
����������
�������

Citation: Rezaei, F.; Safavi, H.R.; Abd

Elaziz, M.; El-Sappagh, S.H.A.;

Al-Betar, M.A.; Abuhmed, T. An

Enhanced Grey Wolf Optimizer with

a Velocity-Aided Global Search

Mechanism. Mathematics 2022, 10,

351. https://doi.org/10.3390/

math10030351

Academic Editor: Alfredo Milani

Received: 20 December 2021

Accepted: 19 January 2022

Published: 24 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

An Enhanced Grey Wolf Optimizer with a Velocity-Aided
Global Search Mechanism
Farshad Rezaei 1, Hamid Reza Safavi 1 , Mohamed Abd Elaziz 2,3,4,* , Shaker H. Ali El-Sappagh 2,5,
Mohammed Azmi Al-Betar 4,6 and Tamer Abuhmed 7,*

1 Department of Civil Engineering, Isfahan University of Technology, Isfahan 8415683111, Iran;
f.rezaei@alumni.iut.ac.ir (F.R.); hasafavi@iut.ac.ir (H.R.S.)

2 Faculty of Computer Science and Engineering, Galala University, Suez 435611, Egypt;
sh.elsappagh@gmail.com

3 Department of Mathematics, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
4 Artificial Intelligence Research Center (AIRC), Ajman University, Ajman P.O. Box 346, United Arab Emirates;

mohbetar@bau.edu.jo
5 Information Systems Department, Faculty of Computers and Artificial Intelligence, Benha University,

Banha 13518, Egypt
6 Department of Information Technology, Al-Huson University College, Al-Balqa Applied University,

Al-Huson, Irbid 21110, Jordan
7 College of Computing and Informatics, Sungkyunkwan University, Seoul 16419, Korea
* Correspondence: abd_el_aziz_m@yahoo.com (M.A.E.); tamer@skku.edu (T.A.)

Abstract: This paper proposes a novel variant of the Grey Wolf Optimization (GWO) algorithm,
named Velocity-Aided Grey Wolf Optimizer (VAGWO). The original GWO lacks a velocity term in its
position-updating procedure, and this is the main factor weakening the exploration capability of this
algorithm. In VAGWO, this term is carefully set and incorporated into the updating formula of the
GWO. Furthermore, both the exploration and exploitation capabilities of the GWO are enhanced in
VAGWO via stressing the enlargement of steps that each leading wolf takes towards the others in the
early iterations while stressing the reduction in these steps when approaching the later iterations.
The VAGWO is compared with a set of popular and newly proposed meta-heuristic optimization
algorithms through its implementation on a set of 13 high-dimensional shifted standard benchmark
functions as well as 10 complex composition functions derived from the CEC2017 test suite and three
engineering problems. The complexity of the proposed algorithm is also evaluated against the original
GWO. The results indicate that the VAGWO is a computationally efficient algorithm, generating
highly accurate results when employed to optimize high-dimensional and complex problems.

Keywords: optimization; meta-heuristic algorithms; swarm intelligence algorithms; global search;
exploration; exploitation; grey wolf optimizer

1. Introduction

Computational intelligence [1] is a sub-branch of artificial intelligence which employs
a variety of mechanisms to solve complex problems in different domains. Computational
intelligence is applied to many fields, such as computer vision, healthcare, fog computing,
and others. The swarm intelligence (SI) algorithm is one of the most popular computational
intelligence methods, mimicking the lifestyle of natural communities such as animal herds.
The algorithms included in the SI focus on the individual lives of the swarms’ members,
on the one hand, and the social relations and interactions among the swarms’ individuals
to chase and find the food sources on the other. In the last few years, many SI algorithms
have been developed and proposed, including the Firefly Algorithm (FA) [2], Cuckoo
Search (CS) [3], Grey Wolf Optimizer (GWO) [4], Moth-Flame Optimization (MFO) [5],
Gradient-Based Optimizer (GBO) [6], Whale Optimization Algorithm (WOA) [7], Arith-
metic Optimization Algorithm (AOA) [8], and Aquila Optimizer (AO) [9].

Mathematics 2022, 10, 351. https://doi.org/10.3390/math10030351 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10030351
https://doi.org/10.3390/math10030351
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-9233-9209
https://orcid.org/0000-0002-7682-6269
https://orcid.org/0000-0001-9232-4843
https://doi.org/10.3390/math10030351
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10030351?type=check_update&version=4

Mathematics 2022, 10, 351 2 of 32

In the same context, Grey Wolf Optimizer (GWO) is one of the most popular and
widely used SI-based techniques [4]. The GWO algorithm is inspired by the behavior
of the grey wolves in nature when seeking the best means for hunting prey. The GWO
algorithm applies the same mechanism and follows the pack hierarchy for assigning
different roles to each member of the pack to reach the food depending on its potential
fitness and its rank in the pack. In GWO, four groups of wolves, including alpha, beta,
delta, and omega wolves, are defined based upon the highest fitness to leadership to the
lowest competence, respectively. As the alpha, beta, and delta wolves are rated as the
guide wolves in GWO, the omega wolves always follow the location of these guides when
searching for food in nature. The GWO is started by generating random positions for
the grey wolves. Then, the three high-fitness wolves are assumed as those with the best
locations in the population and are named the alpha, beta, and delta solutions, and the other
wolves’ positions are updated according to their distance from the leading solutions to
bring about the potentially better agents to be determined within the searching process. The
GWO employs effective operators to conduct the search process such that a safe and reliable
exploration–exploitation balance could be maintained to avoid premature convergence [10].

As with a wide range of other meta-heuristic algorithms, the GWO suffers from poor
performance in global search [11]. The updating equation of the GWO conducts the con-
vergence of the algorithm very well but causes premature convergence as a result of not
having a strong ability to diversify the search agents to accomplish the exploration phase.
The performance of the GWO could be exacerbated when facing the high-dimensional
problems, having numerous local optima [12]. To achieve a good balance between main-
taining the diversity and providing a high rate of convergence in GWO, there are several
GWO variants that have been proposed in recent years, which can generally be placed into
four categories:

1. Modification of the value of the parameters a and C. A non-linearly decreasing strategy
of a was proposed in [13]. This method employs an exponential decay function by
lapse of iterations. A logarithmic decay function was also proposed to modify the
conventional formulation of a in [12]. The control parameter a was also dynamically
adapted using fuzzy logic in [14].

2. Hybridization with other strong population-based methods. In this way, the weak-
nesses of the GWO are covered by the strengths of several other algorithms, such as ge-
netic algorithms [15], particle swarm optimization [16], differential evolution [17–20],
and biogeography-based optimizer [21]. The integration of the GWO with some local
search methods is another idea accomplished in [22–24].

3. Modification of the updating procedure. The main motivation of this category of
the GWO variants is to increase the diversity of the GWO population to enable this
algorithm to better perform the exploration phase of the optimization process. Among
the proposed variants in this category, the exploration enhanced GWO (EEGWO)
is aimed at adding a selected random search agent from the population to the con-
ventional leading alpha, beta, and delta agents to guide the other individuals in the
population [25]. A weighted distance GWO (wdGWO) was also proposed in [26].
This variant uses a weighted average of the best individuals instead of the simple
average. Inspired by PSO, a new updating scheme replacing the alpha, beta, and
delta positions with the positions of the personal historical best position of a solution
(Pbest) and the global best position (Gbest) was also proposed in [12].

4. Employment of the new operators. A cellular GWO (CGWO) utilizing a topological
structure was developed in [27]. In this method, each wolf merely interacts with
its neighbors in an attempt to make the search process more local to inject more
diversity into the population. A fuzzy hierarchical operator, a mutation operator, and
a Lévy flight operator accompanied by a greedy selection strategy were employed
to enhance the exploration capability of the GWO in [28–30], respectively. A random
walk operator was also suggested for use in GWO in a new variant of GWO named
RW-GWO [31]. Recently, a refraction learning operator was suggested to help the

Mathematics 2022, 10, 351 3 of 32

alpha wolf not to be trapped in the local optimum in a new GWO variant called
RL-GWO [11].

The original GWO algorithm suffers from lacking a strong and reliable exploration
capability, as this algorithm only uses the acceleration terms to update the wolves. Guiding
the wolves only based on the acceleration each leading wolf can apply to the others
can make the global search of the wolves incomplete and thus inefficient as a result of
possibly creating successive interruptions and disruptions in the path of the search agents
when attempting to globally search the search space of the optimization problems. In this
paper, we propose a novel variant of the GWO, named Velocity-Aided GWO (VAGWO),
to effectively solve the crucial problem of the original GWO, briefly explained above. In
this algorithm, a new updating procedure is proposed for the wolves, in which each wolf
adopts a velocity term as well. The major contributions of this paper can be highlighted
as follows:

1. Since the original GWO only involves the acceleration terms to update the position of
the wolves (search agents), these agents may be trapped in local optima, and thereby
a large number of good solutions are not detected during the search process. As a
result, a velocity term can highly improve the global search mechanism of the GWO.
This is the main motivation for proposing VAGWO.

2. The exploration and exploitation capabilities of the GWO are both enhanced via
presenting a new formulation for the control parameter a to emphasize a in the early
iterations while de-emphasizing this parameter in the later iterations.

3. The control parameter C is also modified to intensify the search process in the last
iterations to ameliorate the performance of the GWO in the exploitation phase. Addi-
tionally, the newly proposed calculation formulation of C is such that it is well adapted
to the iterations of the optimization process to make a well-balanced exploration–
exploitation transition in the VAGWO.

The organization of the remainder of this paper is as follows: Section 2 introduces
the GWO algorithm and describes the modifications made to GWO to yield the proposed
VAGWO algorithm. In Section 3.1, the proposed algorithm is applied to two series of high-
dimensional benchmark functions and compared to other popular and widely used meta-
heuristic algorithms. In Section 3.2, the proposal is compared with a set of newly proposed
algorithms on the same test bed used in Section 3.1. In Section 3.3, a Wilcoxon rank-sum test
is conducted to reveal the significance of the superiority of the VAGWO over its competitors
when applied to the test functions. In Sections 3.4 and 3.5, the computational complexity
of the VAGWO is evaluated against the original GWO. In Section 3.6, the competence of
the VAGWO in solving real-world engineering problems is evaluated. Finally, Section 4
highlights the main conclusions of this paper.

2. Materials and Methods
2.1. Original Grey Wolf Optimizer

The GWO algorithm mimics the hunting behavior and social leadership of grey wolves
in nature [4]. The GWO starts the optimization process by randomly generating a swarm of
wolves (initial solutions). At each iteration, the three best-fitted wolves, named alpha, beta,
and delta, are identified as the leaders of the rest of the wolves, named omega wolves. Then,
the omega wolves encircle the best wolves to find the most promising regions in the search
space. These wolves act as the search agents seeking the optimal point of the optimization
problems. Since every search agent encircles the three best agents in the search space, the
arithmetic average of the updated positions of the alpha, beta, and delta wolves is finally
adopted as the updated position of each search agent. This procedure may enhance the
exploration capability of the algorithm, as three different leading agents are involved in
guiding the other agents. The mathematical formulations used in updating the omega
wolves are as follows:

Dt
p,j =

∣∣∣Ct
p,j × Xt

p,j − Xt
i,j

∣∣∣ (1)

Mathematics 2022, 10, 351 4 of 32

Xt+1
i,j = Xt

p,j − At
p,jD

t
p,j (2)

where t stands for the current iteration; At
p,j = 2r1 × a− a; Ct

p,j = 2r2; Xt
p,j is the position of

the prey in the jth dimension in the tth iteration; and Xt
i,j is the position of the ith grey wolf

in the jth dimension in the tth iteration. Additionally, r1 and r2 are two random numbers
generated in [0, 1]. Furthermore, a is linearly decreased from 2 to 0, by means of the lapse
of iterations. Factor A maintains an exploration–exploitation balance in the algorithm.
Furthermore, C is also multiplied by the prey position to further help the exploration
capability of the algorithm via preventing the wolves from being trapped in local optima.

Each omega wolf is updated according to the alpha, beta, and delta wolves, as formu-
lated below:

Dt
α,j =

∣∣∣Ct
α,j × Xt

α,j − Xt
i,j

∣∣∣ (3)

Dt
β,j =

∣∣∣Ct
β,j × Xt

β,j − Xt
i,j

∣∣∣ (4)

Dt
δ,j =

∣∣∣Ct
δ,j × Xt

δ,j − Xt
i,j

∣∣∣ (5)

Xt
1,j = Xt

α,j − At
α,j × Dt

α,j (6)

Xt
2,j = Xt

β,j − At
β,j × Dt

β,j (7)

Xt
3,j = Xt

δ,j − At
δ,j × Dt

δ,j (8)

Xt+1
i,j =

(
Xt

1,j + Xt
2,j + Xt

3,j

)
/3 (9)

where the subscripts α, β, and δ denote the alpha, beta, and delta wolves. The other
subscripts and superscripts are defined above. As Mirjalili et al. (2014) discussed, in GWO,
half of the iterations are for exploration, when |A| > 1, and the second half is dedicated to
the exploitation, in which |A| < 1.

