
����������
�������

Citation: Khataei Maragheh, H.;

Gharehchopogh, F.S.; Majidzadeh, K.;

Sangar, A.B. A New Hybrid Based on

Long Short-Term Memory Network

with Spotted Hyena Optimization

Algorithm for Multi-Label Text

Classification. Mathematics 2022, 10,

488. https://doi.org/10.3390/

math10030488

Academic Editor: Luis Javier

García Villalba

Received: 29 December 2021

Accepted: 22 January 2022

Published: 2 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A New Hybrid Based on Long Short-Term Memory Network
with Spotted Hyena Optimization Algorithm for Multi-Label
Text Classification
Hamed Khataei Maragheh, Farhad Soleimanian Gharehchopogh * , Kambiz Majidzadeh
and Amin Babazadeh Sangar

Department of Computer Engineering, Urmia Branch, Islamic Azad University, Urmia 5756151818, Iran;
hamed.khataei@iau-maragheh.ac.ir (H.K.M.); k.majidzadeh@iaurmia.ac.ir (K.M.);
bsamin2@liveutm.onmicrosoft.com (A.B.S.)
* Correspondence: bonab.farhad@gmail.com or farhad@iaurmia.ac.ir

Abstract: An essential work in natural language processing is the Multi-Label Text Classification
(MLTC). The purpose of the MLTC is to assign multiple labels to each document. Traditional text
classification methods, such as machine learning usually involve data scattering and failure to
discover relationships between data. With the development of deep learning algorithms, many
authors have used deep learning in MLTC. In this paper, a novel model called Spotted Hyena
Optimizer (SHO)-Long Short-Term Memory (SHO-LSTM) for MLTC based on LSTM network and
SHO algorithm is proposed. In the LSTM network, the Skip-gram method is used to embed words
into the vector space. The new model uses the SHO algorithm to optimize the initial weight of the
LSTM network. Adjusting the weight matrix in LSTM is a major challenge. If the weight of the
neurons to be accurate, then the accuracy of the output will be higher. The SHO algorithm is a
population-based meta-heuristic algorithm that works based on the mass hunting behavior of spotted
hyenas. In this algorithm, each solution of the problem is coded as a hyena. Then the hyenas are
approached to the optimal answer by following the hyena of the leader. Four datasets are used (RCV1-
v2, EUR-Lex, Reuters-21578, and Bookmarks) to evaluate the proposed model. The assessments
demonstrate that the proposed model has a higher accuracy rate than LSTM, Genetic Algorithm-
LSTM (GA-LSTM), Particle Swarm Optimization-LSTM (PSO-LSTM), Artificial Bee Colony-LSTM
(ABC-LSTM), Harmony Algorithm Search-LSTM (HAS-LSTM), and Differential Evolution-LSTM
(DE-LSTM). The improvement of SHO-LSTM model accuracy for four datasets compared to LSTM is
7.52%, 7.12%, 1.92%, and 4.90%, respectively.

Keywords: multi-label text classification; deep learning neural networks; short-term long-term
memory; spotted hyena optimizer

1. Introduction

Developed models to MLTC based on statistical and probabilistic methods depend on
several features defined by an expert [1]. There are no specific rules and regulations for
determining the features in these methods, and the work is very tedious. The cases men-
tioned cause these statistical and traditional methods to have low capability [2]. In contrast,
the use of deep learning algorithms is an effective and helpful method for MLTC. There is
no need to explicitly provide the characteristics of these algorithms. Only training data are
needed in the form of a text dataset, and features are determined automatically and contain
in-depth information that is effective for processing machine learning algorithms [3,4].
Deep learning has led to substantial advancements in the field of word processing [5].
In this regard, various studies have been conducted based on the use of different deep
learning models for text processing, such as Convolutional Neural Networks (CNN) [6],
LSTM [7], and Recursive Neural Network (RNN) [8]. CNN uses convolution and pooling
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layers for classification and has a variety of applications [9,10]. The task of deep learning
algorithms is to build a learning model that effectively predicts the possible set of labels of
unknown objects [11]. In multi-label classification, label ambiguity is solved by discovering
a set of labels for a text sample. For example, a photo can be labeled with “bus”, “car”, and
“bicycle” at the same time, and there is a strong link between these labels.

The LSTM network was developed by Sepp Hochreiter and Jürgen Schmidhuber,
inspired by the modified version of RNN [12]. The term “Long Short-Term Memory
(LSTM)” implies that the LSTM network can generate long-term or short-term delays for
various operations. An LSTM cell comprises four blocks: the cell state, the input gate, the
forget gate, and the output gate. These four blocks are used by LSTM to maintain both
long-term and short-term reliance on consecutive data. Compared to traditional RNNs,
LSTM has the following two advantages: (a) Explosion and Vanishing Gradient Problem
(VGP) problems in conventional RNNs can be solved using LSTM. In VGP, the gradient
values gradually decrease to such an extent that weight changes occur sparingly, and as
a result, the training process will be significantly delayed, and in more severe cases, this
causes the training process to stop [13]. The problem is exacerbated when categories of
activation functions are used in layers that reduce these changes, then the amount of output
change is minimal and increases the number of iterations required to learn the network.
(b) Long sequence processing in the LSTM is better processed than RNN due to its strong
internal structure.

1.1. Motivation

The LSTM still has shortcomings, such as low learning rates and gradient problems
that disappear with an increasing number of hidden layers. Many academics are attempting
to enhance the LSTM model in various ways. For example, CNN was used to optimize
LSTM, and significant results have been obtained [14]. The researchers [15] have developed
an improved LSTM that can partially predict the trend of time series. However, most of
the improved models are based on the LSTM structure, and little attention has been paid
to LSTM weight parameters. Research on LSTM improvement based on meta-heuristic
algorithms is currently expanding, and these algorithms are used for weight optimization,
parameter optimization, and deep learning network threshold. For example, the research
conducted in this field follows: LSTM and Lion Swarm Optimization (LSTM-LSO) to
predict the optimal problems [16,17]; improved LSTM based on Ant Colony Optimization
(ACO-LSTM) [18]; Fireworks Algorithm (FWA), and LSTM to solve optimization prob-
lems [19]; Artificial Fish Swarm Optimization (AFSO) algorithm and LSTM for disease
diagnosis [20]; Grasshopper Optimization Algorithm (GOA) and LSTM network for wind
speed prediction [21]; GOA and LSTM network for detection of defective gears [22]; PSO
and LSTM for wind energy prediction [23]; PSO and RNN-LSTM for detection of objects
in medical images [24]; Differential Evolution (DE) and LSTM for prediction [25]; face
recognition based on deep learning and Cat Swarm Optimization (CSO) [26]; disease diag-
nosis (cancer and heart) based on CNN-PSO [27]; and use of Improved Crossover-Based
Monarch Butterfly Optimization (ICRMBO) to improve CNN [28].

1.2. Main Contributions

The concept of MLTC is derived from natural language processing. In this paper,
the LSTM and improved LSTM for MLTC are used. In this paper, to improve the LSTM,
we use the SHO to optimize the initial weight of the LSTM. Because the LSTM uses
long dependencies on memory units, network learning time increases. The SHO-LSTM
model uses the semantic relationships of all the words in a document during the learning
phase, and therefore the SHO-LSTM model will be more potent in recognizing classes.
The SHO [29] is a population-based meta-heuristic algorithm based on the mass hunting
behavior of spotted hyenas. In this algorithm, each solution of the problem is encoded
as a hyena (agent). Then, the solutions approach the optimal answer. The results of
the proposed model are evaluated on four different datasets of MLTC. The evaluation
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results clearly show that the proposed model has high accuracy and robustness. The main
contributions of this paper follow:

• Use the new SHO-LSTM model for MLTC;
• Use SHO to optimize the initial weight matrix of LSTM;
• Because the SHO has a high ability to solve the problem of non-linear optimization, it

is a suitable algorithm for the initial weight matrix of the LSTM;
• Evaluate the proposed model based on various factors and compare it with other models.

