are for density and the remaining features
are for similarity. Constructing the KD-tree index by organizing the information supplied
by some efficient features are in Table 2, the feature vectors of vertices of data graph are
shown in Table 3.

To compute the core number for each vertex in the data graph, we have to construct
the simplified graph Σ(G) and then compute the core number for each vertex in Σ(G).
The first feature, f1, is a core number used to obtain the dense vertices (i.e., have a lot of
relations) to reach dense subgraph to search in it. The core number feature is computed by
the Algorithm 2 in O(m). The triangle number feature f3 was used to obtain more dense
vertices and symmetry area, computing it for all vertices by the algorithm in [32]. The
remaining features can be computed directly (by using graph representation adjacent list).
We keep on inserting data graph feature 8-vectors into the KD-tree. Then the offline index
is built.

Mathematics 2022, 10, 4830 10 of 22

Table 3. Feature vectors of data vertices of data graph Figure 1.

Data Vertices Features

ui f1 f2 f3 f4 f5 f6 f7 f8

u1 1 1 0 1 1 5 5 1
u2 2 3 1 4 5 1 5 3
u3 2 2 1 3 5 1 3 3
u4 2 3 1 3 5 2 5 2
u5 2 4 1 4 6 1 4 3
u6 2 2 1 3 3 3 5 2
u7 2 2 1 4 5 2 5 3
u8 1 1 0 1 1 1 1 1

3.4.2. On-Line KD-Tree Index Query

Given G, which is a multi-graph (Definition 2), and given Q, which is a query graph,
finding candidate sets in the proposed algorithm is very critical and important for matching
a query graph Q in graph G. In (Line 4) in Algorithm 1. Cuinit is the candidate set for
matching the initiate query vertex uinit, which is found by querying the KD-tree index
(Section 3.4.1).

KD-tree index solves many problems such as the nearest neighborhood, k-nearest
neighborhood, range query problems, and many geometric problems.

Finding candidate sets is a problem approaching the k-nearest neighborhood problem
as the solution for computing candidates. K is used as a parameter in the method. Its value
changes according to a dataset and query graph (i.e., clique or non-clique graph). This
parameter gives flexibility for finding candidates. The challenge is finding dense area using
feature-based in sparse (i.e., |Es(Q)| = O(|Vs(Q)|)) query graphs, vice versa when query
graph is dense (i.e., |Es(Q)| = O(|Vs(Q)|2)).

In on-line indexing, we query with query vertex (i.e., initiate query vertex uinit) of
query graph Q to obtain candidate set Cuinit .

The solution of k-nearest neighborhood equals the first version of the candidate set of
given query vertex. Then we can compute the candidate set by the effective way by this
reduction. Before finding Cuinit it is necessary to find uinit (Section 3.5).

3.4.3. On-Line and Off-Line Set-Trie Index

This subsection aims for finding candidate sets for rest query vertices to match it in
the graph G. In Sections 3.4.1 and 3.4.2 responsible for finding candidate set for uinit, using
KD-tree index.

Definition 16. SuperSetQuery (v,{x,y}). It is a function that has two parameters, namely a data
vertex v and a multi-edge between x and y {x,y}. The data vertex v is used to construct a set-trie
index for its neighborhood subgraph structure. The multi-edge between x and y {x,y} from EQ of
query graph as a query. This function returns all data vertices which are in N(v) such that the
multi-edges between them and v (i.e., ω(v)) are a superset of query multi-edge {x,y}.

The set-trie index helps to find all possible candidates for the rest of query vertices.
During recursion of Algorithm 3 it refines this set of all possible candidates to another set
for reducing search space in Algorithm 4 .

A set-trie is a tree data structure similar to an ordinary trie data structure. It builds the
set-trie, such as building the ordinary trie data structure [33]. In the proposed algorithm,
building a set-trie of multiedges for a data vertex (i.e., vertex signature ω(vi)), for instance
v5, is ω(v5) = {{1},{2},{3},{2,3,4}}, its neighbourhood subgraph of v5 is shown in Figure 5a
and its set-trie is shown in Figure 5b. For finding all possible candidates, assume building
a set-trie index for some data vertex such as v5 and querying in the index by a multi-edge
such as the multiedge between u2 and u3 (i.e., {u2,u3}). We then have the output set of
candidate data vertices for unxt. This set satisfies SuperSetQuery and its output is {v6,v7}.

Mathematics 2022, 10, 4830 11 of 22

Moreover, set operations operated using a succinct data structure which is a compressed
bitmap, and for datasets that have at most 32 kinds of relations, bitmasks are used.

(a) (b)

Figure 5. Building set-trie Index for data vertex v5. (a) Neighbourhood subgraph structure of v5,
(b) set-trie index representation for v5.

