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Abstract: Due to the vital role of financial systems in today’s sophisticated world, applying intelligent
controllers through management strategies is of crucial importance. We propose to formulate the
control problem of the macroeconomic system as an optimization problem and find optimal actions
using a reinforcement learning algorithm. Using the Q-learning algorithm, the best optimal action for
the system is obtained, and the behavior of the system is controlled. We illustrate that it is possible
to control the nonlinear dynamics of the macroeconomic systems using restricted actuation. The
highly effective performance of the proposed controller for uncertain systems is demonstrated. The
simulation results evidently confirm that the proposed controller satisfies the expected performance.
In addition, the numerical simulations clearly confirm that even when we confined the control actions,
the proposed controller effectively finds optimal actions for the nonlinear macroeconomic system.

Keywords: macroeconomic system; reinforcement learning; intelligent control; optimal controller

1. Introduction

Nowadays, the control and synchronization of nonlinear systems have attracted
attention due to their appreciable usage in a wide variety of fields [1–7]. Up to now,
intelligent control systems have effectively solved some problems in the control of modern
tools and methods, such as self-organizing maps, neural networks, fuzzy logic, expert
systems and various nature-inspired algorithms [8,9]. Several research studies have applied
neural networks as disturbance estimators to observe the disturbances and uncertainties in
nonlinear systems [10–12]. On the other hand, the robustness of the control strategies plays
an inevitable role in the performance of the systems. Hence, researchers also propound
robust controllers for complex systems [13–15].

A macroeconomic model describes the dynamics of an economic system over long-
and short-run periods. The macroeconomic model can consist of difference or differential
equations. Usually, the variables in the macroeconomic model are categorized into the
following three main classes: (1) variables that represent the state of the system, (2) variables
that indicate an uncontrollable environment and (3) control variables that denote leverage,
which can be employed as economic policies to push the system towards a target [16]. It
is noteworthy that the existence of chaos in the macroeconomic time series has not been
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conclusively confirmed so far. This issue belongs to the unsolved scientific problems.
In [17], Barnett and He have thoroughly explained this matter in their study.

Though studies have made impressive progress in economic systems, the investigation
of macroeconomic systems and control methods for these systems have room for improve-
ment [18,19]. For instance, in the literature, a few studies exist that have investigated the
control of macroeconomic systems [20]. In this study, a fuzzy controller has been designed
for the macroeconomic system. Nevertheless, this control scheme has some disadvantages.
For instance, the fuzzy control may not give assurance that the system reaches the desired
value in the presence of uncertainties. Actually, controllers that have been proposed for
macroeconomic systems are neither intelligent nor robust enough for many uncertain situa-
tions. Due to the system uncertainty, complexity, and nonlinearity in economic systems,
mathematical models may not be able to consider all the variations in the system [21]. There-
fore, further studies on robust and intelligent control techniques are required to achieve
appropriate performance for the stabilization and control of macroeconomic systems.

These issues motivated this study. In the current paper, a macroeconomic system
will be considered in the presence of dynamic uncertainties, and we aim to enhance the
performance of the system by taking advantage of artificial intelligence techniques. Since
applying optimal polices for economic systems is crucial, we propose to formulate the
control of the macroeconomic system as an optimization problem and find optimal actions
based on a reinforcement learning algorithm. The significant advantage of the proposed
reinforcement learning-based method is its optimal performance. In addition, using the
proposed method, we can control the system’s behavior with only restricted and specific
actions. In the current study, we use Goodwin’s non-linear model and generate data from
it. Actually, for real-world application, we need a model to train the Q-learning algorithm
and extract the control laws. After that, the proposed controller can be applied to the
real-world economic system. This is a theoretical study that aims to show the application of
the Q-learning algorithm in economic systems. Hence, we use a well-known mathematical
model in this study.

2. Literature Review

Up to now, various control techniques, such as predictive control [22–24], sliding
mode control [25–32], fuzzy control [33–35], adaptive control [36–39], and so on, have been
proposed for nonlinear systems. Among the stated control methods for various systems,
the methods that can act intelligently in unpredictable conditions have gained significant
attention because of their unique properties [40,41]. Artificial intelligence does combine a
wide variety of state-of-the-art technologies to give systems an ability to adaptively make
decisions in new and unknown situations [42,43]. In some applications, due to the high
value of their tasks, and their considerable risks, implementing a robust and reliable control
scheme is a significant concern. In the presence of high disturbances and uncertainties,
classical control methods may fail [44]. Moreover, today, technologies have reached a point
where machine intelligence can be utilized for many systems. Intelligent controllers can
make systems smarter and able to find more effective ways, hopefully for better actions in
real-world applications [45,46].