1.3. Organization of the Paper

The general structure of this paper is organized as follows: In Section 2, previous
studies on the LSTM and its combinations with meta-heuristic algorithms to solve various
problems are reviewed. In Section 3, we explain the SHO and the LSTM. In Section 4, we
explain the proposed model. In Section 5, we evaluate the proposed model and comparison
results, and finally, in Section 6, we conclude and suggest future work.

2. Previous Studies

In this section, previous studies in the field of LSTM in various fields are reviewed.
Determining the suitable parameters for LSTM is a significant challenge. Most of these
parameters are selected manually. Since the success of the problem depends on choosing
the exemplary architecture for the problem, many methods have been proposed to select
the exemplary architecture for the LSTM.

2.1. MLTC

MLTC is a crucial field area of Natural Language Processing (NLP) that assigns
numerous labels to a single document [30]. The main goal of natural language processing in
computer science is to create computational theories and empower systems to understand
human language using machine learning algorithms and discover the relationships between
documents [31]. MLTC is extensively used in a variety of applications such as document
classification [32], web content classification [33,34], and recommendation systems [35,36].
MLTC is a complex task in NLP that requires the provisioning of multiple labels for a
single instance. To describe MLTC, it is assumed that there is a list of labels in the form
y = {Y1, Y2, Y3, . . . , Yd} [37]. In MLTC, the y subset must assign the n label in the labels
space (Y) to the x instance. Unlike traditional (single-label) classification, where each
instance has only one label, in MLTC each instance may have multiple related labels [38].
According to Equation (1), the purpose of MLTC is to find a subset of the list of labels with
the maximum conditional probability p(y|x).

p(y|x) =
n

∏
i=1

p(yi|y1, y2, y3, . . . , yi−1, x) (1)

2.2. Related Works

Hierarchical Multi-Label Text Classification (HMLTC) is a difficult task in many real-
world applications [39]. A single framework called the Hierarchical Cognitive Structural
Learning Model (HCSM) for HMLTC has been proposed. The HCSM model consists of an
Attentional Ordered Recurrent Neural Network (AORNN) and a Hierarchical Bidirectional
Capsule (HBiCaps). The AORNN module extracts semantic vectors as new knowledge from
the main text at the word and hierarchy level, and the HBiCaps module uses an iteration to
form the categorization process. The Hierarchy-Ordered Neurons (HON-LSTM) unit is used
to upgrade the hierarchical label structure in the AORNN module. Experimental results
on four datasets (RCV1, EUR-Lex, WOS-46985, and Patent) showed that the HCSM model
performed better than advanced methods such as RCNN and HARNN. The HCSM model is
compared to the H-AGCRNN and HAGTP-GCN models. Hierarchical–Attentional Graph
Convolutional Recurrent Neural Networks (H–AGCRNN) modifies the graph-of-words
method using the hierarchical taxonomy-aware weighted margin loss for extracting and
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long-distance and partial sequential semantics. Hierarchical Attentional Graph Taxonomy
Capsule–Graph Convolutional Networks (HAGTP–GCN) update a hierarchy-aware text
feature propagation model.

For wind speed forecasting, a unique deep learning-based evolutionary model is
presented [40]. For hyperparameter tuning, a developed evolutionary method is provided.
The hyperparameter tuning optimization procedure has a significant impact on the perfor-
mance of deep learning models. The meta-heuristics used to alter the hyperparameters,
on the other hand, are inefficient in general because initializing the control parameters is
difficult and time-consuming. Furthermore, rather than applying hyperparameter tuning
on the target issue, the majority of them were built using numerical benchmarks. The
hyperparameters of a bidirectional long short-term memory network (Bi-LSTM) may be
optimized utilizing properly selected mutations and local search approaches to improve
the efficiency of generalized normal distribution optimization (GNDO).

To discover the best acceptable LSTM model parameters, a grid search-based k-fold
cross-validation approach was used [41]. Finally, the model demonstrated that the LSTM
beats the gradient boosting model, a generic machine learning model known to have reason-
ably high prediction performance, for the time series categorization of the cryptocurrency
price trend by comparing the f1-score values. When comparing the LSTM model to the
Gradient Boosting (GB) model, we saw a performance boost of roughly 7%.

The use of feed-forward deep neural networks to simulate bioactivity data was ex-
amined [42]. The study had two goals: first, the settings of DNN hyperparameters were
investigated to see how they affected feed-forward DNN performance. Overall, the Recti-
fied Linear Units (ReLU) activation function outperformed Sigmoid and Tanh. For DNN to
operate well, the number of hidden layers should be at least 2 or 3. When a 50% dropout
was applied to both the input and hidden layers, good results were obtained.

Two deep learning-based architectures for gas identification and quantification au-
tomatically adapt network hyperparameters for best performance [43]. Both networks’
hyperparameters are automatically tuned for optimal performance. Although numerous
pattern recognition approaches such as machine learning, fuzzy logic, and hybrid models
have been used to detect and quantify gases in mixtures, the effectiveness of these strategies
is highly dependent on feature engineering and hyperparameter selection.

In [44], GHS-NET is used to classify biomedical multi-class texts. The Generic Hy-
bridized Shallow Neural Network (GHS-NET) model uses CNN to extract features and
bidirectional LSTM to obtain textual information. Experiments using filter sizes ranging
from 2 to 10, max-pooling range from 1 to 10, and four distinct activation functions such as
ReLU, Parametric ReLU, Softmax, and Swish have been conducted for CNN. The efficiency
of GHS-NET has been evaluated to classify multidisciplinary medical literature on three
datasets (Chemical Exposure Analysis, Cancer Hallmarks, and Medical Information Mart
for Intensive Care (MIMIC-III)).

An argument-based algorithm called Multi-Label Reasoner (ML-Reasoner) has been
proposed for MLTC [30]. The ML-Reasoner model uses a binary classifier to predict all
labels simultaneously and an argumentation mechanism to identify labels. The model
consists of four steps: In the Text Encoder step, word sequences are read and text properties
are extracted. This step includes Text Embedding and CNN Encoder. The words in the
documents are turned to dense vectors in the Text Embedding stage, and then the characters
in each word are converted to character vectors. CNN uses the Encoder operation to
identify the sentences. The Label Encoder step involves assigning labels to documents.
The classification step is based on the sigmoid function, and the last step is based on the
Loss Function; a prediction is made for the accuracy of the diagnosis. Evaluations on
two datasets (AAPD, RCV1-V2) showed that the ML-Reasoner model had better detection
accuracy than CNN and LSTM.

Keyword extraction is an essential part of diagnosing anomalies. Most traditional
methods cannot change keywords because they do not have enough knowledge to match
the documents [45]. A multi-layer dynamic PSO-LSTM (MDP-LSTM) using LSTM and PSO
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has been proposed to detect and store keywords. To improve the performance and accuracy
of the model, the PSO is used to find the initial matrix weights for the LSTM. Different
search behaviors have been given to particles of different layers to improve the interaction
between particles and prevent them from falling into local minima. The bottom layer
particle finds the nearest particle in the top layer as the adsorbent. For upper layer particles,
their adsorbents are other particles with a better fit in the same layer. As a result, particle
mobility is determined not only by the best personal position and the best global position,
but also by particles in the upper layer or current layer. The MDP-LSTM model uses the
MDPSO method to optimize the deep weights of the deep LSTM and then considers the
optimal solution as the initial weights of the LSTM. Because the MDPSO’s optimal solution
is close to the LSTM’s final weight in the global range, the deep LSTM can reduce the
probability of becoming caught in the local minimum. Evaluation of four different data sets
and functions showed that the MDP-LSTM model had more minor errors than Support
Vector Machine (SVM), RNN, LSTM, or Deep LSTM.