Algorithm 3 : Routine Subgraph Backtracking

1: Get unxt
2: MatchCandidateVertices = FindJoinable (Matchedq , Matchedg , unxt)
3: for all vnxt ∈Match candidate vertices do
4: Matchedq.add(unxt)
5: Matchedg.add(vnxt)
6: Matched List = [Matchedq , Matchedg] /*such that Mathcedg didnot matched, with-

out this condition the algorithm compute homomorphism (see Definition 9). */
7: Routine Subgraph Backtracking (All Matching, Matched List, Q, G)
8: if All Matching.size == Q.order then
9: All Matching.union(Matched List)

10: end if
11: Matchedq.pop()
12: Matchedg.pop()
13: end for
14: return All Matching

Algorithm 4 : RoutineFindJoinable

1: MatchedNeiborq = Mathcedq∩ adj(unxt)
2: MatchedNeiborg := Corresponding Matched vertices of MatchedNeiborq
3: PossibleCandidateVertices =

⋂
i SuperSubSetQuery(MatchedNeiborg[i],

{MatchedNeiborq[i] , unxt})
4: for all v ∈ PossibleCandidateVertices do
5: if ω(unxt) b ω(v) then
6: MatchCandiateVertices.add(v)
7: end if
8: end for
9: return MatchCandiateVertices

Mathematics 2022, 10, 4830 12 of 22

3.5. Subgraph Query

This section presents the method of finding embeddings(i.e., functions from query and
data graph) of query multi-graph, preserving connection and structure of Q and ordering.

3.5.1. Finding Elegant Initiate Query Vertex

Definition 17. Elegant vertex. An elegant vertex is in a dense area (or subgraph).

Finding an elegant initiate query vertex is important for finding the candidate set in
Line 4 of Algorithm 1. We order V(Q) in decreasing order of three score functions.

1. Core number, computing core number over V(Q) efficiently by Algorithm 2, score1(u)
= core(u), ∀u ∈ V(Q).

2. Degree of V(Q) (i.e., number of incident edges) in Σ(Q), score2(u) = deg(u), ∀u ∈
V(Q).

3. Triangle number, score3(u) = tr(u), ∀u ∈ V(Q).

Assume that the score priorities in ascending order are score3, score2, score1 (i.e.,
ordering according by score1 and if two query nodes have the same score1 then ordering
according by score2). The initiate query vertex uinit will be the top of the order. In Q2 as
showed in Figure 4, the Table 4 shows the core number and degree of query vertices of
Q2. After applying the previous method, finding the total order of V(Q2) is [u2, u3, u4, u1],
then the elegant vertex of V(Q2) is u2 which is uinit.

Table 4. Core number, degree and triangle number of query vertices of query graph Figure 4.

Query Vertices ui Core (ui) Deg (ui) Tr (ui)

u1 1 1 0
u2 2 3 1
u3 2 2 1
u4 2 2 1

Lemma 1. The initiate query vertex uinit is elegant.

Proof. The proof is obtained in the previous method of obtaining uinit.

3.5.2. Query Vertex Ordering

The order which is in line 3 in Algorithm 1 is very critical because it is used in query
searching to obtain unxt (Line 1 in Algorithm 3) which is the vertex that should be matched.

Define the total order ≺σ over V(Q) such that it satisfies the condition: Assume u, v, x
and y ∈ V(Q) such that for every 3-tuple (u,v,x) if u ≺σ v ≺σ x , {u,v} /∈ E(Q) and {u,x} ∈
E(Q) there exists y such that y ≺σ u and {u,y} ∈ E(Q). When expanding a vertex, sort its
not-visited adjacent vertices in decreasing order by three score function score1(u), score2(u),
score3(u).

After obtaining uinit, apply the total order ≺σ using it. In Q2 as shown in Figure 4,
after applying the total order ≺σ obtaining σ = [u2, u4, u3, u1]. Score functions depend on
the structure of the subgraph (or graph) to reach dense and similar subgraphs.

3.5.3. Candidates for Initial Query Vertex

In Section 3.4 we showed on-line indexing and some of the details for finding. This
subsection shows the remaining details of finding Cuinit . First, selecting candidate set
Cuinit given initial query vertex uinit and then start matching and perform the Subgraph
Search. By the definition of the candidate set, candidate set has to satisfy the following
two conditions:

1. C(u) = {v ∈ V(G)|ω(u) b ω(v) }.
2. ∀v ∈ C(u) is similar to u.

Mathematics 2022, 10, 4830 13 of 22

To satisfy the first condition and save the time of subset operation on multiset com-
putation, using the necessary condition “candidate set has all of the data vertices ex-
cept f6 feature that has features greater than features measures uini”. Mathematically,
ALL(uinit) := {v ∈ V(G)|i 6= 6, Fuinit(i) ≤ Fv(i)}.

To satisfy the second condition (i.e., similarity condition), we define the similarity
set of uinit as follows: Sim(uinit) := {v ∈ V(G)|uinit ≈sim v}. Now we compute Sim(uinit)
using the k-nearest neighborhood query in KD-tree. This condition is a refinement for
the candidate set. Now we find the candidate set by merging two queries (i.e., range and
k-nearest neighborhood), find the 7-upper similar query using the modified k-nearest neigh-
borhood query, and use k as a parameter, as mentioned in Section 3.4.2. After computing
and filtering Cuinit such that it satisfies the two conditions, we sort it in decreasing order
of the feature vectors, with decreasing priorities from f1 to f8, to get maximized priority
candidate vertices.