2.2. Velocity-Aided Grey Wolf Optimizer (VAGWO)

In the original GWO, the search agents do not have velocity as a characteristic helping
them in the search process. When the moving agents make their movements in the search
space only by successively changing their acceleration towards the guide agents, these
movements are not consistently or smoothly made iteration by iteration. In other words,
a certain search agent may move towards a guiding agent in the current iteration, and
when this guide changes its position, that certain agent immediately turns its trajectory
to be able to move towards the new guide. As a result, a rupture may occur in the search
agents’ movements in the search space, leading to potential drifts. These drifts may result
in missing a large number of potentially good positions in the search space, and thereby the
optimization process is doomed to face premature convergence. Considering a velocity term
can help the search agents to maintain their unique trajectory, enhancing the explorative
capability of the search agents, balancing the exploration and exploitation phases of the
optimization process, and thus avoiding premature convergence. In VAGWO, there are
initial random velocities defined for each of the search agents (wolves) when it decides
to move towards each of the leading agents (alpha, beta, and delta wolves), and there are
initial random positions defined for each agent (wolf) in the search space. As a result, each
search agent takes a velocity and a position in each dimension of the optimization problem.
Then, the agents are evaluated, and the three best-fitted agents are chosen as the alpha, beta,
and delta wolves to guide the other agents (omega wolves). Then, an updating procedure is
built up for the agents at each iteration. For this purpose, a velocity term is first established
for the ith search agent when guided by the alpha, beta, and delta wolves, as follows:

Vt+1
α,j = k×

(
sgn
(

At
α,j

)
×
∣∣∣Vt

α,j

∣∣∣)+ At
α,j × Dt

α,j (10)

Mathematics 2022, 10, 351 5 of 32

Vt+1
β,j = k×

(
sgn
(

At
β,j

)
×
∣∣∣Vt

β,j

∣∣∣)+ At
β,j×Dt

β,j (11)

Vt+1
δ,j = k×

(
sgn
(

At
δ,j

)
×
∣∣∣Vt

δ,j

∣∣∣)+ At
δ,j×Dt

δ,j (12)

where Vt
α,j, Vt

β,j, and Vt
δ,j represent the velocity of a search agent (wolf) in the jth dimension

when alpha, beta, and delta wolves, respectively, are determined to attract the search
agent in the updating procedure. In addition, sgn is the sign function. At

α,j, At
β,j, and At

δ,j
represent the acceleration terms of the search agents, calculated as follows:

At
α,j = (2× r1 − 1)× a2 (13)

At
β,j = (2× r2 − 1)× a2 (14)

At
δ,j = (2× r3 − 1)× a2 (15)

where r1, r2, and r3 are the uniformly distributed random numbers generated in [0, 1].
Furthermore, a is a linearly decreasing parameter successively determined as follows:

a = amax − (amax − amin)×
(

t− 1
tmax − 1

)
; amax =

√
2, amin = 0 (16)

As can be seen, a is changed from the value of
√

2 in the first iteration to the value of 0
in the final iteration, but, according to Equations (13)–(15), the parameter a is to the power 2.
This means that a2 is varied from 2 to 0. The effect of the power of 2 in these equations helps
the exploration and exploitation capabilities of the proposed algorithm to be strengthened.
In other words, when a2 ≥ 1, the algorithm is in the exploration phase. In addition, a2 ≥ a,
in this phase, as a ≥ 1, and a is positive. As a result, when the exploration phase is
conducted by the proposed VAGWO algorithm, a2 is greater than what a is expected to be
in the original GWO algorithm. This means that |A| � 1, and thus the search agents are
enabled to explore the search space more strongly in the exploration phase. Furthermore,
when a2 ≤ 1, the algorithm is in the exploitation phase. In this phase, a2 ≤ a, as a ≤ 1,
and a is positive. As a result, the parameter a2 is less than what a is expected to be in the
original GWO algorithm, meaning that |A| � 1, and thus the exploitation phase can be
more emphasized in the proposed VAGWO algorithm.

Dt
α,j, Dt

β,j, and Dt
δ,j denote the modified distances between a focused search agent

(wolf) and the alpha, beta, and delta leading wolves, respectively. These distances in each
dimension can be calculated as follows:

Dt
α,j =

∣∣∣Ct
α,j × Xt

α,j − Xt
i,j

∣∣∣ (17)

Dt
β,j =

∣∣∣Ct
β,j × Xt

β,j − Xt
i,j

∣∣∣ (18)

Dt
δ,j =

∣∣∣Ct
δ,j × Xt

δ,j − Xt
i,j

∣∣∣ (19)

where Xt
α,j, Xt

β,j, and Xt
δ,j are the positions of the alpha, beta, and delta wolves in the jth

dimension in the tth iteration; Xt
i,j is the position of the ith search agent (wolf) in the jth

dimension in the tth iteration; Ct
α,j, Ct

β,j, and Ct
δ,j are the crucial coefficients multiplied

by each leading wolf to stochastically emphasize or de-emphasize them, as there is an
uncertainty in the fitness of each of the alpha, beta, and delta wolves, especially in the early
iterations of the optimization process. These coefficients can take these uncertainties into
account and help the exploration phase be better conducted by the algorithm. In VAGWO,
a new definition is presented for these coefficients, as they can be calculated as follows:

Ct
α,j = 1 + (2× r4 − 1)× c2 (20)

Mathematics 2022, 10, 351 6 of 32

Ct
β,j = 1 + (2× r5 − 1)× c2 (21)

Ct
δ,j = 1 + (2× r6 − 1)× c2 (22)

where r4, r5, and r6 are the uniformly distributed random numbers generated in [0, 1], and
c is a parameter adaptively determined as follows:

c = cmax − (cmax − cmin)×
(

t− 1
tmax − 1

)
; cmax = 1, cmin = 0 (23)

The parameter c is linearly decreasing due to the lapse of iterations. As can be seen,
the coefficients C are stochastically generated in [0, 2] in the first iteration, but this range
is decomposed over the course of iterations and gradually changes to [0.1, 1.9], [0.2, 1.8],
. . . , and is terminated at [1, 1] = {1}. Additionally, the way to follow these ranges is such
that the ranges’ values accelerate to reach the final range values, in which no uncertainty is
considered for the fitness of the leading search agents. This is due to making the parameter
c to power 2. Knowing c is within [0, 1] over the whole iterations, c2 is always less than c.
As a result, the coefficients C are much closer to [1, 1] = {1} at the final iterations than those
at the earlier iterations. In this way, the exploitation capability of the VAGWO algorithm
can be further enhanced while the exploration is also strengthened by incorporating the
velocity term into the updating procedure of the search agents.

In Equations (10)–(12), the velocity terms of Vt
α,j, Vt

β,j, and Vt
δ,j adopt the sign of

the acceleration terms of At
α,j, At

β,j, and At
δ,j. This is very important in the new velocity-

incorporated updating procedure proposed in VAGWO. Otherwise, there might be a chance
in conflict occurring between the velocity and the acceleration which can, in turn, disrupt
the agents’ movements in the search space. In Equations (10)–(12), k is a tuning parameter
playing the role of the inertia weight to facilitate a suitable and reliable transition from
exploration to exploitation and is calculated iteration by iteration as follows:

k = kmax − (kmax − kmin)×
(

t− 1
tmax − 1

)
; kmax = 0.9, kmin = 0.4 (24)

Finally, the next positions of the search agents (wolves) can be updated by calculating
three positions of Xt+1

1,j , Xt+1
2,j , and Xt+1

3,j , as follows:

Xt+1
1,j = Xt

α,j −Vt+1
α,j (25)

Xt+1
2,j = Xt

β,j −Vt+1
β,j (26)

Xt+1
3,j = Xt

δ,j −Vt+1
δ,j (27)

The new position of a search agent is calculated by averaging three updated positions
presented in Equations (25)–(27) as follows:

Xt+1
i,j =

(
Xt+1

1,j + Xt+1
2,j + Xt+1

3,j

)
/3 (28)

where Xt+1
i,j is the position of the ith search agent (wolf) in the jth dimension in the (t + 1)th

iteration. The last modification performed in the VAGWO against the original GWO is
incorporating an elitism scheme in the proposed algorithm. In this way, each agent updated
at an iteration of the algorithm is compared to the best position it has experienced so far
and if its objective function is better, it remains in the present form and is designated as its
new best-so-far position; otherwise, the current best-so-far position replaces the updated
search agent. As a result, the search agents successively become better over the course of
iterations. The experiments show that equipping the proposed algorithm with the elitism
mechanism can highly improve the results of the optimization offered by the proposed
VAGWO algorithm. Figure 1 depicts the exploration and exploitation processes conducted

Mathematics 2022, 10, 351 7 of 32

by the proposed VAGWO algorithm. The flowchart of the VAGWO is also illustrated
in Figure 2.

Mathematics 2022, 10, x FOR PEER REVIEW 7 of 33

algorithm with the elitism mechanism can highly improve the results of the optimization
offered by the proposed VAGWO algorithm. Figure 1 depicts the exploration and exploi-
tation processes conducted by the proposed VAGWO algorithm. The flowchart of the
VAGWO is also illustrated in Figure 2.

Figure 1. Movement of an exemplary omega wolf in the VAGWO during (a) exploration; and (b)
exploitation.

3. Results and Discussion
3.1. Comparison with Popular Meta-Heuristic Algorithms

To assess the capability of the presented VAGWO method, it is first applied to 13
popular standard benchmark functions [32,33]. These functions are broken down into two
main categories: uni-modal (F1–F7), and multi-modal (F8–F13). Uni-modal benchmark
functions have a single global optimum. Thus, they are suitable for assessing the effective-
ness of the search process of any optimization algorithm when conducting the exploita-
tion phase, while multi-modal benchmark functions are favoured for assessing the capa-
bility of an optimization method to explore the search space. In these benchmark func-
tions, all the global optima are shifted so that the difficulty of solving such functions is
increased, as recommended in [5,34]. For conducting a thorough investigation on the po-
tential abilities of the proposed algorithm to solve the optimization problems, it is also
applied to 10 composition functions derived from the CEC2017 test suite [35,36]. These
composition functions are the combination of various shifted, rotated, and biased multi-
modal functions. Thus, they can challenge the proposed VAGWO algorithm’s capabilities
to solve real-world and complex optimization problems to a greater extent. The optimiza-
tion process implemented over these benchmark functions is of the minimization type.
The number of dimensions was set to 100 for the shifted standard benchmark functions
and set to 50 for the composition functions. These settings can make these test problems
more challenging for the proposed algorithm and its competitors to solve such high-di-
mensional and thus hard-to-solve problems.

Figure 1. Movement of an exemplary omega wolf in the VAGWO during (a) exploration; and
(b) exploitation.

Mathematics 2022, 10, x FOR PEER REVIEW 8 of 33

Figure 2. Flowchart of VAGWO.

3.1.1. Parameter Setting of the Algorithms
The VAGWO algorithm presented to tackle the difficulties in the test problems of-

fered was compared with six popular meta-heuristic algorithms, namely Moth-Flame Op-
timization (MFO) algorithm [5], Gravitational Search Algorithm (GSA) [37], Particle
Swarm Optimization (PSO) [38], Grey Wolf Optimizer (GWO) [4], Genetic Algorithm
(GA) [39], and Sine Cosine Algorithm (SCA) [34]. To perform an impartial comparison,
the swarm size of all algorithms was set to 30 for the shifted uni- and multi-modal func-
tions and set to 50 for the composition functions. In addition, a maximum of 1000 itera-
tions for all the benchmark functions were set for all algorithms. Furthermore, the stop-
ping criterion was assumed to be met when the maximum number of iterations had
elapsed. The parameter settings of the VAGWO and the popular algorithms are presented
in Table 1.

Figure 2. Flowchart of VAGWO.

Mathematics 2022, 10, 351 8 of 32

3. Results and Discussion
3.1. Comparison with Popular Meta-Heuristic Algorithms

To assess the capability of the presented VAGWO method, it is first applied to
13 popular standard benchmark functions [32,33]. These functions are broken down into
two main categories: uni-modal (F1–F7), and multi-modal (F8–F13). Uni-modal bench-
mark functions have a single global optimum. Thus, they are suitable for assessing the
effectiveness of the search process of any optimization algorithm when conducting the
exploitation phase, while multi-modal benchmark functions are favoured for assessing
the capability of an optimization method to explore the search space. In these benchmark
functions, all the global optima are shifted so that the difficulty of solving such functions
is increased, as recommended in [5,34]. For conducting a thorough investigation on the
potential abilities of the proposed algorithm to solve the optimization problems, it is also
applied to 10 composition functions derived from the CEC2017 test suite [35,36]. These
composition functions are the combination of various shifted, rotated, and biased multi-
modal functions. Thus, they can challenge the proposed VAGWO algorithm’s capabilities to
solve real-world and complex optimization problems to a greater extent. The optimization
process implemented over these benchmark functions is of the minimization type. The
number of dimensions was set to 100 for the shifted standard benchmark functions and
set to 50 for the composition functions. These settings can make these test problems more
challenging for the proposed algorithm and its competitors to solve such high-dimensional
and thus hard-to-solve problems.

3.1.1. Parameter Setting of the Algorithms

The VAGWO algorithm presented to tackle the difficulties in the test problems offered
was compared with six popular meta-heuristic algorithms, namely Moth-Flame Optimiza-
tion (MFO) algorithm [5], Gravitational Search Algorithm (GSA) [37], Particle Swarm
Optimization (PSO) [38], Grey Wolf Optimizer (GWO) [4], Genetic Algorithm (GA) [39],
and Sine Cosine Algorithm (SCA) [34]. To perform an impartial comparison, the swarm
size of all algorithms was set to 30 for the shifted uni- and multi-modal functions and set
to 50 for the composition functions. In addition, a maximum of 1000 iterations for all the
benchmark functions were set for all algorithms. Furthermore, the stopping criterion was
assumed to be met when the maximum number of iterations had elapsed. The parameter
settings of the VAGWO and the popular algorithms are presented in Table 1.