The LSTM has been combined with the PSO to predict the performance of the time
series [46]. The LSTM data are divided into two parts: 80% is considered a training set
and 20% for the test set. The training suite does LSTM learning, and the PSO optimizes
the number of neurons in the LSTM layer until the termination conditions are met. Mean
Absolute Error Percentage (MAPE), Mean Absolute Error (MAE), and Root Mean Square
Error (RMSE) indices are used to evaluate the performance of the models. In the LSTM-PSO
model, a valuable measurement of prediction accuracy is obtained by comparing to the
Artificial Neural Network (ANN) and RNN.

A new model using the Grey Wolf Optimizer (GWO) and the Bidirectional Long
Short-Term Memory (BLSTM-LSTM) model for estimating various levels of the mental
load is presented in [47]. This framework has been tested on the famous “STEW” dataset.
The volume of mental work was estimated in two experiments: “idle” and “multitasking
activity based on SIMKAP”. Different features (frequency, statistical, non-linear, and linear)
were extracted from the EEG input signal, and the GWO algorithm selected essential
features. After selecting the feature, the deep BLSTM-LSTM model is used to classify the
mental load. The BLSTM-LSTM model for “idle” and “SIMKAP-based multitasking” tests
achieved an accuracy of 86.33% and 82.57%, respectively.

The Genetic Long Short Term Memory (GLSTM) model consists of LSTM and GA for
short-term wind power prediction [48]. Due to its auto-learning capability and GA, LSTM
is utilized in the GLSTM model to maximize window size and the number of neurons
in the LSTM layers. Comparison of the GLSTM model with Support Vector Regression
(SVR) and GA models showed that the percentage of GLSTM improvement was equal
to 30%. In the GLSTM results for MSE, MAE and RMSE, the values are 0.00924, 0.07271,
0.09615, respectively.

In [49], to improve short-term wind speed prediction accuracy, a hybrid model based
on four modules such as Crow Search Algorithm (CSA), wavelet transform, feature selection
based on entropy and mutual information, and LSTM is proposed. The LSTM is divided
into two layers, the first of which has 200 hidden units and the second of which contains
100 hidden units. CSA optimizes the LSTM structure. The size of the training matrix is
1200 × 400 and the size of the target matrix is 1200 × 1. Eighty percent of the samples
were used for LSTM training and the rest for testing. The results showed that the RMSE
value in the WT-FS-LSTM-CSA model is equal to 0.1536 and in the WT-FS-LSTM-PSO
model is equal to 0.1621. Additionally, the WT-FS-LSTM-CSA model had a lower error rate
compared to the MLP and LSTM models.

The LSTM-PSO model has been proposed to evaluate the degradation and predict the
remaining useful life of mechanical devices based on the LSTM [50]. For the test phase, the
Fuzzy C-Means (FCM) algorithm is divided the degradation modes into four categories
(healthy mode, partial degradation, moderate degradation, and severe degradation). In
the LSTM, the number of neurons in each LSTM layer and the number of previous time
phases are used as input vectors to predict the time phase. The PSO is used to optimize the
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number of neurons in each LSTM layer and the length of the time window to enhance the
LSTM model’s performance and efficiency. The results showed that the detection accuracy
to severe degradation in the LSTM-PSO model was 75%.

A fake news detection system using a deep learning model is proposed [51]. The
learning model has combined four different models embedding LSTM, Linguistic Inquiry
and Word Count (LIWC), CNN, LSTM, and N-gram CNN. In addition, the LSTM weights
are optimized using the Self-Adaptive Harmonic Search Algorithm (SAHS) to achieve
higher accuracy in detecting fake news. In hybrid mode, the word2vec algorithm represents
each specific word with a specific list of numbers. According to the results, the detection
accuracy of the hybrid model was 9.4%. The GWO-LSTM combined model has been
proposed to improve LSTM parameters to diagnose COVID-19 [52]. The GWO algorithm is
modeled to discover LSTM hyperparameters, i.e., window size, number of cells in layers,
and number of hidden layers. The results of the GWO-LSTM model are compared with
basic models such as Auto-Regressive Integrated Moving Average (ARIMA) and LSTM,
and it is discernible that the GWO-LSTM model has outcomes much better in predicting
the prevalence of infection.

A CNN-MOPSO-based hybrid approach to classifying Google keywords is pro-
posed [53]. To improve classification, CNN has been improved using the Multi-Objective
Particle Swarm Optimization Algorithm (MOPSO) to improve classification and reduce
training time. In the MOPSO algorithm, the weight of inertia (w) is set to 0.7298, C1 and
C2 are set to 2.05, and r1 and r2 are random numbers between 0 and 1. The maximum
number of iterations is 30. The more training samples are entered into CNN, the better
the features extracted by the CNN-MOPSO model, and classification accuracy was higher.
The results on different samples showed that CNN-MOPSO detection accuracy is higher in
comparison with CNN and other models.

The CSA-CNN method for hand gesture detection is proposed to optimize CNN
parameters to increase detection accuracy [54]. Initially, the samples are encoded in binary
values to prepare the appropriate dataset for CNN processing. The CSA is then imple-
mented to optimize CNN parameters to achieve the desired output. One of the primary
components of CNN is the pooling layer, which is utilized between convolution layers
to reduce data spatial size, enhance network processing, and eliminate over-connections.
The number of cycles for data training is done using epoch. During each period, all CNN
connections are allowed to update their weight. Simulations on the Google Colab dataset
showed that the detection accuracy of the CSA-CNN model was higher than WOA-CNN,
GWO-CNN, PSO-CNN, GA-CNN, Gravitational Search Algorithm (GSA)-CNN, and ABC-
CNN models.

In [55], the combined RNN-LSTM model based on PSO and Flower Pollination Algo-
rithm (FPA) algorithms is proposed for stock market forecasting. PSO and FPA algorithms
are used for LSTM optimization and parameters such as the number of neurons in hidden
layers, the number of hidden layers, batch size, and several cycles. RNN is a particular type
of ANN that supports the sequencing of inputs using internal feedback between neurons.
Evaluations on six datasets showed that PSO had a faster convergence rate and fewer cycles.
The FPA improved the accuracy percentage.

In [56], they used the PSO-LSTM model to predict electricity prices. In this model,
PSO was used to optimize the input weight of the LSTM, which minimizes forecast error.
In this model, statistical analysis for selecting input data is examined, and model analysis is
analyzed for optimal selection of layers by combining hidden units. To estimate the price of
power with the least average percentage error, the optimum configuration is found. In [57],
the Fruit Fly Optimization Algorithm-LSTM (FOA-LSTM) model uses the FOA algorithm
to optimize the LSTM parameters to solve the time series problem. The FOA algorithm
has an excellent ability to solve non-linear optimization problems. The epoch and batch
size values are in the range of [1–3000] and [1–100], respectively. The results showed that
the mean absolute percentage symmetric error (SMAPE) on the NN3 dataset decreased to



Mathematics 2022, 10, 488 7 of 24

about 11.44%. Comparative experiments confirmed that the FOA-LSTM model has results
better than the DE-LSTM and GA-LSTM models.

A hybrid method based on RNN-LSTM by integrating the PSO algorithm to predict
machine failure is proposed [58]. The purpose of the LSTM is to improve the RNN, as the
RNN faces the prediction of long-term dependencies such as disappearance and gradient
explosion. The RNN-LSTM model manages complex time series data well due to its
memory structure (forget gates, input, and output). To balance the accuracy and execution
time, the PSO is applied to optimize the LSTM parameters. A hybrid model called CNN-
LSTM for classifying dental caries in dental images is presented for classification [59].
The hybrid model extracts features using a CNN and performs short-term and long-term
dependencies with an LSTM. For this model, 1500 images of teeth in the form of six different
classes are included. Two hundred fifty images are provided for each class. The hybrid
model is optimized using the Dragonfly Algorithm (DA), and its detection accuracy is 96%.