Reinforcement learning is one of the earliest learning techniques that emerged in the
field of machine learning, and soon became a popular method [47,48]. In [49,50], the authors
have used reinforcement learning methods to explore the system’s response topossible
actions, and in this way, they found optimal actions by calculating how the previous
actions move the system to a favorable state. After the learning process, the controller
uses the optimal learned policies. It is shown in [51,52] that reinforcement learning can be
utilized for the control of complex and unknown systems, as it does not require a precise
mathematical model of systems. Hence, as is stated in [53–55], reinforcement learning-
based control methods have been used in various fields of study, including the speed
control of turbines, drug dosing, image evaluation and robotics.
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3. Methodology

In the current study, we propose a reinforcement learning-based method for optimal
control of the macroeconomic system. Traditionally, designing optimal control for nonlinear
systems is challenging [56]. When the model of a system is known, using the algebraic
Riccati equation, we can design the optimal control law for linear systems. However, when
designing an optimal control law for nonlinear systems, the Hamilton–Jacobi–Bellman
equation must be solved [57].

Watkin’s Q-learning is a reinforcement learning-based method that has attracted
significant attention in recent years. This method does not need a priori information about
systems and can effectively be employed online when the model of the system changes
during the learning process [58]. Figure 1 illustrates the structure of reinforcement learning.
In this process, agents or control signals apply an action on the system and observe the
corresponding reward to find effective control policies or action plans.
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Reinforcement learning starts by choosing an initial arbitrary policy and then, by
interacting with the system, it learns the optimal policy. In general, a policy can be a
rule base, such as “if in this state, then do this” [59]. Reinforcement learning progresses
iteratively by interacting with the system. Hence, the agent’s decision sets an optimal
control policy based on the rewards it obtains [60,61]. In the Q-learning algorithm, each
batch of information, including action, reward and state, is utilized to update the Q table.
In the Q table, the entry Qk(sk, ak) denotes the desirability of actions in the finite sequence(

Aj
)

j∈J+ with respect to states of the finite sequence (Si)i∈I+ . As is demonstrated in
Figure 1, the central part of the reinforcement learning includes a system and an agent [62].

At time step k, firstly, the agent observes the current state sk; after that it selects action
ak from the sequence of actions (A). The results of the selected action ak are scored based
on an appropriate reward (rk+1 ∈ R). Based on the value of the reward, the agent realizes
whether the last action that had been selected was “bad” or “good.” The agent uses the
Q-learning algorithm to obtain an optimal policy that maximizes the expected value E [·]
of the discounted reward, which is given by:

J(rk) = E
[

∞

∑
k=1

θk−1rk

]
(1)

In Equation (1), the importance of future and immediate rewards is represented by
θ ∈ [0, 1], where for θ = 0, the agent only considers the current reward, and for θ

approaching 1, the agent takes into account current and future rewards. In this regard,
when the agent calculates action ak and reward rk+1, with respect to the state transition
sk → sk+1 , the Q table will be updated based on the Q-learning algorithm, which is given
by the following equation:

Qk(sk, ak) = Qk−1(sk, ak) + ηk(sk, ak)×
[

rk+1 + θmax
ak+1

Qk−1(sk+1, ak+1)−Qk−1(sk, ak)

]
(2)
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where the learning rate that impacts the size of the correction after each iteration is represented
by ηk(sk, ak) ∈ [0, 1), k = 1, 2, . . .. It is noteworthy that the Q-learning algorithm begins
with an initial Q1(s1, a1). Then, the Q table will be updated based on the observations.

To assign the minimum threshold for convergence, it is common to use a tolerance
parameter δ with condition Qk |Qk −Qk − 1| ≤ δ. Several sources, such as references, can
be consulted for more details on the conditions required and the proof of convergence of
the Q-learning algorithm [63,64]. The algorithm used in this paper has been delineated in
Algorithm 1, in which episode is defined as the process of reaching the final state from the
initial state.

Algorithm 1. Q-learning algorithm.