Theorem 1. SelectCandidate (uinit) function outputs at least one valid candidate vertex.

Proof. The proof is obtained in the previous method in the Section 3.5.3.

3.5.4. Subgraph Searching

In subgraph search Algorithm 3 there is the function responsible for finding or finishing
the matching the query graph Q in the graph G, after matching uinit with the candidate
vertex. Backtracking is used as a searching technique for this function. In this function,
after the partial matching (Line 9 in Algorithm 1), obtain unxt for matching it (Line 1) by
the total order ≺σ. In (Line 2) we finding candidate data vertices for unxt. If v, which is in
Line 6 of Algorithm 1, is a good matching for uinit, the backtracking grows the matching Q
in G, else (i.e., v is not suitable matching for uinit), the backtracking reverts back and tries
the next candidate vertex (Lines 3–13).

In the FindJoinable Algorithm 4 there is the function responsible for preserving the
structure and connections of query graph Q. First, we find matched neighbor MatchedNeiborq
of unxt and the corresponding matched vertices MatchedNeighborg in a data graph (Lines
1–2). Second, a candidate for query vertices is found.

Now we Find possible candidate vertices for unxt (Line 3) by querying SuperSetQuery
in set-trie index, building an index over multi-edges of neighbors of the MatchedNeiborg[i]
vertex, query multi-edge between MatchedNeiborq[i] and unxt and use intersections opera-
tions over vertices that are output of SuperSetQuery. Now and after, we obtain the vertices
to satisfy the structural connectivity of the query graph as in Lines 4–8 for reducing the
number of candidates by checking vertex signature of v ω(v) (Line 4). Vertex signature of v
is a superset (using b operation) vertex signature of unxt(ω(unxt)).

To solve the problem that is the superset between ω(v) and ω(unxt), we approach
the problem as a maximum matching problem on a bipartite graph in O(|E|

√
|V|) us-

ing [34] algorithm, such that E will be number of edges (i.e., number of subset or superset
relations between the two partitions of bipartite graph) and V will be number of vertices
(i.e., number of elements of ω(unxt) and ω(v) which equals (|ω(unxt) + |ω(v)|)). To ap-
proximate the subset in multiset b usingthe embedding in Section 3.6 we just check that
embunxt[i] ≤ embv[i] in O(1). RoutineFindJoinable guarantees that preserving the structure
and connections of the query graph is proved by induction on order of vertices V(Q) [18].

3.6. Improvement Algorithm by Vertex Features Using Structural and Meta Features and
Symmetry Breaking

In this subsection, we apply the embedding vertex (i.e., mapping vertex to feature
vector) to structural features for each layer graph (i.e., is simple graph induces one re-
lationship) and meta-features for vertex signature (i.e., information about multi-edges
such as the number of multi edges, statistics information, information-theoretic measures,
etc.). The embedding will be useful for computing orbits (i.e., partitioning nodes such that

Mathematics 2022, 10, 4830 14 of 22

each partition has nodes with the same structure) in the graph (i.e., query or data graph),
and orbits will be used in symmetry breaking.

3.6.1. Vertex Features Using Orbits and Meta Features

We embed vertices of the query and data graphs to structural and meta-features.
Structural features are number of occurrences (induced or non-induced) of the vertex for
all 73 orbits in [32] for each layer of the graph. These are concatenated; the algorithm uses
induced occurrence. Table 5 shows the structural features of data nodes up to pattern order
3 of induced graph or layer of the graph of a working relationship.

Meta features are summaries (i.e., min, max, mean, . . .) of general, statistical, information-
theoretic, itemset, complexity, clustering features. . . using [35] for signatures of nodes.
So, node embedding will be concatenation structural and meta features. Furthermore,
the embedding preserve the order in Section 3.5.3 (i.e., v ∈ Cuinit then for all dim. d
Fuinit(d) <= Fv(d)), for example v7 in Figure 6 can be a candidate of u3 or u4 in Figure 7 and
v2, v4, v5 and v7 in Figure 6 can be candidates of u1. However, node embedding size will be
large and it is not efficient for KD-tree indexing for acquiring a candidate for uinit. So, using
dimension reduction techniques such as PCA, embed node feature to 2D feature vector
is expedient.

Figure 6. Embedding nodes of graph G in Figure 1 using features in Section 3.6.

Table 5. Vertex orbits of pattern order 3 counting of induced graph of relation 3 (i.e., work relationship)
of data graph Figure 1.

vi Θ0 Θ1 Θ2 Θ3

v1 0 0 0 0
v2 2 0 0 1
v3 2 0 0 1
v4 2 0 0 1
v5 2 0 1 0
v6 1 1 0 0
v7 1 1 0 0
v8 0 0 0 0

Mathematics 2022, 10, 4830 15 of 22

Figure 7. Embedding node of Q2, if ω(u3) = {{4, 5}, {4}} and ω(u4) = {{4, 5}, {4}}.

3.6.2. Symmetry Breaking Condition

In Subgraph Backtracking Algorithm 4 will generate all pattern matches with the
query graph but among generated patterns there exist repeated patterns or redundancy in
patterns. So, symmetry breaking will solve the redundancy problem.