The dynamic semantic representation model and the deep neural network have been
merged with the title DSRM-DNN [60]. To pick semantic terms, DSRM-DNN used a word
embedding model and a clustering technique for the first time. The chosen words are then
labeled as DSRM-DNN elements and quantified using a weighted mixture of word proper-
ties. Finally, a text classifier has been created by integrating a deep belief network with a
back-propagation neural network. Low-frequency words and new words are re-expressed
by existing semantic terms under sparse constraints throughout the categorization phase.
RCV1-v2, Reuters-21578, EUR-Lex, and Bookmarks have all been evaluated. The exper-
imental findings also revealed that the performance of deep learning-based classifiers
is superior to that of classical machine learning techniques. The DSRM-DNN model is
compared to the Multi-Label Decision Tree (ML-DT), Multi-Label k-Nearest Neighbor
(ML-KNN), Binary Relevance (BR), Classifier Chains (CC), Multi-Label Neural Networks
(ML-NN), Hierarchical ARAM neural network (HARAM), Convolutional and Recurrent
Neural Networks (CNN-RNN), Hierarchical Label Set Expansion (HLSE), Supervised
Representation Learning (SERL) models. HARAM [61] is a fuzzy Adaptive Resonance
Associative Map (ARAM) modification that may be used to speed the classification of
high-dimensional and large-scale datasets.

An MLTC model with Latent Wordwise Label information (MLC-LWL) has been
proposed [62]. With the wordwise label information, the MLC-LWL model captured the
correlations between the labels via a label-to-label structure without being affected by the
predefined label order or exposure bias. Experimental results showed the effectiveness and
significant advantages of the MLC-LWL model compared with state-of-the-art models.

3. Foundations
3.1. Spotted Hyena Optimizer

The SHO [29] is a meta-heuristic algorithm with a population-based method to solve
optimization problems in computer science. This algorithm has stages of exploration and
exploitation similar to other meta-heuristic algorithms [63,64]. The SHO is modeled on the
behavior of spotted hyenas in hunting and has a population-based mechanism [29,65]. To
hunt prey, hyenas employ a four-stage and group mechanism:

• First, they look about for the prey and follow it;
• Pursuit of prey to make it dull and straightforward to hunt;
• A troop of hyenas encircles the prey to ensure that it is hunted at the appropriate

moment;
• The ultimate attack on the prey and its hunting by the hyena.

The location of each hyena is considered as a solution to the optimization problem
to simulate with SHO, and the position of the prey is calculated using the agent’s ideal
position. In the face of the best solution, hyenas or issue solutions can exist in two states.
In the first scenario, they conduct a global search for the best response or attack the prey
location (optimal point) and hunt it.
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Encircling prey: In SHO, it is expected that the position of the prey is close to the
optimal position of the hyena, and this hyena tries to direct the members of the population
to this point. The estimated location of prey is regarded as the ideal position of the hyena
in terms of its position in the problem space in the SHO, and additional members are
directed to this point. Hyenas can detect the position of the prey and surround it. In this
method, the near-optimal goal or solution is the prey. Thus, initially, the best individual of
the population is identified, and then the other members strive to alter and update their
attitudes about this individual. In Equation (2), the mechanism of encircling hyenas around
prey is modeled.

→
Dh =

∣∣∣∣→B ·→P p(x)−
→
P(x)

∣∣∣∣ (2)

→
P(x + 1) =

→
P p(x)−

→
E ·
→
Dh (3)

In Equation (2), parameter D is a type of distance between a hyena or the solution

of the problem from the position of the prey (
→
P p(x)) and also

→
P(x + 1) is a hyena’s new

position in the new iteration or x + 1. In Equation (2), x is the iteration number of the
algorithm. Equation (2) can be applied to calculate the distance of a hyena from the prey,
which is a mechanism surrounding the prey. In Equations (2) and (3), x represents the

current iteration,
→
B and

→
E are vector coefficients,

→
P p is the position vector of the best current

answer,
→
P is the position vector of hyenas, || absolute value and “.” multiply element by

element. The vectors
→
B and

→
E are calculated according to Equations (4) and (5).

→
B = 2.r

→
d 1 (4)

→
E = 2

→
h .r
→
d 2 −

→
h (5)

→
h = 5−

(
iteration∗

(
5

MaxIteration

))
; where iteration = 1, 2, 3, . . . , MaxIteration (6)

In Equation (5),
→
h decreases linearly from 5 to 0 during the iteration period and

r
→
d 1 and r

→
d 2 are random vectors in the range (0, 1). The MaxIteration parameter indicates

the maximum number of iterations. To improve efficiency, the number of iterations must
be high.

Hunting: Hyenas usually live and hunt in groups and can recognize the location
of prey. To mathematically characterize the behavior of hyenas, it is assumed that the
best search factor is an optimal factor that knows the position of the prey. Other search
agents form a group towards the best search agent and update the best solutions they
have derived.

→
Dh =

∣∣∣∣→B .
→
Ph −

→
Pk

∣∣∣∣ (7)

→
Pk =

→
Ph −

→
E .
→
Dh (8)

→
Ch =

→
Pk +

→
Pk+1 + . . . +

→
Pk+N (9)

The first hyena’s optimal position is defined by the parameter
→
Ph;

→
Pk indicates the

position of the other hyenas. Parameter N shows the number of hyenas, which is calculated
according to Equation (10).

N = countnos

(→
Ph +

→
Ph+1 +

→
Ph+2, . . . ,

(→
Ph +

→
M
))

(10)
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In Equation (10),
→
M is a random vector in the range (0.5, 1), the nos parameter specifies

the number of solutions and all candidates’ solutions. The parameter
→
Ch is a set of the

number N of the optimal solution.
Attacking Prey (Exploitation): To create a mathematical model for the attack on the

prey, the value of the vector
→
h is reduced. The change in the vector

→
E is also reduced to

alter the value of the vector
→
h , which can be reduced from 5 to 0 during iteration. If the

value of E is |E| < 1, the group of pure hyenas is compelled to attack the prey.

→
P(x + 1) =

→
Ch
N

(11)

In Equation (11),
→
P(x + 1) saves and updates the optimal position, and the position of

other search agents is modified based on the position of the best agent.

Search for prey (Exploration): This technique is based on changes in the vector
→
E

that can be used to hunt (random search).
→
E represents random values higher than 1

or fewer than −1 that force the search agent to move away from a reference hyena. In
comparison with the non-random search phase, the position of a search agent is computed
in the random search phase based on the random selection of the search agent instead of
the best search agent, so far. This mechanism and |E| > 1 emphasize random search and
allow the SHO to perform a global search.