Table 1. Parameter settings of the VAGWO and the popular algorithms.

Algorithm Parameter Settings

GA prcrossover = 0.9; prmutation = 1
D ; D = number of dimensions

GSA α = 20; G0 = 100
GWO a =[2, 0]
SCA A = 2
MFO b = 1; t =[−1, 1]; a ∈ [−2, −1]
PSO c1 = c2 = 2; k = [0.9, 0.4]; vmax = 0.1(Ub− lb)
VAGWO a =

[√
2, 0

]
; c = [1, 0]; k = [0.9, 0.4]; vmax = 0.1(Ub− lb)

The average, median, best, and standard deviation (std) are computed overall 30 runs
and tabulated as the performance measures benchmarked for each algorithm in solving each
problem. The final results of the methods on the uni-modal, multi-modal, and composition
functions are presented in Tables 2–4, respectively, where the best results are emboldened.
Moreover, the convergence curves of the methods while solving the standard uni- and
multi-modal benchmark test functions are plotted and shown in Figures 3 and 4.

Mathematics 2022, 10, 351 9 of 32

Table 2. The results achieved by the VAGWO against the popular algorithms for the uni-modal functions at D = 100.

Criteria GA GSA GWO SCA MFO PSO VAGWO

F1 Average 1.3145× 103 3.3013× 104 2.7390 × 104 7.7868× 104 5.4462× 104 2.3717× 103 1.1135 × 102

Median 1.3491× 103 3.3408× 104 2.7923× 104 7.7008× 104 5.1517× 104 2.2960× 103 4.4670 × 10−5

Best 6.7348× 102 2.5631× 104 2.1056× 104 7.2993× 104 1.6670× 104 9.9523× 102 2.1784 × 10−5

Std 3.5295× 102 4.0589× 103 2.9998× 103 3.7570× 103 2.7319× 104 8.9039× 102 2.9420 × 102

F2 Average 4.4012× 101 1.1384× 102 1.4334× 102 8.6832× 1028 2.0777× 102 3.5007 × 101 7.0141 × 101

Median 3.8777× 101 1.0862× 102 1.4090× 102 1.8767× 1024 1.9796× 101 3.1852 × 101 6.6105× 101

Best 2.5202× 101 6.5112× 101 1.1372× 102 1.3806× 1019 1.2845× 102 1.8119 × 101 1.9121× 101

Std 1.3266 × 101 2.9437× 101 1.8008× 101 4.6583× 1029 5.0882× 101 1.5105× 101 2.9868× 101

F3 Average 8.3262× 104 5.1905× 107 6.2520× 104 7.7757× 105 2.9237× 105 1.2787× 105 4.2826 × 104

Median 8.0580× 104 5.0496× 107 6.2328× 104 7.9153× 105 2.9625× 105 1.2639× 105 4.3677 × 104

Best 3.4050× 104 1.7880 × 107 4.5743× 104 4.5868× 105 2.1713× 105 9.2114× 104 3.2353 × 104

Std 2.5412× 104 1.7749× 107 9.9509× 103 1.8258× 105 5.1406× 104 1.6626× 104 5.3441 × 103

F4 Average 5.4130× 101 4.1485× 101 3.0000 × 101 8.6843× 101 1.1526× 102 5.4811× 101 3.6574× 101

Median 5.4759× 101 4.1519× 101 3.0000 × 101 8.6705× 101 1.1595× 102 5.4992× 101 3.6386× 101

Best 4.3826× 101 3.5991× 101 3.0000 × 101 5.8537× 101 1.0147× 102 5.0756× 101 3.2179× 101

Std 4.6386 2.4090 9.2263 × 10−6 9.1948 4.5032 2.2497 1.9721
F5 Average 1.0439× 107 2.3325× 107 8.8129× 107 3.3677× 108 4.6664× 108 3.9658× 105 6.3034 × 102

Median 9.9830× 106 2.4397× 107 8.4294× 107 3.3991× 108 5.3559× 108 3.2805× 105 2.4761 × 102

Best 4.4329× 106 1.2336× 107 5.7810× 107 2.9990× 108 8.8447× 107 1.2544× 105 9.2531 × 101

Std 3.5737× 106 6.4073× 106 1.8251× 107 2.4425× 107 3.3994× 108 1.9334× 105 7.9507 × 102

F6 Average 4.8028× 107 5.4047× 107 4.5957× 107 5.0700× 107 4.2505× 107 4.4737× 107 4.2370 × 107

Median 4.7976× 107 5.4037× 107 4.5964× 107 5.0651× 107 4.2315 × 107 4.4722× 107 4.2343× 107

Best 4.7432× 107 5.3626× 107 4.5183× 107 5.0039× 107 4.2315× 107 4.4458× 107 4.2273 × 107

Std 2.7704× 105 2.0128× 105 3.8826× 105 3.9522× 105 2.6715× 105 1.4424× 105 7.3410 × 104

F7 Average 3.5762 2.8100 7.1200 6.7364× 101 3.0920× 102 5.6674 1.1901
Median 3.5377 2.4379 7.1292 5.5946× 101 2.8647× 102 5.3252 1.1240

Best 2.8683 1.1697 4.8209 2.3663× 101 1.1090× 102 3.2343 7.4749 × 10−1

Std 3.8797× 10−1 1.2734 8.7771× 10−1 3.6755× 101 1.3778× 102 1.7540 3.1510 × 10−1

Mathematics 2022, 10, 351 10 of 32

Table 3. The results achieved by the VAGWO against the popular algorithms for the multi-modal functions at D = 100.

GA GSA GWO SCA MFO PSO VAGWO

F8 Average −3.5683× 104 −1.1006 × 104 −2.9094 × 104 −1.1970 × 104 −4.1790 × 104 −4.8614 × 104 −1.9834× 104

Median −3.5894× 104 −1.0662× 104 −2.9420× 104 −1.1893× 104 −4.1182× 104 −4.9295 × 104 −1.1536× 104

Best −3.8516× 104 −1.5599× 104 −3.4062× 104 −1.4931× 104 −4.7204× 104 −5.1057 × 104 −3.6521× 104

Std 1.9777× 103 1.4105× 103 3.5746× 103 1.3600 × 103 2.7387× 103 1.9383× 103 1.1450× 104

F9 Average 3.0707× 102 2.0682 × 102 3.5852× 102 7.5702× 102 9.7395× 102 3.5882× 102 4.6031 × 102

Median 3.0479× 102 2.0385 × 102 3.5863× 102 7.7132× 102 9.8368× 102 3.5807× 102 4.1260× 102

Best 2.5717× 102 1.3555 × 102 3.3475× 102 5.2269× 102 7.7984× 102 2.6772× 102 3.2479× 102

Std 2.4689× 101 3.1032× 101 1.2922 × 101 1.1559× 102 1.0160× 102 4.4807× 101 1.7637× 102

F10 Average 1.8444× 101 1.8411× 101 1.8181 × 101 2.0639 × 101 1.9963 × 101 7.1840 4.7471 × 10−1

Median 1.8496× 101 1.8416× 101 1.8171× 101 2.0649× 101 1.9962× 101 6.8019 1.1937 × 10−1

Best 1.7422× 101 1.7816× 101 1.7209× 101 2.0540× 101 1.9929× 101 5.3688 1.0335 × 10−3

Std 3.2972× 10−1 2.5475× 10−1 5.7835× 10−1 4.0430× 10−2 1.4445 × 10−2 2.4645 6.0050× 10−1

F11 Average 4.5712× 102 3.7084× 103 5.9960× 102 2.6469× 103 8.7276× 102 6.0543 3.5127 × 10−2

Median 4.5672× 102 3.7002× 103 6.0872× 102 2.6529× 103 8.9186× 102 5.8597 3.4064 × 10−2

Best 3.6426× 102 3.3366× 103 3.6207× 102 2.4142× 103 3.5255× 102 3.6179 1.6705 × 10−2

Std 6.3478× 101 1.7163× 102 1.2925× 102 1.0277× 102 3.7015× 102 1.7377 1.1749 × 10−2

F12 Average 2.0697× 107 1.7579× 108 1.9120× 108 1.2105× 109 1.9646× 109 7.2752× 102 7.2740
Median 1.9645× 107 1.6923× 108 1.8401× 108 1.1771× 109 2.4419× 109 2.8892× 102 6.5613

Best 9.5275× 106 1.0300× 108 1.1045× 108 1.0227× 109 3.7000× 107 2.4553× 101 4.4658
Std 7.4939× 106 4.0605× 107 4.7756× 107 1.4810× 108 2.3055× 109 1.5344× 103 2.1024

F13 Average 2.6528× 1011 4.2977× 1011 1.6784× 1011 5.7455× 1011 9.5020× 1010 8.7697× 1010 4.1092 × 1010

Median 2.6493× 1011 4.2938× 1011 1.6868× 1011 5.8124× 1011 8.4801× 1010 8.7371× 1010 4.1070 × 1010

Best 2.2983× 1011 3.9465× 1011 1.2460× 1011 5.1618× 1011 4.1006 × 1010 8.2160× 1010 4.1035 × 1010

Std 1.4749× 1010 1.9301× 1010 2.1598× 1010 2.4067× 1010 4.8364× 1010 2.3254× 109 5.7317 × 107

Mathematics 2022, 10, 351 11 of 32

Table 4. The results achieved by the popular algorithms for the composition functions (CFs) from the CEC2017 test suite at D = 50.

GA GSA GWO SCA MFO PSO VAGWO

CF1 Average 2581 2873 2532 2922 2775 2516 2502
Median 2578 2875 2512 2925 2759 2482 2442

Best 2485 2754 2470 2848 2644 2402 2400
Std 46 51 66 38 75 98 123

CF2 Average 10,462 11,985 9524 16,677 10,636 12,184 11,019
Median 10,327 11,847 9199 16,641 10,773 12,694 8990

Best 8410 10,744 6945 15,955 8282 2321 6778
Std 1121 594 1963 374 1309 2991 3681

CF3 Average 3522 4784 2972 3633 3193 2975 2941
Median 3504 4780 2962 3621 3207 2965 2870

Best 3336 4364 2860 3490 3045 2844 2806
Std 117 246 57 78 65 87 138

CF4 Average 3985 4529 3174 3783 3233 3257 3119
Median 3980 4528 3140 3793 3220 3276 3033

Best 3833 4320 3016 3653 3131 3060 2982
Std 108 117 126 59 63 83 142

CF5 Average 3214 4526 3603 7688 6172 3198 3072
Median 3213 4557 3601 7717 5470 3185 3070

Best 3160 3835 3110 6175 3160 3103 3030
Std 31 297 257 949 3046 57 21

CF6 Average 10,824 12,522 6376 12,862 8481 5496 5301
Median 11,082 12,654 6388 12,733 8377 5461 5117

Best 7284 10,859 5355 11,901 7285 3423 4460
Std 1186 748 497 665 738 704 872

CF7 Average 4731 8462 3595 4668 3606 3547 3354
Median 4706 8229 3576 4659 3602 3553 3349

Best 4288 7225 3431 4265 3392 3386 3272
Std 286 826 96 184 122 71 60

CF8 Average 3596 5848 4318 7825 8132 3418 3335
Median 3602 5918 4340 7829 8314 3407 3338

Best 3504 5147 3679 6307 4332 3333 3281
Std 52 387 356 703 1330 55 28

CF9 Average 5199 10210 4562 7948 5260 4167 4296
Median 5176 8432 4508 7886 5279 4122 4225

Best 4506 6781 4003 6732 4279 3795 3812
Std 491 4210 328 598 525 316 346

CF10 Average 5.3978× 106 2.1898× 108 1.2384× 108 1.0138× 109 3.1693× 108 3.7558 × 106 6.5360× 107

Median 5.2621× 106 2.1474× 108 1.1889× 108 9.7621× 108 4.3311× 107 3.3283 × 106 6.2949× 107

Best 2.8554× 106 1.6371× 108 6.0963× 107 4.5479× 108 8.4795× 106 2.4394 × 106 3.1806× 107

Std 1.4562× 106 3.3743× 107 3.8409× 107 3.5595× 108 5.7666× 108 1.1546 × 106 2.4574× 107

Mathematics 2022, 10, 351 12 of 32
Mathematics 2022, 10, x FOR PEER REVIEW 11 of 33

F1 F2

F3 F4

F5 F6

F7

Figure 3. The convergence curves of the VAGWO and the popular algorithms for F1–F7.

Av
er

ag
e

be
st-

so
-fa

r

Av
er

ag
e

be
st-

so
-fa

r

Av
er

ag
e b

es
t-s

o-
fa

r

Av
er

ag
e

be
st-

so
-fa

r

Av
er

ag
e

be
st-

so
-fa

r

Av
er

ag
e

be
st-

so
-fa

r

Av
er

ag
e

be
st-

so
-fa

r

Figure 3. The convergence curves of the VAGWO and the popular algorithms for F1–F7.

Mathematics 2022, 10, 351 13 of 32Mathematics 2022, 10, x FOR PEER REVIEW 13 of 33

F8 F9

F10 F11

F12 F13

Figure 4. The convergence curves of the VAGWO and the popular algorithms for F8–F13.

Av
er

ag
e

be
st-

so
-fa

r

Av
er

ag
e

be
st-

so
-fa

r

Av
er

ag
e

be
st-

so
-fa

r

Av
er

ag
e

be
st-

so
-fa

r

Av
er

ag
e

be
st-

so
-fa

r

Figure 4. The convergence curves of the VAGWO and the popular algorithms for F8–F13.