The graph’s automorphism is a graph isomorphism between the graph and itself. Thus,
graph automorphism generates all corresponding one-to-one mappings between the graph
and itself, orbits of the graph which are a partition of vertices, and each partition has nodes
which are permuted such that the graph still has the same structure. So, symmetry breaking
breaks symmetry in each orbit. Then Algorithm 4 will generate all different matchings.

Computing orbits of the query graph, using the embedding in Section 3.6.1 preserves
node orbits or structure and clustering embedding using any clustering algorithm such as
k-means. Each cluster is an orbit with similar nodes. Moreover, after acquiring a candidate
of unxt and before adding mapping in line 4 and 5 in Algorithm 4, we then check the
condition (Symmetry Breaking Filter):

[if u1 and u2 ∈ V(Q), u1 ≺σ u2 and are in the same orbit then Φ(u1) < Φ(u2).]

Lemma 2. Given a multi-graph Q, Aut(Q) let be the set of all automorphisms of Q. The Symmetry
Breaking filter generates all symmetry breaking conditions.

Proof. We need to prove that if ui and uj ∈ V(Q) and they are in the same orbit, then ui
≺symmetrybreaking uj or vice-versa—that total order according to specific indexing of vertices.
Symmetry Breaking filter generates that if ui and uj ∈ V(Q) and they are in the same orbit
and according of query vertex order then ui ≺σ uj or vice-versa, then ui ≺symmetrybreaking uj
or vice-versa for all i,j ∈ {1, 2, . . . , |V(Q)|}.

Theorem 2. The Algorithm 1 with Symmetry Breaking filter generates all distinct embeddings of
query graph Q in data graph G.

Proof. Let O be an embedding of Q in G and assume that for all i, j, a, b ∈ {1, 2, . . . , |V(Q)|},
i 6= j and a 6= b, oi and oj are vertex indices (i.e., ids) in O that can be mapped to the same
vertex ua ∈ V(Q). Since Φ is a one-to-one function, then there exists ub ∈ V(Q). Moreover
there exists two automorphsim ua and ub are matched. Two possibilities exist: firts, (i) that
the algorithm breaks. That means ua ≺symmetrybreaking ub or vice versa, in this case, using

Mathematics 2022, 10, 4830 16 of 22

Symmetry Breaking filter will break one of oi < oj or oj < oi and then the algorithm does
not generate this mapping. (ii) the algorithm does not break. Then the algorithm gener-
ates mappings that contain {. . . , (ua, oi) . . . , (ub, oj), . . . } and {. . . , (ub, oi) . . . , (ua, oj), . . . }
means that the automorphism maps ua to ub or vice-versa without symmetry break condi-
tion, from previous lemma. Then, by contradiction from case (ii), O will be mapped only
once.

In Figure 4 Q2, if ω(u3) = {{4, 5}, {4}} and ω(u4) = {{4, 5}, {4}}, then orbits will be
{{u3, u4}, {u1}, {u2}}. In Figure 7 u3 and u4 have the same embedding.

Moreover, after obtaining a candidate of the initial query vertex Cuinit in Algorithm 1,
it is refined using subset operation on multiset b in def 2.16.

4. Experimental Results and Discussions

In this section, the performance of the proposed algorithm on real and synthetic
(random) multi-graphs is evaluated.

The evaluation is performed by comparing the proposed method with querying multi-
graphs via an efficient indexing algorithm (SuMGra) [18]. The proposed model consists
of two phases. The first phase’s main idea is finding the densest query vertex, applying
the filtering process to minimize the number of candidate data nodes of the initiate query
vertex, finding the density similar neighborhood structure in the data graph, and finding
the k-nearest neighborhood query to extract the densest subgraph.

The main idea of the second phase is mapping the vertex-to-feature vector (Vertex
Embedding) for each layer graph, using a dimension reduction, principal component
analysis (PCA) method to reduce the node embedding size to be efficient with the KD-tree
indexing, using symmetry breaking condition to remove the redundancy in the generated
pattern that matches with query graph, applying the improved filtering process to minimize
the number of candidate data nodes of the initiate query vertex, and testing the effect
of the concatenation of the structural features (orbits features) with the meta-features
(summary of general, statistical, information-theoretic, etc.) for signatures of nodes on the
model performance.

For ease of reading, we use the word “Proposed” to indicate the first phase of the
proposed model, while we use “W/O” to indicate the second phase of the proposed without
meta-features and “improvement” to indicate the second phase of the proposed method
with the meta-features.

All the experiments were run on a PC, with Intel Inside CORE i3 processors 2.00 GHz,
and 4 GB RAM, running on Windows10 OS. All algorithms in the paper have been imple-
mented using python.

4.1. Description of Datasets and Query Subgraphs

In this research, experiments are executed over five datasets (three real multi-graph
and two random multi-graph datasets). The three real multi-graph datasets are avail-
able at [36]. Dataset descriptions and some statistics are shown in Table 6. The genetic
multi-graph HUMAN-HIV1 takes into account several genetic connections for biological
organisms. These interactions include physical association, direct interaction, colocaliza-
tion, association, and suppressive genetic interaction, which is determined by inequality.
PLASMODIUM is a genetic multi-graph that concerns Plasmodium Falciparum and has
relations such as Direct interaction, physical association, and association. EU-AIR is a
TRANSPORTATION multi-graph, which is composed of thirty-seven different layers, each
one corresponding to a different airline operating in Europe.