The steps of the SHO are as follows:
Phase 1: Initial hyena population production (Pi) where i = 1, 2, . . . , n;
Phase 2: Initialize the h, B, E, and N parameters and the maximum iterations;
Phase 3: Calculate the fit of each search agent;
Phase 4: Discover the best search agent in the search space;
Phase 5: Determine a group of the best solutions using Equations (8) and (9);
Phase 6: Update the search agent’s position using Equation (10);
Phase 7: Check and adjust the search agents in the search space to not exceed a

specified limit;
Phase 8: Compute the fitness of the updated search agents, and if there is a better

solution than the previous optimal solution, the Ph vector is updated;
Step 9: Update the hyena group to improve the fit of the search agents;
Step 10: If satisfied, the algorithm stops. Otherwise, it goes back to Step 5.
Step 11: After meeting the stop conditions, show the best optimum solution.
Algorithm 1 shows the pseudo-code of the SHO.
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Algorithm 1 Pseudo-code of the SHO algorithm

1: procedure SHO
2: Set the parameters h, B, E, and N to their default values.
3: Calculate the fitness of each search agent
4: Ph = the most effective search agent
5: Ch = the collection or cluster of all far-outperforming solutions
6: while (x < Max number of iterations) do
7: for each search agent, do
8: It will be updated position of a current agent by Equation (10)
9: end for
10: Update h, B, E, and N
11: Check if any search agent goes beyond the given search space and then adjust it
12: Determine the fitness of each search agent
13: If there is a better solution than the prior optimal solution, update Ph
14: Update the group Ch w.r.t Ph
15: x = x + 1
16: end while
17: return Ph
18: end procedure

3.2. Long Short-Term Memory (LSTM)

The LSTM is one of the most famous recursive neural networks that have had great
success in various fields such as image processing, speech recognition, and emotion analysis.
The LSTM has the advantages of non-linear predictability, fast convergence, and low
complexity. Memory cell is the central part of LSTM, which consists of parameters and
a single gateway system, and is used to make valuable or useless information. Figure 1
shows the structure of the LSTM cell.
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There are three gates in each cell: the input gate, forget gate, and output gate. LSTM
uses a separate memory to recall long-term dependencies, and then its update depends on
the current input. At each time step, an LSTM takes the current input (xt) and the prior
memory cell state (ct−1) as input, and calculates the output (ot) and the current cell state
(ct). In the defined equations, σ represents the sigmoid function (σ(X) = 1

1+e−x ).

it = σi(xtWxi + ht−1Whi + bi) (12)

ft = σf

(
xtWx f + ht−1Wh f + b f

)
(13)
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ot = σo(xtWxo + ht−1Who + bo) (14)

ct = ft ct−1 + it (tanh(xtWxc + ht−1Whc + bc)) (15)

ht = ot tanh(ct) (16)

where the variables are defined as: xt input vector, it input gate activation vector, ft forget
gate activation vector, ot output gate activation vector, ht hidden layer output vector,
ht−1 ∈ Rdh and dh hidden layer dimensions, and d input vector dimensions; ct is the cell
state and ct−1 is the vector values of the memory unit in time t− 1. The parameters W and
b are the weight matrix (input gate, forget gate, output, and cell mode) and bias.

Random initialization to LSTM connection weights causes the network to become
stuck at local points, which affects the ability to learn non-linearly (i.e., predictive accuracy).
To solve this problem, the SHO is used to optimize the initial weight of each node in the
LSTM network.

4. Proposed Model

The proposed model is a combination of LSTM and SHO, where LSTM is a generalized
example of the recursive neural network model. Unlike a conventional recursive neural
network in which content is updated at every step, in an LSTM recursive neural network,
the network can decide on the maintenance of current memory through gateways embed-
ded in the network structure. LSTM is a recursive neural network architecture designed to
store and access information better than the conventional recursive neural network version.
The LSTM unit has one or more memory cells that are regulated by structures called the
gate. Gates are a combination of sigmoid activation function and scalar multiplication
function that is used to control information in the network. Figure 2 shows the steps of the
proposed model.

Figure 2. Flowchart of the proposed model.
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The MLTC operation is generally divided by the proposed model according to Figure 3
into four main stages: pre-processing, word embedding, weight matrix by SHO, and
LSTM-based classification.

Figure 3. The main steps in the SHO-LSTM model.

4.1. Pre-Processing

Pre-processing is one of the main steps in MLTC. The most critical operations to be
performed in the text pre-processing stage follow:

• Convert numbers to words or delete numbers from textual data;
• Clear punctuation marks, accent marks, and diagnostic marks;
• Clear spaces from textual data;
• In the rooting stage, the roots of the words are found, and the words are defined as

a base;
• Develop or expand abbreviations;
• Delete ineffective words and particular words;
• Synonymous words are eliminated and replaced by their more general meaning.

4.2. Embedding Words

The main task of word embedding in NLP is to display words in numerical vectors
so that deep learning models can learn the hidden patterns in textual data. Word em-
bedding helps to find attribute vectors to predict the following words. Word embedding
n-dimensional vectors try to capture word meaning and content with their numerical
values. The dataset is given to the skip-gram model to generate vectors. The model creates
a vector for each vocabulary word, and then context properties are extracted from the
vector documentation. In this paper, the skip-gram method [66] is used to predict context
words (labels) using words called target words (input). Target words are considered in-
put, and content words are considered output. Content words are words that are close or
synonymous with the target words. Figure 4 shows the architecture of the skip-gram model.
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Figure 4. Skip-gram model architecture.

The input vector (x) and the output vector (y) are coded based on the one-hot model.
Some deep learning algorithms, such as the LSTM, use sequence order for better classifica-
tion results. In this case, the one-hot method is used to extract documents based on digits
0 and 1. In this method, each dimension vector is assigned to one word in the dictionary,
meaning that each dimension vector represents one word of the dictionary as shown in
Table 1. Each word in specific dimensions of the vector x is equal to one, and the remaining
dimensions of the vector are set to zero. The hidden layer (h) contains embedded words
whose size is equal to N (N sizes of embedded word vectors for instruction). Additionally,
V is the size of the dictionary (vectors are V-dimensions, and only one dimension has a
value of 1, and the rest will be zero later). The purpose of skip-gram is to find output for
content words using target words. Therefore L ∈ Rd×|V| is a word embeddings matrix
where d represents the vector dimensions of the words and V represents the number of
words. In wi ∈ Rd×1, the word i is equal to one row in the matrix L.

Table 1. One-hot coding.

Words Size of the Vocabulary

1 2 3 4 5 6 7 8 9 10 11 0 0 V

Social 1 0 0 0 0 0 0 0 0 0 0 . 0 0

media 0 1 0 0 0 0 0 0 0 0 0 . 0 0

are 0 0 1 0 0 0 0 0 0 0 0 . 0 0

interactive 0 0 0 1 0 0 0 0 0 0 0 . 0 0

networks 0 0 0 0 1 0 0 0 0 0 0 . 0 0

that 0 0 0 0 0 1 0 0 0 0 0 . 0 0

allow 0 0 0 0 0 0 1 0 0 0 0 . 0 0

the 0 0 0 0 0 0 0 1 0 0 0 . 0 0

creation 0 0 0 0 0 0 0 0 1 0 0 . 0 0

or 0 0 0 0 0 0 0 0 0 1 0 . 0 0

sharing 0 0 0 0 0 0 0 0 0 0 1 . 1 1
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The conditional probability pr(wi+j
∣∣wi) is calculated by the skip-gram architecture

using the given input word. The goal of skip-gram is to optimize the probability function
for showing words in the output layer. In the skip-gram model, the maximum probability
is defined according to Equation (17).

1
N

N

∑
i=1

∑
−k≤j≤i 6=0

logpr(wi+j|wi) (17)

where w1, w2, . . . , wn are a sequence of training words and k is the window size of the
training content. The tutorial’s goal is to minimize the total predictive error of all content
words in the output layer. The principal probability pr(wi+j

∣∣wi) is defined using the
so f tmax function according to Equation (18).

pr
(
wi+j

∣∣wi
)
=

exp
(

M′wi+j Mwi
)

∑V
L exp(M′wt Mwi)

(18)

Mw and M′w show w input and output, respectively, and V is the dictionary size.