Mathematics 2022, 10, 351 14 of 32

3.1.2. Results of VAGWO on the Uni-Modal Benchmark Functions

As the results displayed in Table 2 suggest, the VAGWO algorithm strongly outper-
forms its competitors on 19 out of 28 (68%) of the performance criteria on the uni-modal
functions, while the original GWO can outperform its competitors only on 4 out of 28 (14%)
of the criteria in this category of test problems. The PSO outperforms its competitors only
on 4 criteria, and the MFO and GA each perform better than the other competitors only on
one criterion. As can be seen, the results suggest the absolute superiority of the VAGWO
as compared to the other competitive algorithms. The main reason behind this superior
performance the VAGWO shows in this category may be hidden in strengthening both the
ability of exploration and exploitation of the VAGWO as well as incorporating the velocity
into the updating procedure of the proposal. The effect of the velocity is not only limited
to enhancing the exploration capability, but can enhance the exploitation capability of the
proposed VAGWO, as the main problem any optimization algorithm faces when solving
the uni-modal functions is the lack of a sufficient rate of convergence to the single optimal
point while avoiding divergence nearby this optimum.

Involving the velocity of the search agents in their position updating procedure
can speed up the convergence while avoiding the divergence by gradually decreasing
the agents’ progression towards the global optimum, benefiting from the inertia weight
imposed on the velocity term in the updating procedure. Besides these characteristics of
the proposed VAGWO, the elitism mechanism embedded in the structure of the VAGWO
can be rated as another factor contributing to the high performance of this algorithm on
the uni-modal functions, as the elitism can mainly enhance the exploitation capability of
an optimization algorithm. The convergence curves plotted are shown in Figure 3. It can
be noticed that the VAGWO rapidly converges to the optimum on F1, F3, F5, F6, and F7.
While the performance of all the algorithms is similar on F2, the GWO is superior to the
other algorithms when it converges to the optimal point of the F3 problem.

3.1.3. Results of VAGWO on the Multi-Modal Benchmark Functions

As the results indicated in Table 3 suggest, the VAGWO is significantly superior to
its competitors on F10–F13, while the original GWO has very poor performance in this
category. The PSO and GSA show their superiority to the other algorithms only on F8 and
F9, respectively. The main reason accounting for the high performance of the VAGWO on
such benchmark functions can be summarized in preserving the trajectory of the search
agents as the main effect of incorporating the agents’ velocity into the updating procedure,
and further strengthening the exploration capability of the proposal by increasing the
acceleration coefficients represented by parameter A at the exploration phase.

The convergence curves are displayed in Figure 4. As this figure indicates, the VAGWO
algorithm converges to the optimal point over all the test problems faster than the oth-
ers, except for over the F8 and F9. The closest rival to the VAGWO on F10–F13 is the
PSO algorithm; however, this algorithm can outperform all other competitors only when
solving F8.

3.1.4. Comparison on CEC2017 Benchmark Functions

To further investigate the eligibility of the VAGWO algorithm, the composition func-
tions of the CEC2017 test suite [35] were utilized as the test bed. As can be seen in Table 4,
the VAGWO is significantly superior to its competitors on CF3, CF4, CF5, CF7, and CF8.
Overall, the VAGWO is superior to the other algorithms examined in this sub-section on
24 out of 40 criteria (60%), while its closest rival is revealed to be PSO, which outperforms
the other competitors on 10 criteria (25%), followed by the GWO and SCA, each of which
is superior to the other algorithms only on three criteria (8%). Furthermore, the proposal
can reach the best averages on 7 out of 10 (70%) of the problems, followed by the PSO,
reaching 20% of the best average results, and the GWO, with only 10% outperformancefor
these criteria. The other examined algorithms show very poor performance when solving
this hard-to-solve category of the benchmark problems. As can be seen, the difference

Mathematics 2022, 10, 351 15 of 32

in the results obtained by different algorithms is slight. This issue highlights the high
complexity of this category of test problem, the solving of which is a great challenge for
any algorithm. The main reason as to why the proposed VAGWO algorithm is superior to
the other competitive algorithms on these composition functions is hidden in the unique
structure of this algorithm. The VAGWO inherits some advantages from the original GWO,
such as having three guide agents, which, in turn, helps the diversity of the solutions
in the search space to be considerably preserved. The other characteristic of the GWO
which the VAGWO benefits from is the high exploitation capability of this algorithm. These
characteristics are strengthened in VAGWO by adding the velocity into the structure of the
VAGWO to enable the algorithm to further preserve diversity and avoid missing the good
candidate solutions in the search space. In addition, the aforementioned modifications
imposed on the control parameters A and C can boost the ability of the proposed VAGWO
to both explore and exploit the promising regions in the search space. Finally, the elitism
mechanism can intensify the convergence to the optimal point of the problems and enhance
the exploitation capability of the proposed method.

On the composition functions, the VAGWO outperforms the other competitors on 7
out of 10 problems, amongwhich its outperformance is significant on four problems, includ-
ing CF5, CF7, CF8, and CF9. The VAGWO also shows significant dominance over half of
the other algorithms, including GA, SCA, and PSO, on CF10. As the composition functions
included in the CEC2017 are very challenging for the optimization algorithms, the com-
petitive algorithms all find these test problems hard to solve, and thus show no significant
superiority when outperforming several other algorithms on most of these problems.

3.2. Comparison with Newly Proposed Meta-Heuristic Algorithms

To further evaluate the effectiveness of the proposed VAGWO in solving optimiza-
tion problems, its performance on the same benchmark functions used as the test bed
in the previous sections is compared with that of several newly proposed meta-heuristic
algorithms including Arithmetic Optimization Algorithm (AOA) [8], Flow Direction Al-
gorithm (FDA) [40], Aquila Optimizer (AO) [9], Gradient-Based Optimizer (GBO) [6],
and the Effective Butterfly Optimizer with Covariance Matrix Adapted Retreat phase
(EBOwithCMAR) [41], as the winner of the CEC2017 competition.

The swarm size and the maximum number of iterations considered for these com-
parisons are all the same as those set for the comparisons among the VAGWO and the
popular algorithms in the previous section. The parameter settings of the newly proposed
algorithms along with the EBOwithCMAR are presented in Table 5. All algorithms are
implemented on the benchmarks 30 times and the final results are shown in Tables 6–8,
where the best results are emboldened. Moreover, the convergence curves of the algo-
rithms when applied to the uni- and multi-modal benchmark test functions are plotted
in Figures 5 and 6.

Table 5. Parameter settings of the VAGWO and the newly proposed algorithms.

Algorithm Parameter Settings

AOA α = 5; µ = 0.5
FDA α = 30; β = 1

AO r1 ∈ [1, 20]; U = 0.00565; D1 = D; ω = 0.005;
α = δ = 0.1; G2 = [2, 0]; D = number of dimensions

GBO βmin = 0.2; βmax = 1.2; pr = 0.5

EBOwithCMAR
PS1,max = 18D; PS1,min = 4; PS2,max = 46.8D;
PS2,min = 10; H = 6; PS3 = 4 + 3logD; σ = 0.3;
probls = 0.1; c f els = 0.25FEmax

VAGWO a = [
√

2, 0
]
; c = [1, 0]; k = [0.9, 0.4]; vmax = 0.1(Ub− lb)

Mathematics 2022, 10, 351 16 of 32

Table 6. The results achieved by the VAGWO against the newly proposed algorithms for the uni-modal functions at D = 100.

Criteria AOA FDA AO GBO VAGWO

F1 Average 8.5528× 104 7.7862× 101 6.6579× 102 4.2384 1.1135× 102

Median 8.5779× 104 7.4241× 101 5.8520× 102 4.2055 4.4670 × 10−5

Best 8.2761× 104 3.1943× 101 1.2840× 102 1.9473 2.1784 × 10−5

Std 1.2722× 103 2.7128× 101 3.7689× 102 1.3970 2.9420× 102

F2 Average 1.3994× 1044 1.7597× 101 6.2467× 101 6.7930 7.0141× 101

Median 7.8577× 1036 1.5961× 101 6.2424× 101 6.1354 6.6105× 101

Best 1.4431× 1031 4.7370 3.9025× 101 2.7225 1.9121× 101

Std 7.6643× 1044 1.1085× 101 1.0766× 101 2.4097 2.9868× 101

F3 Average 3.8895× 107 5.4983× 104 6.2975× 105 5.3370× 104 4.2826 × 104

Median 3.1952× 107 5.3844× 104 5.4349× 105 5.1641× 104 4.3677 × 104

Best 1.3207× 107 2.5986× 104 7.4016 × 103 2.7174× 104 3.2353× 104

Std 2.1761× 107 1.8674× 104 3.3353× 105 1.3866× 104 5.3441 × 103

F4 Average 3.0069× 101 5.7428× 101 6.4199 3.0000× 101 3.6574× 101

Median 3.0066× 101 5.7268× 101 6.5023 3.0000× 101 3.6386× 101

Best 3.0037× 101 4.9694× 101 4.4853 3.0000× 101 3.2179× 101

Std 1.8936× 10−2 4.5728 1.0959 0 1.9721
F5 Average 4.1376× 108 2.5332× 104 7.1099× 105 2.5415× 103 6.3034 × 102

Median 4.1511× 108 2.3657× 104 7.0797× 105 1.9500× 103 2.4761 × 102

Best 3.9225× 108 1.2145× 104 2.6086× 105 8.8348× 103 9.2531 × 101

Std 8.1798× 106 9.7197× 103 2.3792× 105 1.6939× 103 7.9507 × 102

F6 Average 5.3812× 107 4.2395× 107 4.7087× 107 4.2325 × 107 4.2370× 107

Median 5.3752× 107 4.2315 × 107 4.7067× 107 4.2315 × 107 4.2343× 107

Best 5.2972× 107 4.2315× 107 4.4905× 107 4.2315× 107 4.2273× 107

Std 4.4939× 105 1.5635× 105 1.1035× 106 5.4809 × 104 7.3410× 104

F7 Average 1.9082× 101 1.8086 5.9662 × 10−2 5.1627× 10−1 1.1901
Median 1.9156× 101 1.7865 2.5773 × 10−2 5.2503× 10−1 1.1240

Best 1.8658× 101 1.1862 1.8976 × 10−4 2.2524× 10−1 7.4749× 10−1

Std 1.7378× 10−1 3.4373× 10−1 8.1757 × 10−2 1.4718× 10−1 3.1510× 10−1

Mathematics 2022, 10, 351 17 of 32

Table 7. The results achieved by the VAGWO and the newly proposed algorithms for the multi-modal functions at D = 100.

AOA FDA AO GBO VAGWO

F8 Average −1.6753 × 104 −3.9307 × 104 −4.0026 × 104 −4.5759 × 104 −1.9834 × 104

Median −1.6786 × 104 −3.9191 × 104 −4.1826 × 104 −4.4654 × 104 −1.1536 × 104

Best −1.8925 × 104 −4.6148 × 104 −4.2162 × 104 −5.8155 × 104 −3.6521 × 104

Std 1.3801 × 103 3.0131 × 103 5.0202 × 103 3.9214 × 103 1.1450 × 104

F9 Average 3.9853 × 102 4.7369 × 102 6.4745 × 101 3.7594 × 102 4.6031 × 102

Median 3.9932 × 102 4.6574 × 102 6.4144 × 101 3.7599 × 102 4.1260 × 102

Best 3.9532 × 102 3.8724 × 102 1.6180 × 101 3.5910 × 102 3.2479 × 102

Std 1.5326 5.1274 × 101 2.4065 × 101 7.430 1.7637 × 102

F10 Average 1.9183 × 101 1.9713 × 101 9.2096 1.0517 × 101 4.7471 × 10−1

Median 1.9185 × 101 1.9819 × 101 9.2307 1.0638 × 101 1.1937 × 10−1

Best 1.9169 × 101 1.9159 × 101 7.4454 7.4765 1.0335 × 10−3

Std 4.6444 × 10−3 2.8495 × 10−1 8.7246 × 10−1 1.5506 6.0050 × 10−1

F11 Average 3.3992 × 103 2.0511 × 101 2.0904 × 102 1.0699 3.5127 × 10−2

Median 3.3890 × 103 1.9103 × 101 6.4897 × 101 1.0610 3.4064 × 10−2

Best 2.9482 × 103 8.2154 1.3689 9.4317 × 10−1 1.6705 × 10−2

Std 1.7761 × 102 8.1815 2.5256 × 102 5.9152 × 10−2 1.1749 × 10−2

F12 Average 1.5095 × 109 1.6587 × 103 9.2327 × 102 1.6110 × 101 7.2740
Median 1.5212 × 109 7.2011 × 102 4.6676 × 101 1.4867 × 101 6.5613

Best 1.4472 × 109 9.9784 × 101 1.1443 × 101 9.3806 4.4658
Std 3.2479 × 107 2.1955 × 103 2.7363 × 103 5.5139 2.1024

F13 Average 7.4948 × 1011 4.1006 × 1010 4.7531 × 1010 4.1006 × 1010 4.1092 × 1010

Median 7.4547 × 1011 4.1006 × 1010 4.1006 × 1010 4.1006 × 1010 4.1070 × 1010

Best 6.9270 × 1011 4.1006 × 1010 4.1006 × 1010 4.1006 × 1010 4.1035 × 1010

Std 2.4411 × 1010 0 1.5675 × 1010 0 5.7317 × 107

Mathematics 2022, 10, 351 18 of 32

Table 8. The results achieved by the newly proposed algorithms for the composition functions (CFs)
from CEC2017 at D = 50.