The two random multi-graph datasets are generated to test the efficiency of all algo-
rithms. We generate query subgraphs with three types of random multi-graphs ordered
from three to six nodes, and the following kinds of graphs: (i) a tree that is sparse (i.e., n− 1
edges) connected acyclic graphs; classes of graph such as paths and stars are also generated.
(ii) Erdos-Renyi random graph with probability 0.5 to add edge which is dense (i.e., O(n2))

Mathematics 2022, 10, 4830 17 of 22

graph. (iii) clique, which is a complete graph (i.e., every pair of a node is connected). All
nodes of all types of graphs of signature sizes from 1 to 4 are randomly generated. For each
multi-graph dataset, we generated 1000 samples for each kind. We report the average
time for the first 1000 embedding for each query graph, and the queries which have no
embedding are not counted in our experiment.

Synthetic data which are a random multi-graph are generated as a data graph that has
100 to 200 nodes and is a dense graph. We generated two kinds of synthetic data. The first
has five relationships and the second has 10 relationships.

Table 6. Multigraph datasets description.

Dataset Nodes Edges Dim

humanHIV1 1005 1355 5
plasmodium 1023 2521 3

EUAir 450 3588 37

4.2. Performance of the Proposed Algorithms

In this section, the results are presented using different metrics, such as the average
time for all orders of query and 517 kinds of graphs, the average size of Cuinit for all kinds of
queries (i.e., trees, cliques, and random 518 graphs), and the embedding of a node feature
in the plan (i.e., node embedding).

In the Figure 8 shows the avg size of Cuinit for Human HIV4, plasmodium, and EUAi
datasets. Figure 9 shows the avg size of Cuinit for the two random multigraph random 1
and random 2 datasets.

The average size of Cuinit, in the second phase of the proposed algorithm gives im-
provement of the first phase with/without meta-features methods. Filtering is better than
the proposed and SUMGRA. In Figure 8 SUMGRA the difference is remarkable, and in the
first phase of the proposed algorithm the difference is remarkable as shown in in Figure 8.

Generally, the second phase of the proposed with/without meta-features methods
works well about time and has meaningful embedding and robust filtering.

Figures 10–12 show the query time for Human HIV4, plasmodium, and EUAi datasets
respectively.

Figures 10–12 show that in both random cliques and Erdos random graphs these
queries are dense, so the best methods according to time are the second phase of the
proposed with/without meta-features. However, in random trees, the first stage of the
proposed method is the best according to time and that is due to this query is a sparse
graph not dense so there is no need to find the symmetries. Finding the symmetries as
proposed in with/without meta-feature in a sparse graph (i.e., not dense) will spend more
time without result improvement.

Theoretically, if the query has a lot of symmetry, then the improvement with/without
meta-features algorithms work well. Observably, improvement with/without meta-features
methods work well in cliques and dense Erdos random graphs. The improvement method
with meta-features works well on tree patterns except in Figure 11c, such that the proposed
is the best in it. Generally, the first phase of the proposed algorithm is better than SUMGRA,
and the second phase, which is the improvement with/without meta-features and methods,
is better than the first phase of the proposed method.

Figures 13 and 14 show the query time for the two random multigraph datasets
random 1 and random 2 respectively.

It agrees with the theoretical study in both random cliques and Erdos random graph.
These queries are dense, so the best methods are the second phase of the proposed
with/without meta-features. However, despite the convergence of all results in the random
trees, the second phase of the proposed meta-feature is the best one. Although the random
trees query is sparse, the original data are generated as a dense graph.

Mathematics 2022, 10, 4830 18 of 22

Figures 15–17 show the node embedding Query for Human HIV4, plasmodium,
and EUAi datasets respectively. In Figure 18 shows the node embedding Query for the two
random multi-graph datasets.

In the Figures 15–18 Principal Component Analysis (PCA) was used so, the x-axis and
y-axis are represented the first and second principal component respectively.

In figures of node embedding such as Figure 16b or Figure 17b reflecting the order in
Section 3.6, the order preserves structural and multi-edges information. On the contrary,
the first phase of the proposed algorithm and SUMGRA algorithm preserve some properties
in a simple version of multi-graphs such as degree, k-core number, and triangle number
of nodes and not sufficient proprieties of multi edges. Furthermore, node embedding of
random multi-graphs Figure 18 has no pattern- being dense in the center means nodes
have the same dense properties.

(a) (b) (c)

Figure 8. avg size of Cuinit on (a) humanHIV dataset, (b) plasmodium dataset and (c) EUAir dataset.

(a) (b)

Figure 9. avg size of Cuinit on (a) random 1 dataset, and (b) random 2 dataset.

(a) random cliques (b) erdos random graph (c) random trees

Figure 10. Query time on Human HIV4 dataset.

Mathematics 2022, 10, 4830 19 of 22

(a) random cliques (b) erdos random graph (c) random trees

Figure 11. Query time on plasmodium dataset.