4.3. SHO-LSTM
Many parameters must be controlled in the construction of the classification model

by the LSTM, the most important of which is the weight of the neurons. To achieve better
prediction results, the SHO is used to optimize the weight of neurons. The SHO can prevent
the convergence of the network in the optimal local solution, and with a lower number
of iterations, the LSTM can discover the optimal solutions. In the model training process,
gates can memorize input vectors, forget previous records, and generate output vectors.
In the proposed model, the input vector (xt) of length N is connected to the latent state
variable (h) of length M, calculated at time t− 1. In particular, the forgetfulness gate layer
(Equation (19)) decides what information should be removed from the cell state.

ft = σ

([
w f (1) . . . w f (n)

]T
[

xt
ht−1

]
+ b f

)
= σ

[ w f (1)
b f (1)

]T
 xt

ht−1
1

 . . .
[

w f (M)
b f (M)

]T
 xt

ht−1
1

 (19)

ft(k) = σ

[ w f (k)
b f (k)

]T
 xt

ht−1
1

; k = 1, 2, . . . , M (20)

where w f (k) is the kth column of the vector w f and b f (k) is equal to the kth element of b f .
The parameters ct and ht are defined according to Equations (21) and (22).

ct(k) = ft(k).ct−1(k) + it(k).
(

tanh
(

wc.
[

xt
ht−1

]
+ bc

))
(21)

ht(k) = ot(k).tanh(ct(k)) (22)

The output matrix of the SHO-LSTM model’s hidden layer is parameter H, which is
calculated according to Equation (23). According to Equation (23), the hidden layer consists
of weights, bias, and input values.

H =


(w1, b1, x1) (w2, b2, x1) . . . (wn, bn, x1)

...
... . . .

...
(w1, b1, xv) (w2, b2, xv) . . . (wn, bn, xv)

 (23)

The hidden layer weights of the LSTM are included as the initial population value
in the SHO. The LSTM weight size in the SHO-LSTM model is set in the range −1 and
1. The initial LSTM output error is used as the fit of the agents (hyenas), then the agents’
performance changes according to the conditions of the LSTM. Agents try to change and
improve their position towards the best member of the population. The value of the agent’s
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position optimizer is utilized as the initial value of each weight of neuron in the LSTM to
optimize the LSTM by the SHO. The position of the agents is constantly updated to reduce
the network output layer error. In the proposed model, the fitness function of the agents is
designed to evaluate the population factors. In the proposed model, the RMSE is designed
according to Equation (24) as the LSTM output value and the actual value as a fitness
function to measure the factors. The smaller the RMSE, the more logical the LSTM network
weight settings for the agents, and the stronger the model’s generalizability. As N is the
number of predictions, ŷn is the predicted value of the model and yn is the actual value.

RMSE =

√√√√ 1
N

N

∑
n=1

(ŷn − yn)
2 (24)

Finally, the softmax layer is used to classify documents based on vectors according
to Equation (25), where xi is the numeric value that appears in the output layer, and M
represents the number of classes.

So f tmax Function = σ(xi) =
exi

∑M
k=1 exk

; where k = 1, 2, . . . , M, and xiεR (25)

This section describes the most critical evaluation criteria for MLTC [60]. Suppose m
is the total number of samples in the test dataset; i represents an example in the test dataset.
L is a set of labels L =

{
λj : j = 1, . . . , q

}
, so that q is the total number of labels, and Zi and

Yi refer to the predicted and real labels, respectively. Accuracy is one of the main criteria
for evaluating MLTC.

Accuracy =
1
m

m

∑
i=1

|Zi ∩Yi|
|Zi ∪Yi|

(26)

Precision =
1
m

m

∑
i=1

|Zi ∩Yi|
|Zi|

(27)

Recall =
1
m

m

∑
i=1

|Zi ∩Yi|
|Yi|

(28)

F−Measure =
1
m

m

∑
i=1

2 ∗ |Zi ∩Yi|
|Zi|+ |Yi|

(29)

5. Evaluation and Results

This section evaluates and describes the results of the proposed model that were
obtained on different textual datasets. Anaconda software is a comprehensive Python
programming environment that includes environments such as Jupiter Notebook for working
with data. Four different datasets were used for evaluation according to Table 2. The
evaluation was performed on a system with specifications of Core i7-4U, CPU@2.30 GHz,
6 GB RAM, and Windows 8.1 operating system. The datasets were divided into training sets
and experimental sets, and 80% of the randomly selected texts were used for classification
training and the remaining texts for the test phase.

To show the SHO-LSTM model’s efficiency, various meta-heuristic algorithms are used,
such as Genetic Algorithm (GA) [67], Particle Swarm Optimization (PSO) [68], Artificial
Bee Colony (ABC) [69], Harmony Algorithm Search (HAS) [70], and Differential Evolution
(DE) [71]. The initial population and number of iterations in these algorithms are equal
to SHO. The value of the parameters in meta-heuristic algorithms is set based on the
base value.
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Table 2. Multi-label text database specifications.

Datasets Number of
Total Texts

Number of
Labels

Size of Total
Features

Average
Number of

Labels per Text
Number of
Train Texts

Number of
Test Texts

RCV1-v2 804,414 103 47,236 3.24 723,531 160,883

EUR-Lex 19,348 3993 26,575 5.32 15,478 3870

Reuters-
21578 10,789 90 18,637 1.13 8631 2158

Bookmarks 87,856 208 2150 2.03 70,285 17,571

Table 3 sets the initial value for the proposed model parameters. The definition and
range of parameters is an essential factor after designing the proposed model. Usually, the
value and range of parameters are obtained based on trial and error.

Table 3. The initial value for the proposed model parameters.

Algorithm Parameters Value

SHO

search agents 30

control parameter (
→
h ) (5,0)

→
M constant (0.5,1)

number of iterations 200

LSTM

word embedding size (256–512)
number of hidden layers (5–20)

learning rate 0.001
batch size 64

unit number of LSTM 15
epochs (1300)

gate activation function Sigmoid
state activation function tanh

Table 4 shows the results of the SHO-LSTM model based on different criteria. As
shown in Table 4, the accuracy of the SHO-LSTM model is higher than other models. The
accuracy of the SHO-LSTM model in RCV1-v2 gained 87.65%, which has accuracy higher
than LSTM. The PSO-LSTM model performed somewhat better than other models but has
not reached the SHO-LSTM model.

Table 4. The results of the models based on different criteria.

Datasets Models Accuracy Precision Recall F-Measure

RCV1-v2

LSTM 81.52 80.27 81.94 81.10
GA-LSTM 82.32 83.17 82.57 82.87
PSO-LSTM 86.69 87.29 86.38 86.83
ABC-LSTM 85.79 85.17 85.39 85.28
HSA-LSTM 83.47 84.22 83.61 83.91
DE-LSTM 84.61 84.57 83.72 84.14

SHO-LSTM 87.65 89.74 86.24 87.96

EUR-Lex

LSTM 42.86 42.52 43.68 43.19
GA-LSTM 42.15 42.37 42.15 42.26
PSO-LSTM 42.92 42.65 42.28 42.46
ABC-LSTM 43.72 43.96 42.87 43.41
HSA-LSTM 43.29 43.58 43.65 43.61
DE-LSTM 43.68 43.27 43.31 43.29

SHO-LSTM 45.91 46.43 46.15 46.29

Reuters-21578

LSTM 62.61 61.19 61.82 61.50
GA-LSTM 62.95 62.82 62.42 62.62
PSO-LSTM 63.68 63.78 63.27 63.52
ABC-LSTM 62.78 62.64 62.19 62.41
HSA-LSTM 63.12 63.25 63.08 63.16
DE-LSTM 63.46 63.58 62.91 63.24

SHO-LSTM 63.81 64.27 63.94 64.10

Bookmarks

LSTM 40.19 40.48 41.57 41.02
GA-LSTM 40.58 40.82 40.63 40.72
PSO-LSTM 41.85 41.66 41.20 41.34
ABC-LSTM 41.56 41.79 41.17 41.52
HSA-LSTM 40.23 40.15 40.02 40.08
DE-LSTM 40.86 41.03 42.65 41.82

SHO-LSTM 42.16 42.51 42.32 42.40

5.1. Evaluation Based on Epochs

In Figure 5, the results of the models are shown for RCV1-v2 and EUR-Lex with the
epoch factor. Figure 5 shows that the SHO-LSTM model on RCV1-v2 has a higher accuracy
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percentage in the early stages, and its value starts with 81.25% and ends with 87.65%. It can
be concluded that the convergence and achievement of the optimal solution in the SHO
are better than the others. The GA-LSTM model has a lower percentage compared to the
PSO, ABC, HSA, and DE models. The accuracy of the SHO-LSTM model on EUR-Lex in
the early stages is 40.25% and 45.91%. Additionally, the percentage accuracy of PSO-LSTM
and ABC-LSTM models is 42.92% and 43.72%, respectively. The SHO algorithm generates
a set of values for the weights in each run, so the accuracy percentage varies. Furthermore,
the weight matrix update in LSTM changes based on SHO, so this method causes the
percentage of accuracy in the output to be different.