AOA FDA AO GBO EBOwithCMAR VAGWO

CF1 Average 3097 2621 2791 2566 2523 2503
Median 3088 2622 2781 2564 2528 2455

Best 2894 2496 2664 2466 2410 2394
Std 83 79 90 51 47 122

CF2 Average 16,099 10,163 11,897 10,149 9333 11,988
Median 16,110 10,280 11,800 10,066 9430 10,407

Best 14,923 2310 10,039 8391 2302 2372
Std 495 1799 957 1053 1835 4246

CF3 Average 4481 3161 3533 3070 3083 2949
Median 4461 3175 3529 3077 3097 2888

Best 4011 2956 3362 2961 2869 2820
Std 245 92 114 64 115 138

CF4 Average 4921 3264 3565 3217 3224 3130
Median 4933 3243 3567 3200 3247 3033

Best 4539 3148 3393 3088 2992 2964
Std 237 82 102 84 133 157

CF5 Average 15,558 3114 3735 3101 3073 3076
Median 15,419 3116 3724 3102 3072 3078

Best 11,932 3043 3369 3047 3020 3012
Std 1246 31 262 25 34 27

CF6 Average 16,538 8818 9836 6966 7446 5724
Median 16,693 8955 9911 7382 7440 5286

Best 12,984 3351 5112 2998 5844 4696
Std 1232 2193 1931 2920 1046 1188

CF7 Average 6874 3581 4254 3594 3760 3385
Median 6982 3551 4174 3585 3737 3375

Best 5946 3337 3932 3346 3574 3278
Std 511 142 225 132 128 65

CF8 Average 11,932 3392 4896 3368 3371 3343
Median 11,659 3392 4845 3359 3355 3343

Best 10,153 3308 4199 3288 3271 3284
Std 1243 34 441 39 51 27

CF9 Average 54,360 4955 6747 4809 5482 4257
Median 27,541 4975 6597 4786 5381 4273

Best 15,094 4205 5050 4359 4427 3678
Std 75,324 416 850 332 572 306

CF10 Average 6.1044 × 109 1.2845 × 106 1.4030 × 108 1.2209 × 106 3.2820 × 107 7.9566 × 107

Median 5.8321 × 109 1.0644 × 106 1.3139 × 108 1.1180 × 106 1.8823 × 107 7.6358 × 107

Best 2.3426 × 109 8.2422 × 105 9.1039 × 107 7.0751 × 105 1.0856 × 107 2.4714 × 107

Std 2.5512 × 109 5.2007 × 105 3.9271 × 107 3.3360 × 105 3.3160 × 107 3.1151 × 107

Mathematics 2022, 10, 351 19 of 32Mathematics 2022, 10, x FOR PEER REVIEW 18 of 33

F1 F2

F3 F4

F5 F6

F7

Figure 5. The convergence curves of the VAGWO and the newly proposed algorithms for F1–F7.

Av
er

ag
e

be
st-

so
-fa

r

Av
er

ag
e

be
st-

so
-fa

r

Av
er

ag
e

be
st-

so
-fa

r

Av
er

ag
e

be
st-

so
-fa

r

Av
er

ag
e

be
st-

so
-fa

r

Av
er

ag
e

be
st

-s
o-

fa
r

Av
er

ag
e

be
st-

so
-f

ar

Figure 5. The convergence curves of the VAGWO and the newly proposed algorithms for F1–F7.

Mathematics 2022, 10, 351 20 of 32
Mathematics 2022, 10, x FOR PEER REVIEW 20 of 33

F8 F9

F10 F11

F12 F13

Figure 6. The convergence curves of the VAGWO and the newly proposed algorithms for F8–F13.

Av
er

ag
e

be
st-

so
-fa

r

Av
er

ag
e

be
st-

so
-fa

r

Av
er

ag
e b

es
t-s

o-
fa

r

Av
er

ag
e

be
st-

so
-fa

r

Figure 6. The convergence curves of the VAGWO and the newly proposed algorithms for F8–F13.

Mathematics 2022, 10, 351 21 of 32

3.2.1. Results of VAGWO on the Uni-Modal Benchmark Functions

As the results illustrated in Table 6 suggest, the VAGWO outperforms the other
competing algorithms on 10 out of 28 (36%) of the performance criteria on the uni-modal
functions. The closest rivals to the VAGWO based on this category of benchmarks are GBO
and AO algorithms, outperforming the others on 10 out of 28 (36%) and 8 out of 28 (29%) of
the criteria, respectively. As can be seen, the results suggest the superiority of the VAGWO
as compared to the other competitive algorithms.

Although the exploitation capability of the original GWO algorithm is strong, adding
the velocity term to the updating procedure of the search agents in the VAGWO can
expedite their convergence to the optimal point, and thus the superiority of the VAGWO on
these functions may be realizable. Among the other features of the VAGWO contributing
to this algorithm to show better exploitation, incorporating an elitism mechanism along
with some crucial modifications especially on the coefficients C which are multiplied by
the leading wolves’ position to take uncertainty in their fitness can be mentioned.

The convergence curves depicted in Figure 5 show that the VAGWO can converge to
the optimum on F2, F3, F5, and F6, with a rate better than or equal to the other competing
algorithms. The most serious rival of the VAGWO is GBO, which is very similar to the
proposal in behavior when conducting the optimization process on the uni-modal functions.

3.2.2. Results of VAGWO on the Multi-Modal Benchmark Functions

As the results displayed in Table 7 suggest, the VAGWO is highly superior to its
competitors on F10-F12, while the superiority on the other functions in this category
is dispersed among the other algorithms. On F13, the results of the VAGWO are very
close to those of the FDA, AO, and GBO, while being far better than those of the AOA.
Benefiting from a velocity-aided updating procedure as well as accelerating the exploration
via increasing the coefficients A at the early stages of the optimization process are among
the two major factors leading to the superiority of the VAGWO in solving this category of
function when compared to its rivals.

The convergence curves are shown in Figure 6. As indicated in this figure, the VAGWO
rapidly and greedily converges to the optimal point of F10–F13, while its closest rival,
namely the GBO, seems to stagnate during the optimization of all functions after the lapse
of several iterations.

3.2.3. Comparison on CEC2017 Benchmark Functions

The VAGWO is investigated to reveal if its superiorioty to the popular algorithms on
the composition functions derived from the CEC2017 benchmark suite is continued when
compared to the newly proposed algorithms and the winner of the CEC2017 competition
under the same conditions. As can be seen in Table 8, the VAGWO is superior to its
competitors on CF1, CF3, CF4, CF6, CF7, CF8, and CF9. Overall, the VAGWO is superior
to the other algorithms on 23 out of 40 criteria (58%), while its closest rival is found to be
the EBOwithCMAR, as the winner of the CEC2017 competition, which can outperform the
other methods only on 20% of the whole criteria. This category of test problems can be a
very good examiner of the overall eligibility of any optimization algorithm, as it contains
the toughest problems to solve. Adding the velocity term, defining a new formulation
for the coefficients C, accelerating the exploration and exploitation in the early and later
iterations, respectively, and also incorporating an elitism mechanism are all among the
strengths of the proposed VAGWO, helping this algorithm to even overcome the newly
proposed meta-heuristics and the winner of the CEC2017 competition.

3.3. Statistical Analysis

To further analyze the results, a non-parametric test, named the Wilcoxon rank-sum
test, is applied to delineate whether two sets of results are statistically different [42]. This
test presents a parameter called the p-value to determine the significance level of a pair of

Mathematics 2022, 10, 351 22 of 32

results generated by a pair of algorithms. Usually, the superiority of the performance of a
method is statistically significant when the p-value < 0.05.

The p-values are presented in Tables 9–12. In these tables, the expression N/A stands
for “Not Applicable”, indicating a certain algorithm that outperforms the others in the
quality of the results it presents in each test problem and thus should be compared pairwise
with each of the other algorithms. Moreover, the signs “+”, “−“, and “∼”, mean that the
N/A algorithm beats, loses to, or ties with the other algorithms at the test, respectively.
The results are broken down into two categories: (1) the results on the 13 shifted standard
test functions; and (2) the results on the CEC2017 50-dimensional composition benchmark
functions. As can be seen, the VAGWO significantly outperforms the popular meta-heuristic
algorithms on 47 out of 54 (87%) of the total cases of its outperformance when applied
to the standard functions. The VAGWO also shows significant dominance in 19 out of
42 (45%) of cases over the popular meta-heuristics when implemented on the CEC2017
composition functions.

Table 9. p-values and signs of the Wilcoxon test for VAGWO against the popular algorithms on the
standard functions.

GA GSA GWO SCA MFO PSO VAGWO

F1 0.0286 + 0.0286 + 0.0286 + 0.0286 + 0.0286 + 0.0286 + N/A ∼
F2 0.1429 − 0.0286 + 0.0286 + 0.0286 + 0.0286 + N/A ∼ 0.0286 +
F3 0.0286 + 0.0286 + 0.0286 + 0.0286 + 0.0286 + 0.0286 + N/A ∼
F4 0.0286 + 0.0286 + N/A ∼ 0.0286 + 0.0286 + 0.0286 + 0.0286 +
F5 0.0286 + 0.0286 + 0.0286 + 0.0286 + 0.1429 + 0.0286 + N/A ∼
F6 0.0286 + 0.0286 + 0.0286 + 0.0286 + 0.0286 − 0.0286 + N/A ∼
F7 0.0286 + 0.0286 + 0.0286 + 0.0286 + 0.0286 + 0.0286 + N/A ∼
F8 0.0286 + 0.0571 − 0.0286 + 0.1429 − 0.0286 + N/A ∼ 0.0286 +
F9 0.0571 − N/A ∼ 0.1429 − 0.0286 + 0.1429 + 0.0286 + 0.0286 +
F10 0.0571 − 0.0571 − 0.0571 − 0.0571 − 0.0286 − 0.0286 + N/A ∼
F11 0.0286 + 0.0286 + 0.0286 + 0.0286 + 0.0286 + 0.0286 + N/A ∼
F12 0.0286 + 0.0286 + 0.0286 + 0.0286 + 0.1429 + 0.0286 + N/A ∼
F13 0.0286 + 0.0286 + 0.0286 + 0.0286 + 0.0286 − 0.0286 + N/A ∼

Table 10. p-values and signs of Wilcoxon test for VAGWO against the popular algorithms on the
CEC2017 composition functions.

GA GSA GWO SCA MFO PSO VAGWO

CF1 0.3143 − 0.3143 − 0.3143 − 0.4857 − 0.3143 − 0.3143 − N/A ∼
CF2 0.8857 − 0.3429 − N/A ∼ 0.2286 − 0.8857 − 0.3714 − 0.9714 +
CF3 0.3143 − 0.0286 + 0.4857 − 0.2000 − 0.3143 − 0.3143 − N/A ∼
CF4 0.3143 − 0.1429 − 0.3143 − 0.4857 − 0.3143 − 0.3143 − N/A ∼
CF5 0.0286 + 0.0286 + 0.0286 + 0.0286 + 0.0286 + 0.0286 + N/A ∼
CF6 0.0571 − 0.0571 − 0.6571 − 0.0571 − 0.3143 − 1.0000 ∼ N/A ∼
CF7 0.0286 + 0.0286 + 0.0286 + 0.0286 + 0.0286 + 0.0286 + N/A ∼
CF8 0.0286 + 0.0286 + 0.0286 + 0.0286 + 0.0286 + 0.0286 + N/A ∼
CF9 0.0286 + 0.0286 + 0.0286 + 0.0286 + 0.0286 + N/A ∼ 0.0286 +

CF10 0.0286 + 0.0286 + 0.0286 + 0.0286 + 0.0286 + N/A ∼ 0.0286 +

Mathematics 2022, 10, 351 23 of 32

Table 11. p-values and signs of Wilcoxon test for VAGWO against the newly proposed algorithms on
the standard functions.

AOA FDA AO GBO VAGWO

F1 0.0286 + 0.0286 + 0.0286 + N/A ∼ 0.6571 −
F2 0.0286 + 0.0286 + 0.0286 + N/A ∼ 0.0286 +
F3 0.0286 + 0.3143 − 0.1429 − 0.3143 − N/A ∼
F4 0.0571 − 0.0286 + N/A ∼ 0.1429 − 0.0286 +
F5 0.0286 + 0.0286 + 0.0286 + 0.0286 + N/A ∼
F6 0.0286 + 0.2571 − 0.0286 + N/A ∼ 0.3714 −
F7 0.0286 + 0.0286 + N/A ∼ 0.0286 + 0.0286 +
F8 0.1429 − 0.2000 − 0.0857 − N/A ∼ 0.0286 +
F9 0.1429 − 0.0286 + N/A ∼ 0.0571 − 0.0286 +
F10 0.1429 − 0.0571 − 0.0286 + 0.0286 + N/A ∼
F11 0.0286 + 0.0286 + 0.0286 + 0.0286 + N/A ∼
F12 0.0286 + 0.0286 + 0.0286 + 0.0286 + N/A ∼
F13 0.0286 + 1 ∼ 0.4286 − N/A ∼ 0.0286 +

Table 12. p-values and signs of Wilcoxon test for VAGWO against the newly proposed algorithms on
the CEC2017 functions.