(a) random cliques (b) erdos random graph (c) random trees

Figure 12. Query time on EUAi dataset.

(a) random cliques (b) erdos random graph (c) random trees

Figure 13. Query time on random graph1 dataset.

(a) random cliques (b) erdos random graph (c) random trees

Figure 14. Query time on random graph2 dataset.

(a) node embedding of
the first phase

(b) node embedding of
the second phase

(c) node embedding
of SUMGRA.

Figure 15. Node embedding of Human HIV4 dataset: (a) node embedding of the first phase of the
proposed, (b) node embedding of the second phase of the proposed with/without meta-features,
and (c) node embedding of the SUMGRA.

Mathematics 2022, 10, 4830 20 of 22

(a) node embedding of
the first phase

(b) node embedding of
the second phase

(c) node embedding
of SUMGRA.

Figure 16. Node embedding of plasmodium dataset: (a) node embedding of the first phase of the
proposed, (b) node embedding of the second phase of the proposed with/without meta-features,
and (c) node embedding of the SUMGRA.

(a) node embedding of
the first phase

(b) node embedding of
the second phase

(c) node embedding
of SUMGRA.

Figure 17. Node embedding of EUAi dataset: (a) node embedding of the first phase of the proposed,
(b) node embedding of the second phase of the proposed with/without meta-features, and (c) node
embedding of the SUMGRA.

Figure 18. Node embedding of random graph with 5 and 10 relations dataset.

5. Conclusions and Future Work

This paper proposes a novel model for matching subgraph queries in multi-graphs
based on features-based indexing techniques. The proposed model has two main phases.
First, the densest extracted vertex in the query graph finds the density-similar neighborhood
structure in the data graph. It is followed by finding the k-nearest neighborhood query to
acquire the densest subgraph. In the second phase, and for each graph layer, mapping the
vertex-to-feature vector reduces the node embedding size to be efficient with the KD-tree
indexing a dimension reduction. Symmetry breaking conditions were used to remove the
redundancy in the generated pattern matching with the query graph. They test the effect
of the structural features’ concatenation with the meta-features for signatures of nodes on
the model performance. In both phases, the filtering process is applied to minimize the
number of candidate data nodes of the initiate query vertex. The first phase of the proposed
algorithm is better than SUMGRA, and the second phase, which is the improvement
with/without meta-features and methods, is better than the first phase of the proposed
method. A promising future work would be to learn features instead of feature engineering
by graph neural network.

Author Contributions: Conceptualization, A.E.H. and S.H.B.; supervision, A.E.H. and S.H.B.;
methodology, M.A.; validation, M.A.; formal analysis, M.A. and V.S.; writing—original draft prepara-
tion, M.A., A.E.H., V.S. and S.H.B.; writing—review and editing, M.A., A.E.H., V.S. and S.H.B. All
authors have read and agreed to the published version of the manuscript.

Mathematics 2022, 10, 4830 21 of 22

Funding: This research received no external funding.

Data Availability Statement: In this research, experiments are executed over five datasets (three real
multi-graph and two random multi-graph datasets). The three real multi-graph datasets are available
at Domenico, M.D. Complex Multilayer Networks Lab at FBK. https://manliodedomenico.com/
data.php (accessed on 9 October 2022). The two random multi-graph datasets are generated to test
the effiiency of all algorithms.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ingalalli, V.; Ienco, D.; Poncelet, P. Mining Frequent Subgraph in Multigraphs. Inf. Sci. 2018, 451–452, 50–66. [CrossRef]
2. Djenouri, Y.; Lin, J.C.W.; Norvrag, K.; Ramampiaro, H.; Yu, P.S. Exploring Decomposition for Solving Pattern Mining Problems.

ACM Trans. Manag. Inf. Syst. 2021, 12, 15. [CrossRef]
3. Hopcroft, J.E.; Wong, J.K. Linear time algorithm for isomorphism of planar graphs (Preliminary Report). In Proceedings of the

Sixth Annual ACM Symposium on Theory of Computing (STOC ’74), Seattle, WA, USA, 30 April–2 May 1974.
4. Cordella, L.; Foggia, P.; Sansone, C.; Vento, M. Performance Evaluation of the VF Graph Matching Algorithm; Lecture Notes in

Computer Science; Springer: Berlin/Heidelberg, Germnay, 1994; Volume 1035, pp. 1177–1192.
5. Cordella, L.; Foggia, P.; Sansone, C.; Vento, M. A (Sub) Graph Isomorphism Algorithm for Matching Large Graphs. IEEE Trans.

Pattern Anal. Mach. Intell. 2004, 26, 1367–1372. [CrossRef] [PubMed]
6. Zhao, P.; Han, J. On Graph Query Optimization in Large Networks. Proc. VLDB Endow. 2010, 3, 340–351. [CrossRef]
7. Shang, H.; Zhang, Y.; Lin, X.; Yu, J.X. Taming Verification Hardness: An Efficient Algorithm for Testing Subgraph Isomorphism.