Figure 5. Results of the models using RCV1-v2 and EUR-Lex based on epochs.

In Figure 6, the results of the models are shown for Reuters-21578 and Bookmarks
with the epochs factor. The accuracy of the SHO-LSTM model on Reuters-21578 and
Bookmarks are 63.81 and 42.16, respectively. The accuracy percentage of PSO-LSTM and
ABC-LSTM on Reuters-21578 are 63.68 and 62.78, respectively. The accuracy percentage
of PSO-LSTM and ABC-LSTM models on Bookmarks are 41.85 and 41.56, respectively.
The accuracy of HSA-LSTM and DE-LSTM models on Reuters-21578 are 63.12 and 63.46,
respectively. The accuracy of HSA-LSTM and DE-LSTM models on Bookmarks are 40.23
and 40.86, respectively.

Figure 6. Results of models using Reuters-21578 and Bookmarks based on epochs.

5.2. Evaluation based on Batchsize

In Figure 7a, the results of the models performed on four different datasets based
on the batchsize factor are shown. As shown in Figure 7, the accuracy percentage of
the SHO-LSTM model on RCV1-v2 for batchsize = 8, batchsize = 16, batchsize = 32, and
batchsize = 34 is 82.25, 84.67, 85.92, and 87.65, respectively. The accuracy percentage of
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SHO-LSTM model on EUR-Lex for batchsize = 8, batchsize = 16, batchsize = 32, and
batchsize = 34 is equal to 41.56, 43.18, 44.68, and 45.91, respectively. The accuracy of the
SHO-LSTM model on Reuters-21578 for batchsize = 8, batchsize = 16, batchsize = 32, and
batchsize = 34 is 60.48, 61.56, 62.29, and 63.81, respectively. The accuracy of the SHO-LSTM
model on Bookmarks for batchsize = 8, batchsize = 16, batchsize = 32, and batchsize = 34 is
equal to 39.56, 40.48, 41.68, and 42.16, respectively.

Figure 7. Results of models on RCV1-v2 and EUR-Lex datasets based on batch size.

According to Figure 7b, the accuracy percentage of PSO-LSTM and ABC-LSTM on
RCV1-v2 for batchsize = 8 is 81.16 and 80.24, respectively. The percentages of PSO-LSTM
and ABC-LSTM on EUR-Lex for batchsize = 8 are 39.67 and 40.46, respectively. The
accuracy percentage of PSO-LSTM and ABC-LSTM on Reuters-21578 for batchsize = 8 is
60.17 and 59.38, respectively. The accuracy of PSO-LSTM and ABC-LSTM on Bookmarks
for batchsize = 8 is 39.79% and 39.48%, respectively.

Figure 7a shows that the accuracy percentage of GA-LSTM and PSO-LSTM models on
RCV1-v2 for batch size = 32 is 81.67 and 85.31, respectively. The accuracy percentage of
ABC-LSTM, HSA-LSTM, and DE-LSTM models on RCV1-v2 for batch size = 32 is 84.76,
82.66, and 83.34, respectively. The accuracy percentage of GA-LSTM and PSO-LSTM models
on RCV1-v2 for batch size = 64 is 82.32 and 86.69, respectively. The accuracy percentage of
ABC-LSTM, HSA-LSTM, and DE-LSTM models on RCV1-v2 for batch size = 64 is 85.79,
83.47, and 84.61, respectively. The accuracy percentage of SHO-LSTM on RCV1-v2 for
batch size = 32 and batch size = 64 is 85.92 and 87.65, respectively. The results based on
batch size showed that the SHO-LSTM model has a higher percentage in comparison with
other models.

Figure 7b shows that the accuracy percentage of GA-LSTM and PSO-LSTM models
on EUR-Lex for batchsize = 32 is 41.38 and 41.67, respectively. The accuracy percentage
of ABC-LSTM, HSA-LSTM, and DE-LSTM models on EUR-Lex for batchsize = 32 is 42.38,
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42.94, and 42.38, respectively. The accuracy percentage of GA-LSTM and PSO-LSTM models
on EUR-Lex for batchsize = 64 is 42.15 and 42.92, respectively. The accuracy percentage
of ABC-LSTM, HSA-LSTM, and DE-LSTM models on EUR-Lex for batchsize = 64 is 43.72,
43.29, and 43.38, respectively. The accuracy percentage of SHO-LSTM on EUR-Lex for
batchsize = 32 and batchsize = 64 is 44.68 and 45.91, respectively.

Figure 8a shows that the accuracy percentage of GA-LSTM and PSO-LSTM models on
Reuters-21578 for batchsize = 32 is 61.81 and 62.51, respectively. The accuracy percentage
of ABC-LSTM, HSA-LSTM, and DE-LSTM models on Reuters-21578 for batchsize = 32
is 61.84, 62.66, and 62.59, respectively. The accuracy percentage of GA-LSTM and PSO-
LSTM models on Reuters-21578 for batchsize = 64 is 62.95 and 63.68, respectively. The
accuracy percentage of ABC-LSTM, HSA-LSTM, and DE-LSTM models on Reuters-21578
for batchsize = 64 is 62.78, 63.12, and 63.46, respectively. The accuracy percentage of SHO-
LSTM on Reuters-21578 for batchsize = 32 and batchsize = 64 is 62.29 and 63.81, respectively.

Figure 8. Results of models on RCV1-v2 and EUR-Lex datasets based on batch size.

Figure 8b shows that the accuracy percentage of GA-LSTM and PSO-LSTM models on
Bookmarks for batchsize = 32 is 40.12 and 41.17, respectively. The accuracy percentage of
ABC-LSTM, HSA-LSTM and DE-LSTM models on Bookmarks for batchsize = 32 is 41.12,
39.84, and 40.24, respectively. The accuracy percentage of GA-LSTM and PSO-LSTM models
on Bookmarks for batchsize = 64 is 40.58 and 41.85, respectively. The accuracy percentage
of ABC-LSTM, HSA-LSTM and DE-LSTM models on Bookmarks for batchsize = 64 is 41.56,
40.23, and 40.86, respectively. The accuracy percentage of SHO-LSTM on Bookmarks for
batchsize = 32 and batchsize = 64 is 41.68 and 42.16, respectively.

5.3. Evaluation Based on the Number of Iterations

Figure 9 evaluates the models based on the number of iterations and RMSE. Figure 9
shows that the SHO-LSTM model on the RCV1-v2 has a lower RMSE compared to other
models and its value is equal to 0.1234 in 200 iterations. The RMSE values for PSO-LSTM
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and ABC-LSTM are 0.1494 and 0.1625, respectively. The RMSE value in the SHO-LSTM
model on EUR-Lex for 200 iterations is 0.1922. The RMSE values for PSO-LSTM and
ABC-LSTM are 0.2194 and 0.2225, respectively. The RMSE values for the GA-LSTM and
DE-LSTM models are 0.2467 and 0.2364, respectively.