AOA FDA AO GBO EBOwithCMAR VAGWO

CF1 0.1429 − 0.3143 − 0.3143 − 0.3143 − 0.4857 − N/A ∼
CF2 0.1429 − 0.3143 − 0.0857 − 0.2000 − N/A ∼ 0.0857 −
CF3 0.0286 + 0.3143 − 0.2000 − 0.4857 − 0.3143 − N/A ∼
CF4 0.0286 + 0.4857 − 0.3143 − 0.3143 − 0.3143 − N/A ∼
CF5 0.0286 + 0.3143 − 0.0286 + 0.6571 − N/A ∼ 1 ∼
CF6 0.0571 − 0.1143 − 0.0286 + 0.3143 − 0.3143 − N/A ∼
CF7 0.0286 + 0.0286 + 0.0286 + 0.0286 + 0.0286 + N/A ∼
CF8 0.0286 + 0.0286 + 0.0286 + 0.0286 + 0.2571 − N/A ∼
CF9 0.0286 + 0.0286 + 0.0286 + 0.0286 + 0.0286 + N/A ∼

CF10 0.0286 + 0.1429 − 0.0286 + N/A ∼ 0.0286 + 0.0286 +

Furthermore, the VAGWO can significantly outperform the newly proposed meta-
heuristics in 15 out of 20 (75%) of its dominance cases when applied to the standard
benchmarks, closely followed by the GBO which significantly outperforms the other com-
petitive algorithms in 12 out of 20 (60%) of its total outperformance cases. The proposal
also shows significant outperformance in 17 out of 35 (49%) of its all dominance cases,
when implemented on the CEC2017 functions, while the EBOwithCMAR and GBO show
significant dominance only in 2 out of 10 (20%) and four out of five cases (80%) of their
total cases of outperformance, respectively. As a result, not only can the proposed VAGWO
outperform the two sets of popular and newly proposed meta-heuristic algorithms as
well as the winner of the CEC2017 competition when optimizing the two sets of the test
functions, but it can also present significantly better results compared to its rivals.

3.4. Complexity of Algorithm

The complexity of VAGWO and GWO methods is evaluated according to the standard
approach proposed in [35]. The results can be observed in Table 13, where T0 stands for the
computing time(s) for a standard loop illustrated in Figure 7, T1 denotes the CPU time(s)
of F18 from CEC2017 using 200,000 function evaluations, and T̂2 represents the average
of CPU time(s) of the methods when solving the same function (i.e., F18) five times. The
lowest complexities are highlighted in Table 13.

Mathematics 2022, 10, 351 24 of 32

Table 13. The computational complexity of VAGWO against GWO.

T0 T1
^
T2 (

^
T2−T1)/T0

Algorithm - - GWO VAGWO GWO VAGWO

D = 10 0.0230 1.0960 4.2059 5.0984 135.1543 173.9418
D = 30 0.0230 2.5317 11.8755 13.7169 406.0756 486.1017
D = 50 0.0230 4.3593 19.2003 23.2219 644.9804 819.7566

Mathematics 2022, 10, x FOR PEER REVIEW 24 of 33

Table 12. p-values and signs of Wilcoxon test for VAGWO against the newly proposed algorithms
on the CEC2017 functions.

 AOA FDA AO GBO EBOwithCMAR VAGWO

CF1 0.1429 − 0.3143 − 0.3143 − 0.3143 − 0.4857 − N/A ~
CF2 0.1429 − 0.3143 − 0.0857 − 0.2000 − N/A ~ 0.0857 −
CF3 0.0286 + 0.3143 − 0.2000 − 0.4857 − 0.3143 − N/A ~
CF4 0.0286 + 0.4857 − 0.3143 − 0.3143 − 0.3143 − N/A ~
CF5 0.0286 + 0.3143 − 0.0286 + 0.6571 − N/A ~ 1 ~
CF6 0.0571 − 0.1143 − 0.0286 + 0.3143 − 0.3143 − N/A ~
CF7 0.0286 + 0.0286 + 0.0286 + 0.0286 + 0.0286 + N/A ~
CF8 0.0286 + 0.0286 + 0.0286 + 0.0286 + 0.2571 − N/A ~
CF9 0.0286 + 0.0286 + 0.0286 + 0.0286 + 0.0286 + N/A ~

CF10 0.0286 + 0.1429 − 0.0286 + N/A ~ 0.0286 + 0.0286 +

3.4. Complexity of Algorithm
The complexity of VAGWO and GWO methods is evaluated according to the stand-

ard approach proposed in [35]. The results can be observed in Table 13, where T0 stands
for the computing time(s) for a standard loop illustrated in Figure 7, T1 denotes the CPU
time(s) of F18 from CEC2017 using 200,000 function evaluations, and T෡2 represents the
average of CPU time(s) of the methods when solving the same function (i.e., F18) five
times. The lowest complexities are highlighted in Table 13.

As can be observed from Table 13, the complexity of the VAGWO method is 29%,
20%, and 27% greater than that of the GWO for 10-, 30-, and 50-dimensional problems,
respectively. As inferred from Table 13, the complexity of the proposed VAGWO is just a
little greater than that of the GWO as its base algorithm, and their difference in complexity
can even be reduced by increasing the dimensions of the problem. It is worth mentioning
that all algorithms were run in the MATLAB-R2018b environment installed on the Win-
dows 10 operating system of an Intel Quad-core computer with 2.8 GHz CPU and 16 GB
of memory.

Figure 7. The process of computing time T0.

Table 13. The computational complexity of VAGWO against GWO.

 T0 T1 T෡2 ൫T෡2−T1൯/T0
Algorithm - - GWO VAGWO GWO VAGWO

D = 10 0.0230 1.0960 4.2059 5.0984 135.1543 173.9418
D = 30 0.0230 2.5317 11.8755 13.7169 406.0756 486.1017
D = 50 0.0230 4.3593 19.2003 23.2219 644.9804 819.7566

Figure 7. The process of computing time T0.

As can be observed from Table 13, the complexity of the VAGWO method is 29%, 20%,
and 27% greater than that of the GWO for 10-, 30-, and 50-dimensional problems, respec-
tively. As inferred from Table 13, the complexity of the proposed VAGWO is just a little
greater than that of the GWO as its base algorithm, and their difference in complexity can
even be reduced by increasing the dimensions of the problem. It is worth mentioning that
all algorithms were run in the MATLAB-R2018b environment installed on the Windows 10
operating system of an Intel Quad-core computer with 2.8 GHz CPU and 16 GB of memory.

3.5. Runtime Analysis

The runtime of VAGWO and GWO algorithms is evaluated to better understand if the
proposed algorithm retains its efficiency despite its increased complexity as compared to
the original GWO. Tables 14 and 15 show the results of the runtime of independent execu-
tions of each test problem, including the standard benchmark functions and the CEC2017
composition functions, respectively. These runtimes are the average of the runtimes of the
algorithms when executed 30 times. As the results suggest, the average runtime of the
GWO is calculated to be 5.33 s on the standard functions, while the average runtime of the
VAGWO on the same functions is evaluated to be 5.94 s, indicating just an 11.45% increase
in runtime when using the proposed VAGWO to solve these benchmarks. Moreover, the
average runtime of the GWO is obtained as 6.06 s on the CEC2017 composition functions,
while the VAGWO has an average runtime of 6.64 s on these functions, showing just a
9.51% increase in runtime compared to that of the GWO. As can be seen, the runtime and
consequently the complexity of the VAGWO is just slightly greater than the original GWO,
revealing that the proposed algorithm can reach highly better results than the GWO while
preserving its efficiency. Meanwhile, the difference in the runtime of the two algorithms
is lessened when implemented on the CEC2017 functions. As the CEC2017 functions are
much more complex functions to evaluate than the standard functions, it can be inferred
that the main reason causing the complexity of the proposed VAGWO to be lessened on the
CEC2017 is that the objective function evaluations of this test set are assigned a high weight
in the complexity of any algorithm employed to optimize these functions. As a result, the
complexity of the main body of the VAGWO algorithm can find less weight in the total com-
plexity of a single run of the optimization process of the CEC2017 functions than that when
applied to the standard functions. This point is very promising and further encourages the
use of the VAGWO, especially when dealing with a complex objective function.

Mathematics 2022, 10, 351 25 of 32

Table 14. The independent runtime of VAGWO against GWO on the standard functions (seconds).

GWO VAGWO

F1 5.30 5.55
F2 5.12 5.65
F3 5.42 6.30
F4 5.36 5.62
F5 4.96 5.50
F6 5.35 6.05
F7 5.53 5.83
F8 5.30 6.11
F9 5.13 6.16

F10 5.21 5.96
F11 5.19 6.10
F12 5.65 5.80
F13 5.75 6.59

Average 5.33 5.94

Table 15. The independent runtime of VAGWO against GWO on the CEC2017 composition functions
(seconds).

GWO VAGWO

CF1 5.81 5.89
CF2 5.54 6.40
CF3 5.76 6.55
CF4 5.88 6.71
CF5 5.81 6.56
CF6 6.11 6.94
CF7 6.37 7.21
CF8 6.14 6.64
CF9 5.89 6.02

CF10 7.29 7.44

Average 6.06 6.64

3.6. Comparison on Real-World Engineering Design Problems

In this section, the performance of the VAGWO is examined by solving three con-
strained real-world engineering design problems. To validate the VAGWO in solving
such problems, the resulting performance of VAGWO is tested against seven state-of-the-
art and widely used optimization algorithms, including Particle Swarm Optimization
(PSO) [38], Gravitational Search Algorithm (GSA) [37], Cuckoo Search (CS) [3], Grey Wolf
Optimizer (GWO) [4], Whale Optimization Algorithm (WOA) [7], Elephant Herding Opti-
mizer (EHO) [43], and Simulated Annealing (SA) algorithm [44]. All the results of these
algorithms taken to be compared with those achieved by the proposed VAGWO algo-
rithm are presented in [45]. For handling the constraints in these problems, the scalable
penalty functions are utilized in VAGWO and once the solutions become infeasible, numer-
ous penalty functions are added to the minimization objective to enhance the cost of the
optimization and penalize these solutions.

In addition, 50 search agents, as well as 1000 iterations, are used in VAGWO, and each
problem is run 30 times, and the best results, including the best objective values and the best
design variables are reported against those resulting from the other algorithms examined.

3.6.1. Welded Beam Design Problem

In this problem, a welded beam is designed to minimize its construction cost [46]. The
main objective function is subject to some constraints. The problem includes four design

Mathematics 2022, 10, 351 26 of 32

variables consisting of h(x1), l(x2), t(x3), and b(x4), as shown in Figure 8. The formulation
of this problem is as follows:

Minimize f (x) = 1.10471x2
1x2 + 0.04811x3x4(14 + x2) (29)

Subject to:
g1(x) = τ(x)− τmax ≤ 0 (30)

g2(x) = σ(x)− σmax ≤ 0 (31)

g3(x) = x1 − x4 ≤ 0 (32)

g4(x) = 0.10471x2
1 + 0.04811x3x4(14 + x2)− 5 ≤ 0 (33)

g5(x) = 0.125− x1 ≤ 0 (34)

g6(x) = δ(x)− δmax ≤ 0 (35)

g7(x) = P− Pc(x) ≤ 0 (36)

0.1 ≤ xi ≤ 2, i = 1, 4 (37)

0.1 ≤ xi ≤ 10, i = 2, 3 (38)

where

τ(x) =

√
(τ ′
)2

+ 2τ′τ′′
x2

2R
+ (τ′′)2, τ′ =

P√
2x1x2

, τ′′ =
MR

J
(39)

M = P
(

L+
x2

2

)
, R =

√
x2

2
4

+

(
x1+x3

2

)2
, J = 2

{
√

2x1x2

[
x2

2
12

+

(
x1+x3

2

)2
]}

(40)

σ(x) =
6PL
x4x2

3
, δ(x) =

4PL3

Ex3
3x4

, Pc(x) =
4.013E

√(
x2

3x6
4/36

)
L2

(
1− x3

2L

√
E

4G

)
(41)

P = 6000 lb, L = 14 in, E = 30× 106 psi, G = 12× 106 psi (42)

τmax= 13,600 psi, σmax= 30,000 psi, δmax= 0.25 in (43)

Mathematics 2022, 10, x FOR PEER REVIEW 27 of 33

0.1≤xi≤2, i=1, 4 (37)

0.1≤xi≤10, i=2, 3 (38)

where

τ(x)=ට(τ’)2+2τ’τ’’ x2

2R +(τ’’)2 , τ’=
P√2x1x2

, τ’’=
MR

J (39)

M=P ቀL+
x2

2 ቁ , R=ඨx2
2

4 + ൬x1+x3

2 ൰2
, J=2 ቊ√2x1x2 ቈx2

2

12 + ൬x1+x3

2 ൰2቉ቋ (40)

σ(x)= 6PLx4x32 , δ(x)= 4PL3Ex33x4 , Pc(x)= 4.013Eට൫x32x46/36൯L2 ቌ1 − x32L ඨ E4Gቍ (41)

P=6000 lb, L=14 in, E=30×106 psi, G=12×106 psi (42)τmax=13,600 psi, σmax=30,000 psi, δmax=0.25 in (43)

Table 16 shows the results of solving the welded beam design problem obtained by
the VAGWO and the other comparative algorithms. As can be seen, the VAGWO can
reach f(x)=1.6952, which is the minimum and the best cost among the other algorithms.
The design variables obtained by the VAGWO are shown in Table 16 and assumed as the
best variables with respect to the objective function value the VAGWO can achieve during
the optimization process.

Figure 8. Welded beam design problem [47]. Figure 8. Welded beam design problem [47].

Table 16 shows the results of solving the welded beam design problem obtained by
the VAGWO and the other comparative algorithms. As can be seen, the VAGWO can reach
f (x) = 1.6952 , which is the minimum and the best cost among the other algorithms. The
design variables obtained by the VAGWO are shown in Table 16 and assumed as the best

Mathematics 2022, 10, 351 27 of 32

variables with respect to the objective function value the VAGWO can achieve during the
optimization process.