Proc. VLDB Endow. 2008, 1, 364–375. [CrossRef]
8. SnÃąÅąel, V.; DrÃąÅ¿dilovÃą, P.; PlatoÅą, J. Cliques Are Bricks for k-CT Graphs. Mathematics 2021, 9, 1160. .

10.3390/math9111160. [CrossRef]
9. Moorman, J.D.; Tu, T.K.; Chen, Q.; He, X.; Bertozzi, A.L. Subgraph Matching on Multiplex Networks. IEEE Trans. Netw. Sci. Eng.

2021, 8, 1367–1384. [CrossRef]
10. Han, M.; Kim, H.; Gu, G.; Park, K.; Han, W.S. Efficient Subgraph Matching: Harmonizing Dynamic Programming, Adaptive

Matching Order, and Failing Set Together. In Proceedings of the 2019 International Conference on Management of Data
(SIGMOD ’19), Amsterdam Netherlands, 30 June–5 July 2019; Association for Computing Machinery: New York, NY, USA, 2019;
pp. 1429–1446. [CrossRef]

11. Bi, F.; Chang, L.; Lin, X.; Qin, L.; Zhang, W. Efficient Subgraph Matching by Postponing Cartesian Products. In Proceedings of the
2016 International Conference on Management of Data (SIGMOD 16), San Francisco, CA, USA, 26 June–1 July 2016; Association
for Computing Machinery: New York, NY, USA, 2016; pp. 1199–1214. [CrossRef]

12. Han, W.S.; Lee, J.; Lee, J.H. Turboiso:Towards Ultrafast and Robust Subgraph Isomorphism Search in Large Graph Databases. In
Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data (SIGMOD 13), New York, NY, USA,
22–27 June 2013; Association for Computing Machinery: New York, NY, USA, 2013; pp. 337–348. [CrossRef]

13. He, H.; Singh, A.K. Graphs-at-a-Time: Query Language and Access Methods for Graph Databases. In Proceedings of the
2008 ACM SIGMOD International Conference on Management of Data (SIGMOD 08), Vancouver, BC, Canada, 9–12 June 2008;
Association for Computing Machinery: New York, NY, USA, 2008; pp. 405–418. [CrossRef]

14. Ullmann, J. Bit-vector algorithms for binary constraint satisfaction and subgraph isomorphism. J. Exp. Algorithmics (JEA) 2010,
15, 1–64. [CrossRef]

15. Solnon, C. AllDifferent-based filtering for subgraph isomorphism. Artif. Intell. 2010, 147, 850–864. [CrossRef]
16. Messmer, B.T.; Bunke, H. Subgraph isomorphism detection in polynomial time on preprocessed model graphs. In Recent

Developments in Computer Vision, Proceedings of the Second Asian Conference on Computer Vision, ACCV ‘95, Singapore, 5–8 December
1995; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1999; pp. 1177–1192.

17. Cibej, U.; FÃijrst, L.; Mihelic, J. A Symmetry-Breaking Node Equivalence for Pruning the Search Space in Backtracking Algorithms.
Symmetry 2019, 11, 1300. [CrossRef]

18. Ingalalli, V.; Ienco, D.; Poncelet, P. SuMGra:Quering Multigraph via efficient Indexing. In Database and Expert Systems Applications,
Proceedings of the 27th International Conference, DEXA 2016, Porto, Portugal, 5–8 September 2016; Lecture Notes in Computer Science;
Springer: Cham, Switzerland, 2016.

19. Fan, W. Graph Pattern Matching Revised for Social Network Analysis. In Proceedings of the 15th International Conference on
Database Theory (ICDT 12), Berlin, Germany, 26–29 March 2012; Association for Computing Machinery: New York, NY, USA,
2012; pp. 8–21. [CrossRef]

20. Kim, J.; Shin, H.; Han, W.S.; Hong, S.; Chafi, H. Taming Subgraph Isomorphism for RDF Query Processing. Proc. VLDB Endow.
2015, 8, 1238–1249. [CrossRef]

21. Zhu, Q.; Yao, Y.; Li, F.; Cai, W.; Liao, Q. Superstructure Searching Algorithm for Generic Reaction Retrieval. J. Chem. Inf. Model.
2005, 45, 1214–1222. [CrossRef] [PubMed]

22. Riesen, K.; Jiang, X.; Bunke, H. Exact and Inexact Graph Matching: Methodology and Applications. In Managing and Mining
Graph Data; Springer: Boston, MA, USA, 2010; pp. 217–247.

https://manliodedomenico.com/data.php
https://manliodedomenico.com/data.php
http://doi.org/10.1016/j.ins.2018.04.001
http://dx.doi.org/10.1145/3439771
http://dx.doi.org/10.1109/TPAMI.2004.75
http://www.ncbi.nlm.nih.gov/pubmed/15641723
http://dx.doi.org/10.14778/1920841.1920887
http://dx.doi.org/10.14778/1453856.1453899
http://dx.doi.org/10.3390/math9111160
http://dx.doi.org/10.1109/TNSE.2021.3056329
http://dx.doi.org/10.1145/3299869.3319880
http://dx.doi.org/10.1145/2882903.2915236
http://dx.doi.org/10.1145/2463676.2465300
http://dx.doi.org/10.1145/1376616.1376660
http://dx.doi.org/10.1145/1671970.1921702
http://dx.doi.org/10.1016/j.artint.2010.05.002
http://dx.doi.org/10.3390/sym11101300
http://dx.doi.org/10.1145/2274576.2274578
http://dx.doi.org/10.14778/2809974.2809985
http://dx.doi.org/10.1021/ci0496402
http://www.ncbi.nlm.nih.gov/pubmed/16180898