Figure 9. Results of models on RCV1-v2 and EUR-Lex based on a number of iterations.

Figure 10 shows that the SHO-LSTM model on the Reuters-21578 has a lower RMSE
value compared to other models, and its value for 200 iterations is equal to 0.1634. The
RMSE values for PSO-LSTM and ABC-LSTM are 0.1934 and 0.1968, respectively. The RMSE
value in the SHO-LSTM model on Bookmarks for 200 iterations is 0.1826. The RMSE values
for PSO-LSTM and ABC-LSTM are 0.1924 and 0.2125, respectively. The RMSE values for
the GA-LSTM and DE-LSTM models are 0.2363 and 0.2325, respectively.

According to the results, the SHO-LSTM model had higher detection accuracy and
better performance in MLTC compared to other models. The SHO was able to increase
the LSTM performance in text recognition and reduce the amount of error. On the other
hand, the number of epochs was also influential in the accuracy of diagnosis and based on
various experiments. It was proven that if the number of epochs is equal to 300, then the
best accuracy of diagnosis is obtained. The SHO-LSTM had better classification effects on
RCV1-v2. In addition, we found that most of the models listed in Table 4 performed well
on Reuters-21578.

Figure 10. Results of models on Reuters-21578 and Bookmarks based on a number of iterations.

5.4. Comparison and Evaluation

In this section, the SHO-LSTM model is compared with other models. The results
of comparisons show that the accuracy percentage of the SHO-LSTM model is higher
than other models. The accuracy percentages of DSRM-DNN-1 and DSRM-DNN-2 on
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RCV1-v2 are 0.8164 and 0.8326, respectively. Additionally, the accuracy percentage of
the SHO-LSTM model is 0.8974 on RCV1-v2. The accuracy percentage of DSRM-DNN-
1 and DSRM-DNN-2 on EUR-Lex is 0.4298 and 0.4315, respectively, while the accuracy
percentage of the SHO-LSTM model is 0.4633. The accuracy percentage of DSRM-DNN-1
and DSRM-DNN-2 on Reuters-21578 is 0.4913 and 0.6147, respectively, while the accuracy
percentage of the SHO-LSTM model is 0.6427. The accuracy percentages of DSRM-DNN-1
and DSRM-DNN-2 on Bookmarks are 0.3841 and 0.4018, respectively, while the accuracy
percentage of the proposed model is 0.4251.

According to the results of Table 5, the accuracy percentages of ML-Reasoner, ML-
Reasoner-LSTM, and ML-Reasoner-BERT on RCV1-v2 are 0.9120, 0.8970, and 0.8900, respec-
tively. The accuracy percentages of H-AGCRNN, HAGTP-GCN, and HCSM on RCV1-v2
are 0.7960, 0.8710, and 08940, respectively.

Table 5. Comparison of SHO-LSTM model with other models.

Datasets Models Refs. Precision Recall F-Measure

RCV1-v2

ML-DT

[60]

0.3961 0.5626 0.4649
ML-KNN 0.5741 0.5676 0.5708

BR 0.7946 0.6237 0.6989
CC 0.7682 0.6449 0.7012

HARAM 0.7756 0.5693 0.6566
BP-MLL 0.4385 0.5803 0.4995

CNN-RNN 0.8034 0.6465 0.7165
HLSE 0.7825 0.5876 0.6712
SERL 0.8015 0.6215 0.7001

DSRM-DNN-1 0.8164 0.6413 0.7183
DSRM-DNN-2 0.8326 0.6395 0.7234

ML-Reasoner
[30]

0.9120 0.8470 0.8780
ML-Reasoner-LSTM 0.8970 0.8450 0.8700
ML-Reasoner-BERT 0.8900 0.8520 0.8710

CNN-RNN [62] 0.8890 0.8250 0.8560
MLC-LWL 0.9100 0.8540 0.8810

H-AGCRNN
[39]

0.7960 0.7610 0.7780
HAGTP-GCN 0.8710 0.8090 0.8390

HCSM 0.8940 0.8250 0.8580

SHO-LSTM - 0.8974 0.8624 0.8796

EUR-Lex

ML-DT

[60]

0.1567 0.2254 0.1849
ML-KNN 0.5141 0.2318 0.3195

BR 0.4260 0.3643 0.3927
CC 0.2618 0.3012 0.2801

HARAM 0.4158 0.3271 0.3662
BP-MLL 0.2331 0.3063 0.2647

CNN-RNN 0.3727 0.3103 0.3387
HLSE 0.3854 0.3942 0.3898
SERL 0.4085 0.3853 0.3966

DSRM-DNN-1 0.4298 0.3932 0.4109
DSRM-DNN-2 0.4315 0.4107 0.4208

SHO-LSTM - 46.43 46.15 46.29

Reuters-
21578

ML-DT

[60]

0.3510 0.2806 0.3119
ML-KNN 0.3422 0.2056 0.2569

BR 0.4645 0.3507 0.3997
CC 0.4706 0.3613 0.4088

HARAM 0.2981 0.2424 0.2674
BP-MLL 0.4809 0.4761 0.4785

CNN-RNN 0.3697 0.2875 0.3235
HLSE 0.4582 0.3974 0.4256
SERL 0.4796 0.4520 0.4654

DSRM-DNN-1 0.4913 0.4831 0.4872
DSRM-DNN-2 0.6147 0.4785 0.5381

SHO-LSTM - 64.27 63.94 64.10

Bookmarks

ML-DT

[60]

0.1324 0.1458 0.1388
ML-KNN 0.2514 0.2780 0.2640

BR 0.1950 0.1880 0.1914
CC 0.1642 0.3104 0.2148

HARAM 0.3614 0.3409 0.3509
BP-MLL 0.1115 0.2743 0.1586

CNN-RNN 0.2257 0.3321 0.2688
HLSE 0.3472 0.3274 0.3370
SERL 0.3715 0.3603 0.3658

DSRM-DNN-1 0.3841 0.3596 0.3714
DSRM-DNN-2 0.4018 0.3702 0.3854

SHO-LSTM - 42.51 42.32 42.40

The results show that SHO is superior to other models. Studies have shown that SHO
has the following benefits [65]: fast convergence rate and balance between exploration and
exploitation. Furthermore, the efficiency and power of SHO have already been proven [72].
Therefore, in this paper, SHO is used to improve LSTM.
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6. Conclusions and Future Works

In this paper, after a thorough review of previous studies on the operation of LSTM
with meta-heuristic algorithms, a new model based on LSTM and SHO for MLTC was
proposed. Deep learning algorithms can be an excellent way to increase detection accuracy
due to their valuable achievements in the MLTC problem. In the SHO-LSTM model, the
SHO was used to optimize the LSTM weight matrix. The SHO-LSTM model was tested
and evaluated on four different datasets of texts. The results showed that the accuracy
of the SHO-LSTM model on RCV1-v2, EUR-Lex, Reuters-21578, and Bookmarks were
87.65, 45.91, 63.81, and 42.16, respectively. The results showed that the accuracy of the
SHO-LSTM model on RCV1-v2 improved by about 7.52% compared to LSTM. Additionally,
the SHO-LSTM model significantly reduced the RMSE value compared to other models,
indicating that the SHO has good convergence capability in finding the optimal solution.
Comparisons showed that the PSO-LSTM and ABC-LSTM models had better detection
accuracy compared to LSTM and GA-LSTM. Future work proposed will combine machine
learning algorithms with CNN and RNN networks to optimize parameters (number of
layers, number of neurons, window size) to solve various problems such as classification
and clustering.
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