Table 16. Minimization results of welded beam design.

Algorithm h L t b f (x)

PSO 0.2157 3.4704 9.0356 0.2658 1.8578
GSA 0.2191 3.6661 10.0000 0.2508 2.2291
CS 0.2057 3.4705 9.0366 0.2057 1.7289

GWO 0.2054 3.4778 9.0388 0.2067 1.7265
WOA 0.1876 3.9298 8.9907 0.2308 1.9428
EHO 0.4834 2.4950 4.4538 0.8488 2.3234
SA 0.2055 3.4751 9.0417 0.2063 1.7306

VAGWO 0.2057 3.2531 9.0366 0.2057 1.6952

3.6.2. Tension/Compression Spring Design Problem

The tension/compression spring design problem [48] aims to minimize the weight
of a tension/compression spring, subject to constraints on minimum deflection, outside
diameter restrictions, surge frequency, shear stress, and design variables. The design
variables are d(x1), D(x2), and P(x3), as depicted in Figure 9. The formulation of this
problem is as follows:

Minimize f (x) = (x3 + 2)x2x2
1 (44)

Subject to:

g1(x) = 1−
x3

2x3

71,785x4
1
≤ 0 (45)

g2(x) =
4x2

2 − x1x2

12,566
(
x2x3

1 − x4
1
) + 1

5108x2
1
≤ 0 (46)

g3(x)= 1− 140.45x1

x2
2x3

≤ 0 (47)

g4(x) =
x1 + x2

1.5
− 1 ≤ 0 (48)

0.05 ≤ x1 ≤ 2.00 (49)

0.25 ≤ x2 ≤ 1.30 (50)

2.00 ≤ x3 ≤ 15.0 (51)

Table 17 shows the final results the VAGWO and its competitors present after solving
this problem. As shown in the table, the VAGWO achieves the minimum weight for the
tension/compression spring, presenting f (x) = 1.2665× 10−2. The first five comparative
algorithms yield the same objective function value, while the EHO and SA present the
worst objective values among all the algorithms applied to this problem.

Table 17. Minimization results of tension/compression spring design.

Algorithm d D N f (x)

PSO 0.0514 0.3577 11.6187 0.0127
GSA 0.0500 0.3170 14.0802 0.0127
CS 0.0518 0.3586 11.1808 0.0127

GWO 0.0519 0.3627 10.9512 0.0127
WOA 0.0520 0.3637 10.8938 0.0127
EHO 0.0580 0.5278 5.5820 0.0135
SA 0.0500 0.2500 9.3876 0.0178

VAGWO 0.0518 0.3589 11.1648 0.0127

Mathematics 2022, 10, 351 28 of 32Mathematics 2022, 10, x FOR PEER REVIEW 29 of 33

Figure 9. Tension/compression spring problem [47].

Table 17. Minimization results of tension/compression spring design.

Algorithm d D N f(x)
PSO 0.0514 0.3577 11.6187 0.0127
GSA 0.0500 0.3170 14.0802 0.0127
CS 0.0518 0.3586 11.1808 0.0127

GWO 0.0519 0.3627 10.9512 0.0127
WOA 0.0520 0.3637 10.8938 0.0127
EHO 0.0580 0.5278 5.5820 0.0135
SA 0.0500 0.2500 9.3876 0.0178

VAGWO 0.0518 0.3589 11.1648 0.0127

3.6.3. Speed Reducer Design Problem
This optimization problem is a constrained one, an similarly to the two previous

problems it aims to minimize the weight of a speed reducer subject to constraints on the
bending stress of the gear teeth, surface stress, transverse deflections of the shafts, and
stresses in the shafts [49]. The scheme of the speed reducer is shown in Figure 10. The
formulation of this problem is as follows:

Minimize f(x)=0.7854x1x2
2 ቆ3.3333x3

2+14.9334x3 − 43.0934 − 1.508x1൫x6
2+x7

2൯+
7.4777൫x6

3+x7
3൯+0.7854(x4x6

2+x5x7
2)

ቇ (52)

Subject to:

g1
(x)=

27
x1x2

2x3
− 1≤0 (53)

g2
(x)=

397.5
71,785x1

4 − 1≤0 (54)

g3
(x)=

1.93x4
3

x2x6
4x3

− 1≤0 (55)

Figure 9. Tension/compression spring problem [47].

3.6.3. Speed Reducer Design Problem

This optimization problem is a constrained one, an similarly to the two previous
problems it aims to minimize the weight of a speed reducer subject to constraints on the
bending stress of the gear teeth, surface stress, transverse deflections of the shafts, and
stresses in the shafts [49]. The scheme of the speed reducer is shown in Figure 10. The
formulation of this problem is as follows:

Minimize f (x) = 0.7854x1x2
2

(
3.3333x2

3 + 14.9334x3 − 43.0934− 1.508x1
(

x2
6+x2

7
)
+

7.4777
(

x3
6 + x3

7
)
+ 0.7854(x 4x2

6 + x5x2
7
))

(52)

Subject to:

g1(x) =
27

x1x2
2x3
− 1 ≤ 0 (53)

g2(x) =
397.5

71, 785x4
1
− 1 ≤ 0 (54)

g3(x) =
1.93x3

4
x2x4

6x3
− 1 ≤ 0 (55)

g4(x) =
1.93x3

5

x2x4
7x3
− 1 ≤ 0 (56)

g5(x) =

[(
745
(

x4
x2x3

))2
+ 16.9× 106

]1/2

110x3
6

− 1 ≤ 0 (57)

g6(x) =

[(
745
(

x5
x2x3

))2
+157.5×106

]1/2

85x3
7

− 1 ≤ 0 (58)

g7(x) =
x2x3

40
− 1 ≤ 0 (59)

g8(x) =
5x2

x1
− 1 ≤ 0 (60)

g9(x) =
x1

12x2
− 1 ≤ 0 (61)

Mathematics 2022, 10, 351 29 of 32

g10(x) =
1.5x6 + 1.9

x4
− 1 ≤ 0 (62)

g11(x) =
1.1x7 + 1.9

x5
− 1 ≤ 0 (63)

2.6 ≤ x1 ≤ 3.6 (64)

0.7 ≤ x2 ≤ 0.8 (65)

17 ≤ x3 ≤ 28 (66)

7.3 ≤ x4 ≤ 8.3 (67)

7.3 ≤ x5 ≤ 8.3 (68)

2.9 ≤ x6 ≤ 3.9 (69)

5.0 ≤ x7 ≤ 5.6 (70)
Mathematics 2022, 10, x FOR PEER REVIEW 31 of 33

Figure 10. Speed reducer design problem [47].

Table 18. Minimization results of speed reducer design.

Algorithm x1 x2 x3 x4 x5 x6 x7 f(x)
PSO 3.5000 0.7000 17.0000 7.7400 7.8500 3.3600 5.3890 2998.1200
GSA 3.1530 0.7000 17.0000 7.3000 8.3000 3.2000 5.0000 3040.1000
CS 3.4970 0.7000 17.0000 7.3000 7.8000 3.3500 5.2800 2997.5000

GWO 3.5000 0.7000 17.0000 7.3000 7.8000 2.9000 2.9000 2998.8300
WOA 3.4210 0.7000 17.0000 7.3000 7.8000 2.9000 5.0000 2998.4000
EHO 2.9000 0.7000 17.0000 7.3000 7.8000 3.1000 5.2000 3019.0100
SA 2.7140 0.7050 17.9100 7.8500 7.8580 3.8800 5.2850 3000.4400

VAGWO 3.5615 0.7015 17.5633 7.9441 8.0719 3.5690 5.3402 3234.3413

4. Conclusions
In this paper, a novel variant of the Grey Wolf Optimization (GWO) algorithm,

named Velocity-Aided Grey Wolf Optimizer (VAGWO), was proposed. In this algorithm,
a velocity term is added to the position-updating procedure of the original GWO algo-
rithm. It was proven that the velocity can significantly improve the GWO algorithm when
attempting to explore the search space, as the velocity can keep to push the search agents
to continue their global search to prevent a considerable number of good positions being
missed during the optimization process. In VAGWO, both the exploration and exploita-
tion capabilities of the GWO are also strengthened via modification of the two control
parameters of this algorithm. Furthermore, a safe and reliable balance between explora-
tion and exploitation is maintained via emphasizing the position of the leading search
agents in the last iterations and de-emphasizing them in the earlier iterations. Further-
more, an elitism mechanism is incorporated into the VAGWO to facilitate reaching the
optimal solution via intensifying the exploitation. The proposed VAGWO was imple-
mented on 13 shifted high-dimensional standard benchmark functions as well as a set of
composition functions derived from the CEC2017 standard test functions and three real-
world problems. The eligibility of the proposed method was then verified when compared
with a set of popular and newly proposed meta-heuristic algorithms implemented on
these test problems. A Wilcoxon test was also performed to highlight the significance of
the superiority of the VAGWO when outperforming its competitors. The computational
complexity of the VAGWO was also evaluated and demonstrated to be slightly greater
than that of the original GWO algorithm. As a result, the proposal is a computationally
efficient algorithm, while being capable of tackling the wide range of difficulties the

Figure 10. Speed reducer design problem [47].

Table 18 shows the results obtained by the VAGWO and the other algorithms when
solving this problem. As can be seen, the results of the different algorithms are very close
to each other; however, the CS can achieve f (x) = 2.9975 × 103, as the best objective
function value among all the other algorithms. The VAGWO reaches the most competitive
result on this problem, as compared to the other examined algorithms. As a result, the
VAGWO outperforms the other seven algorithms on two out of three examined real-world
engineering design problems, demonstrating its efficacy in solving the constrained practical
optimization problems along with a variety of high-dimensional and complex benchmark
problems as well.

Table 18. Minimization results of speed reducer design.

Algorithm x1 x2 x3 x4 x5 x6 x7 f (x)

PSO 3.5000 0.7000 17.0000 7.7400 7.8500 3.3600 5.3890 2998.1200
GSA 3.1530 0.7000 17.0000 7.3000 8.3000 3.2000 5.0000 3040.1000
CS 3.4970 0.7000 17.0000 7.3000 7.8000 3.3500 5.2800 2997.5000

GWO 3.5000 0.7000 17.0000 7.3000 7.8000 2.9000 2.9000 2998.8300
WOA 3.4210 0.7000 17.0000 7.3000 7.8000 2.9000 5.0000 2998.4000
EHO 2.9000 0.7000 17.0000 7.3000 7.8000 3.1000 5.2000 3019.0100
SA 2.7140 0.7050 17.9100 7.8500 7.8580 3.8800 5.2850 3000.4400

VAGWO 3.5615 0.7015 17.5633 7.9441 8.0719 3.5690 5.3402 3234.3413

Mathematics 2022, 10, 351 30 of 32

4. Conclusions

In this paper, a novel variant of the Grey Wolf Optimization (GWO) algorithm, named
Velocity-Aided Grey Wolf Optimizer (VAGWO), was proposed. In this algorithm, a velocity
term is added to the position-updating procedure of the original GWO algorithm. It was
proven that the velocity can significantly improve the GWO algorithm when attempting
to explore the search space, as the velocity can keep to push the search agents to continue
their global search to prevent a considerable number of good positions being missed during
the optimization process. In VAGWO, both the exploration and exploitation capabilities
of the GWO are also strengthened via modification of the two control parameters of this
algorithm. Furthermore, a safe and reliable balance between exploration and exploitation is
maintained via emphasizing the position of the leading search agents in the last iterations
and de-emphasizing them in the earlier iterations. Furthermore, an elitism mechanism is
incorporated into the VAGWO to facilitate reaching the optimal solution via intensifying
the exploitation. The proposed VAGWO was implemented on 13 shifted high-dimensional
standard benchmark functions as well as a set of composition functions derived from
the CEC2017 standard test functions and three real-world problems. The eligibility of
the proposed method was then verified when compared with a set of popular and newly
proposed meta-heuristic algorithms implemented on these test problems. A Wilcoxon test
was also performed to highlight the significance of the superiority of the VAGWO when
outperforming its competitors. The computational complexity of the VAGWO was also
evaluated and demonstrated to be slightly greater than that of the original GWO algorithm.
As a result, the proposal is a computationally efficient algorithm, while being capable of
tackling the wide range of difficulties the different optimization problems experience. In
future work, we will aim to extend the application of the VAGWO to other challenging
theoretical and practical test problems to better identify its likely weaknesses and/or
shortcomings and remove them to further ameliorate its functionality.

Author Contributions: Conceptualization, F.R.; data curation, F.R., H.R.S. and M.A.E.; formal anal-
ysis, S.H.A.E.-S. and M.A.A.-B.; funding acquisition, T.A.; investigation, F.R., H.R.S., M.A.E. and
S.H.A.E.-S.; methodology, F.R. and H.R.S.; supervision, S.H.A.E.-S.; writing, F.R., H.R.S., M.A.E.,
S.H.A.E.-S., M.A.A.-B. and T.A.; revising. All authors have read and agreed to the published version
of the manuscript.

Funding: This work was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korean government (MSIT) (No. 2021R1A2C1011198).

Data Availability Statement: The data is available upon request.