Mathematics 2022, 10, 4830 22 of 22

23. Tian, Y.; McEachin, R.C.; Santos, C.; States, D.J.; Patel, J.M. SAGA: A subgraph matching tool for biological graphs. Bioinformatics
2006, 23, 232–239. [CrossRef] [PubMed]

24. Babić, D.; Reynaud, D.; Song, D. Malware Analysis with Tree Automata Inference. In Computer Aided Verification, Proceedings of
the 23rd International Conference, CAV 2011, Snowbird, UT, USA, 14–20 July 2011; CAV 11; Springer: Berlin/Heidelberg, Germany,
2011; pp. 116–131.

25. Wu, J.; Chen, L. A Fast Frequent Subgraph Mining Algorithm. In Proceedings of the 2008 The 9th International Conference for
Young Computer Scientists, Hunan, China, 18–21 November 2008; pp. 82–87. [CrossRef]

26. Wegner, A.E. Subgraph Covers: An Information-Theoretic Approach to Motif Analysis in Networks. Phys. Rev. X 2014, 4, 041026.
[CrossRef]

27. Keller, S.; Miettinen, P.; Kalinina, O.V. Frequent subgraph mining for biologically meaningful structural motifs. bioRxiv 2020.
[CrossRef]

28. Kesavan, L. Frequent Subgraph Mining Algorithms—A Survey and Framework for Classification. Comput. Sci. Inf. Technol. 2012,
2, 189–202. [CrossRef]

29. Bickle, A. The K-Cores of a Graph; Western Michigan University: Kalamazoo, MI, USA, 2010.
30. Batagelj, V.; Zaversnik, M. An O (m) Algorithm for Cores Decomposition of Networks. arXiv 2003, arXiv:cs/0310049.
31. Chang, L.; Qin, L. Cohesive Subgraph Computation over Large Sparse Graphs: Algorithms, Data Structures, and Programming Techniques,

1st ed.; Springer Publishing Company, Incorporated: Cham, Switzerland, 2018.
32. Pashanasangi, N.; Seshadhri, C. Efficiently Counting Vertex Orbits of All 5-Vertex Subgraphs, by EVOKE. In Proceedings of the

13th International Conference on Web Search and Data Mining, Houston, TX, USA, 3–7 February 2020; Association for Computing
Machinery: New York, NY, USA, 2020; pp. 447–455.

33. Savnik, I. Index Data Structure for Fast Subset and Superset Queries. In Availability, Reliability, and Security in Information Systems
and HCI, Proceedings of the IFIP WG 8.4, 8.9, TC 5 International Cross-Domain Conference, CD-ARES 2013, Regensburg, Germany, 2–6
September 2013; Springer: Berlin/Heidelberg, Germany, 2013.

34. Hopcroft, J.; Karp, R. An n5/2 Algorithm for Maximum Matchings in Bipartite Graphs. SIAM J. Comput. 1973, 2, 225–231.
[CrossRef]

35. Alcobaca, E.; Siqueira, F.; Garcia, L.P.; Rivolli, A.; Oliva, J.; de Carvalho, A. MFE: Towards reproducible meta-feature extraction. J.
Mach. Learn. Res. 2020, 21, 1–5.

36. Domenico, M.D. Complex Multilayer Networks Lab at FBK. Available online: https://manliodedomenico.com/data.php
(accessed on 9 October 2022).

http://dx.doi.org/10.1093/bioinformatics/btl571
http://www.ncbi.nlm.nih.gov/pubmed/17110368
http://dx.doi.org/10.1109/ICYCS.2008.355
http://dx.doi.org/10.1103/PhysRevX.4.041026
http://dx.doi.org/10.1101/2020.05.14.095695
http://dx.doi.org/10.5121/csit.2012.2117
http://dx.doi.org/10.1137/0202019
https://manliodedomenico.com/data.php

	Introduction
	Theoretical Background
	Subquery Matching in Multigraph
	Problem Definition (Sub-Multigraph Query Matching)
	Overview of the Proposed Algorithm
	K-Core, Core Number and Vertex Orbits Counting
	Indexing
	Off-Line KD-Tree Index
	On-Line KD-Tree Index Query
	 On-Line and Off-Line Set-Trie Index

	Subgraph Query
	Finding Elegant Initiate Query Vertex
	Query Vertex Ordering
	Candidates for Initial Query Vertex
	Subgraph Searching

	Improvement Algorithm by Vertex Features Using Structural and Meta Features and Symmetry Breaking
	Vertex Features Using Orbits and Meta Features
	Symmetry Breaking Condition

	Experimental Results and Discussions
	Description of Datasets and Query Subgraphs
	Performance of the Proposed Algorithms

	Conclusions and Future Work
	References