Acknowledgments: This work was supported by the National Research Foundation of Korea (NRF)
grant funded by the Korean government (MSIT) (No. 2021R1A2C1011198).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Engelbrecht, A.P. Computational Intelligence: An Introduction; Wiley: Hoboken, NJ, USA, 2007.
2. Yang, X.-S. Firefly Algorithms for Multimodal Optimization. In Stochastic Algorithms: Foundations and Applications; Watanabe, O.,

Zeugmann, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; Volume 5792. [CrossRef]
3. Yang, X.-S.; Deb, S. Cuckoo Search via Lvy flights. In Proceedings of the 2009 World Congress Nature & Biologically Inspired

Computing (NaBIC), Coimbatore, India, 9–11 December 2009; pp. 210–214. [CrossRef]
4. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 6, 46–61. [CrossRef]
5. Mirjalili, S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl. Based Syst. 2015, 89, 228–249.

[CrossRef]
6. Ahmadianfar, I.; Bozorg-Haddad, O.; Chu, X. Gradient-based optimizer: A new metaheuristic optimization algorithm. Inf. Sci.

2020, 540, 131–159. [CrossRef]
7. Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [CrossRef]
8. Abualigah, L.; Mirjalili, S.; Elaziz, M.A.; Gandomi, A.H. The Arithmetic Optimization Algorithm. Comput. Methods Appl. Mech.

Eng. 2021, 376, 113609. [CrossRef]

http://doi.org/10.1007/978-3-642-04944-6_14
http://doi.org/10.1109/NABIC.2009.5393690
http://doi.org/10.1016/j.advengsoft.2013.12.007
http://doi.org/10.1016/j.knosys.2015.07.006
http://doi.org/10.1016/j.ins.2020.06.037
http://doi.org/10.1016/j.advengsoft.2016.01.008
http://doi.org/10.1016/j.cma.2020.113609

Mathematics 2022, 10, 351 31 of 32

9. Abualigah, L.; Yousri, D.; Elaziz, M.A.; Ewees, A.A.; Al-qaness, M.A.A.; Gandomi, A.H. Aquila Optimizer: A novel meta-heuristic
optimization algorithm. Comput. Ind. Eng. 2021, 157, 107250. [CrossRef]

10. Faris, H.; Aljarah, I.; Al-Betar, M.A.; Mirjalili, S. Grey wolf optimizer: A review of recent variants and applications. Neural Comput.
Appl. 2018, 30, 413–435. [CrossRef]

11. Long, W.; Wu, T.; Cai, S.; Liang, X.; Jiao, J.; Xu, M. A Novel Grey Wolf Optimizer Algorithm with Refraction Learning. IEEE Access
2019, 7, 57805–57819. [CrossRef]

12. Long, W.; Jiao, J.; Liang, X.; Tang, M. Inspired grey wolf optimizer for solving large-scale function optimization problems. Appl.
Math. Model. 2018, 60, 112–126. [CrossRef]

13. Mittal, N.; Singh, U.; Sohi, B.S. Modified Grey Wolf optimizer for global engineering optimization. Appl. Comput. Intell. Soft
Comput. 2016, 2016, 7950348. [CrossRef]

14. Rodríguez, L.; Castillo, O.; Soria, J. Grey wolf optimizer with dynamic adaptation of parameters using fuzzy logic. In Proceedings
of the 2016 IEEE Congress on Evolutionary Computation (CEC), Vancouver, BC, Canada, 24–29 July 2016; pp. 3116–3123.

15. Tawhid, M.A.; Ali, A.F. A hybrid grey wolf optimizer and genetic algorithm for minimizing potential energy function. Memetic
Comput. 2017, 9, 347–359. [CrossRef]

16. Kamboj, V.K. A novel hybrid PSO-GWO approach for unit commitment problem. Neural Comput. Appl. 2016, 27, 1643–1655.
[CrossRef]

17. Ibrahim, R.A.; Elaziz, M.A.; Lu, S. Chaotic opposition-based grey wolf optimization algorithm based on differential evolution
and disruption operator for global optimization. Expert Syst. Appl. 2018, 108, 1–27. [CrossRef]

18. Niu, M.; Hu, Y.; Sun, S.; Liu, Y. A novel hybrid decomposition ensemble model based on VMD and HGWO for container
throughput forecasting. Appl. Math. Model. 2018, 57, 163–178. [CrossRef]

19. Zhu, A.; Xu, C.; Li, Z.; Wu, J.; Liu, Z. Hybridizing grey Wolf optimization with differential evolution for global optimization and
test scheduling for 3D stacked SoC. J. Syst. Eng. Electron. 2015, 26, 317–328. [CrossRef]

20. Luo, J.; Liu, Z. Novel grey wolf optimization based on modified differential evolution for numerical function optimization. Appl.
Intell. 2020, 50, 468–486. [CrossRef]

21. Zhang, X.; Kang, Q.; Cheng, J.; Wang, X. A novel hybrid algorithm based on biogeography-based optimization and grey wolf
optimizer. Appl. Soft Comput. 2018, 67, 197–214. [CrossRef]

22. Zhang, S.; Zhou, Y. Grey wolf optimizer based on Powell local optimization method for clustering analysis. Discret. Dyn. Nat. Soc.
2015, 2015, 481360. [CrossRef]

23. Mahdad, B.; Srairi, K. Blackout risk prevention in a smart grid based flexible optimal strategy using Grey Wolf-pattern search
algorithms. Energy Convers. Manag. 2015, 98, 411–429. [CrossRef]

24. Oliveira, J.; Oliveira, P.M.; Boaventura-Cunha, J.; Pinho, T. Chaos based grey wolf optimizer for higher order sliding mode
position control of a robotic manipulator. Nonlinear Dyn. 2017, 90, 1353–1362. [CrossRef]

25. Long, W.; Jiao, J.; Liang, X.; Tang, M. An exploration-enhanced grey wolf optimizer to solve high-dimensional numerical
optimization. Eng. Appl. Artif. Intell. 2018, 68, 63–80. [CrossRef]

26. Jaiswal, K.; Mittal, H.; Kukreja, S. Randomized grey wolf optimizer (RGWO) with randomly weighted coefficients. In Proceedings
of the 2017 Tenth International Conference on Contemporary Computing (IC3), Noida, India, 10–12 August 2017; pp. 1–3.

27. Chao, L.; Liang, G.; Jin, Y. Grey wolf optimizer with cellular topological structure. Expert Syst. Appl. 2018, 107, 89–114.
28. Rodríguez, L.; Castillo, O.; Soria, J.; Melin, P.; Valdez, F.; Gonzalez, C.I.; Martinez, G.E.; Soto, J. A fuzzy hierarchical operator in

the grey wolf optimizer algorithm. Appl. Soft Comput. 2017, 57, 315–328. [CrossRef]
29. Hu, P.; Chen, S.; Huang, H.; Zhang, G.; Liu, L. Improved alpha-guided Grey wolf optimizer. IEEE Access 2019, 7, 5421–5437.

[CrossRef]
30. Heidari, A.A.; Pahlavani, P. An efficient modified grey wolf optimizer with Lévy flight for optimization tasks. Appl. Soft. Comput.

2017, 60, 115–134. [CrossRef]
31. Gupta, S.; Deep, K. A novel random walk grey wolf optimizer. Swarm Evol. Comput. 2019, 44, 101–112. [CrossRef]
32. Yao, X.; Liu, Y.; Lin, G. Evolutionary programming made faster. IEEE Trans. Evol. Comput. 1999, 3, 82–102.
33. Suganthan, P.N.; Hansen, N.; Liang, J.J.; Deb, K.; Chen, Y.-P.; Auge, A.; Tiwari, S. Problem Definitions and Evaluation Criteria for

the CEC 2005 Special Session on Real-Parameter Optimization; KanGAL Report 2005005; Kanpur Genetic Algorithms Laboratory:
Kanpur, India, 2005.

34. Mirjalili, S. SCA: A Sine Cosine Algorithm for solving optimization problems. Knowl. Based Syst. 2016, 96, 120–133. [CrossRef]
35. Awad, N.H.; Ali, M.Z.; Suganthan, P.N.; Liang, J.J.; Qu, B.Y. Problem Definitions and Evaluation Criteria for the CEC 2017 Special

Session and Competition on Single Objective Real-Parameter Numerical Optimization; Tech Rep; Nanyang Technological University:
Singapore, November 2016.

36. Biondi, G.; Franzoni, V. Discovering correlation indices for link prediction using differential evolution. Mathematics 2020, 8, 2097.
[CrossRef]

37. Rashedi, E.; Nezamabadi-Pour, H.; Saryazdi, S. GSA: A gravitational search algorithm. Inf. Sci. 2009, 179, 2232–2248. [CrossRef]
38. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks,

Perth, WA, Australia, 27 November–1 December 1995; Volume IV, pp. 1942–1948.
39. Holland, J.H. Genetic algorithms. Sci. Am. 1992, 267, 66–72. [CrossRef]

http://doi.org/10.1016/j.cie.2021.107250
http://doi.org/10.1007/s00521-017-3272-5
http://doi.org/10.1109/ACCESS.2019.2910813
http://doi.org/10.1016/j.apm.2018.03.005
http://doi.org/10.1155/2016/7950348
http://doi.org/10.1007/s12293-017-0234-5
http://doi.org/10.1007/s00521-015-1962-4
http://doi.org/10.1016/j.eswa.2018.04.028
http://doi.org/10.1016/j.apm.2018.01.014
http://doi.org/10.1109/JSEE.2015.00037
http://doi.org/10.1007/s10489-019-01521-5
http://doi.org/10.1016/j.asoc.2018.02.049
http://doi.org/10.1155/2015/481360
http://doi.org/10.1016/j.enconman.2015.04.005
http://doi.org/10.1007/s11071-017-3731-7
http://doi.org/10.1016/j.engappai.2017.10.024
http://doi.org/10.1016/j.asoc.2017.03.048
http://doi.org/10.1109/ACCESS.2018.2889816
http://doi.org/10.1016/j.asoc.2017.06.044
http://doi.org/10.1016/j.swevo.2018.01.001
http://doi.org/10.1016/j.knosys.2015.12.022
http://doi.org/10.3390/math8112097
http://doi.org/10.1016/j.ins.2009.03.004
http://doi.org/10.1038/scientificamerican0792-66

Mathematics 2022, 10, 351 32 of 32

40. Karami, H.; Anaraki, M.V.; Farzin, S.; Mirjalili, S. Flow Direction Algorithm (FDA): A novel optimization approach for solving
optimization problems. Comput. Ind. Eng. 2021, 156, 107224. [CrossRef]

41. Kumar, A.; Misra, R.K.; Singh, D. Improving the local search capability of Effective Butterfly Optimizer using Covariance Matrix
Adapted Retreat Phase. In Proceedings of the 2017 IEEE Congress on Evolutionary Computation (CEC), Donostia, Spain, 5–8
June 2017.

42. García, S.; Molina, D.; Lozano, M.; Herrera, F. A Study on the Use of Non-Parametric Tests for Analyzing the Evolutionary
Algorithms’ Behaviour: A Case Study on the CEC’2005 Special Session on Real Parameter Optimization. J. Heuristics 2008, 15,
617–644. [CrossRef]

43. Wang, G.-G.; Deb, S.; Coelho, L.D.S. Elephant Herding Optimization. In Proceedings of the 3rd International Symposium on
Computational and Business Intelligence (ISCBI), Bali, Indonesia, 7–9 December 2015.

44. Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680. [CrossRef] [PubMed]
45. Hashim, F.A.; Houssein, E.H.; Mabrouk, M.S.; Al-Atabani, W.; Mirjalili, S. Henry gas solubility optimization: A novel physics-

based algorithm. Future Gener. Comput. Syst. 2019, 101, 646–667. [CrossRef]
46. Coello, C.A.C. Use of a self-adaptive penalty approach for engineering optimization problems. Comput. Ind. 2000, 41, 113–127.

[CrossRef]
47. Abualigah, L.; Elaziz, M.A.; Sumari, P.; Geem, Z.W.; Gandomi, A.H. Reptile Search Algorithm (RSA): A nature-inspired

meta-heuristic optimizer. Expert Syst. Appl. 2022, 191, 116158. [CrossRef]
48. Arora, J.S. Introduction to Optimum Design; McGraw-Hill: New York, NY, USA, 1989.
49. Mezura-Montes, E.; Coello, C.A.C. Useful Infeasible Solutions in Engineering Optimization with Evolutionary Algorithms. In

MICAI 2005: Advances in Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3789, pp. 652–662. [CrossRef]

http://doi.org/10.1016/j.cie.2021.107224
http://doi.org/10.1007/s10732-008-9080-4
http://doi.org/10.1126/science.220.4598.671
http://www.ncbi.nlm.nih.gov/pubmed/17813860
http://doi.org/10.1016/j.future.2019.07.015
http://doi.org/10.1016/S0166-3615(99)00046-9
http://doi.org/10.1016/j.eswa.2021.116158
http://doi.org/10.1007/1157942766

	Introduction
	Materials and Methods
	Original Grey Wolf Optimizer
	Velocity-Aided Grey Wolf Optimizer (VAGWO)

	Results and Discussion
	Comparison with Popular Meta-Heuristic Algorithms
	Parameter Setting of the Algorithms
	Results of VAGWO on the Uni-Modal Benchmark Functions
	Results of VAGWO on the Multi-Modal Benchmark Functions
	Comparison on CEC2017 Benchmark Functions

	Comparison with Newly Proposed Meta-Heuristic Algorithms
	Results of VAGWO on the Uni-Modal Benchmark Functions
	Results of VAGWO on the Multi-Modal Benchmark Functions
	Comparison on CEC2017 Benchmark Functions

	Statistical Analysis
	Complexity of Algorithm
	Runtime Analysis
	Comparison on Real-World Engineering Design Problems
	Welded Beam Design Problem
	Tension/Compression Spring Design Problem
	Speed Reducer Design Problem

	Conclusions
	References