1: Initialize Q-table.
2: Loop {for all of episodes}.
3: Initialize state s.
4: Repeat {for each step-in episode}.
5: Calculate firing strength of A at state si.
6: Choose action (ai ) for each of the rules at state si.
7: Take action ai+1, observe reward ri.
8: Calculate state value of state si+1.
9: Update Q-table.
10: Until s is terminal state.
11: End loop.

Figure 2 demonstrates the structure of the training sequence that has been used to
obtain the optimal Q table for the macroeconomic system. In the current study, we consider
the state sk of the macroeconomic model in terms of the available output of tracking error.
In the macroeconomic system, the target is to obtain the optimal sequence of actions, which
results in a minimum value of error.
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utilized to reinforce the decision making of the agent. At every time step, the controller
will choose the action ak as follows:

ak =
(

Aj
)

j∈J+ j = argmax(Qk(sk, .)) (3)

The function that is utilized for calculating the reward of the agent for the transition
from state sk to state sk+1 is as follows:

rk+1 =

{ ∣∣∣ e(kT)−e((k+1)T)
e(kT)

∣∣∣, | e((k + 1)T)| < |e(kT)|
−ξ | e((k + 1)T)| < |e(kT)|

(4)

where ξ ≥ 0 and e(t) represent the error of the system. The more the agent explores the
system, the more it learns. When k → ∞ , the algorithm is able to converge to the optimal
Q table. In addition, in most cases, for a finite value of k, systems converge to their optimal
solution with an acceptable tolerance δ [51].

4. Macroeconomic System

Puu [65] proposed a modification of the Goodwin model by allowing the accelerator
function to be non-monotonic. He has supported the idea that when the income sharply
drops, the investment might rise. Moreover, when the income is rising, especially sharply,
the investment might fall. This model is described as follows [65]:

Z(t) = C(t) + I(t) + G(t), (5)

C(t) = cY(t)− u(t), (6)

dI(t)
dt

= −β(I(t)− B(t)), (7)

dY(t)
dt

= −α(Y(t)− Z(t)). (8)

where the aggregate demand (Z) consists of consumption (C), autonomous expenditures
of the government (G) and investment (I). Consumption (C) depends on income (Y)
and is disturbed by a spontaneous change in the u coefficient, in which u is defined by
a step function. In addition, parameter c denotes the marginal propensity to consume.
Equation (7) represents the rate of investment, where β is the speed of the response of
the investment to changes in production, and the speed of the response of production to
changes in demand is represented by α. In addition, B(t) = Φ

(
v dY(t)

dt

)
. In this nonlinear

macroeconomic model, the rate of investment ( dI(t)
dt ) depends on investment I and the

amount of the investment decision B. Moreover, as is described by this model, the decision
to invest B depends nonlinearly, by Φ, on the rate of change in production ( dY(t)

dt ). The
nonlinear accelerator Φ is given by:

Φ
(

v
dY(t)

dt

)
= M

(
L + M

Lev dY(t)
dt + M

− 1

)
(9)

where M indicates the scrapping rate of capital equipment and L is the net capacity of the
capital goods trades. Substituting Equation (9) into Equation (7) results in the final shape
of the governing equation of the Goodwin’s model, which is given by:

dI(t)
dt

= −β

(
I(t)−M

(
L + M

Lev dY(t)
dt + M

− 1

))
, (10)
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5. Results
5.1. Dynamical investigation

The time history of the macroeconomic system is shown in Figure 3. It illustrates
the time history of the system with different initial conditions. It is noteworthy that since
we did not examine the absolute values of the system’s variables, and only their rates
of change have been examined, they can be negative and positive. For this simulation,
c = 0.25, β = 3, v = 3, α = 4, M = −1 and L = 2. Additionally, for case 1 and case 2, the
initial conditions are considered to be [−2, 0, 1, −1] and [−8, 1, 1 1

4 , 6 3
4 ], respectively. As is

depicted in Figure 3, the behavior of the system depends on the initial condition [66].
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5.2. Control Results

The proposed controller learns the optimal strategies based on the response of the
system to different actions. For control of the system, the consumption of Equation (6) in
the macroeconomic system, including the disturbance and control input, is given by:

C(t) = cY(t)− u(t) + Uc + D (11)

where Uc is the control action and D represents disturbances that are imposed on the
system. The time response of the macroeconomic system in the presence of uncertainties is
simulated to test the effectiveness of the proposed control scheme. In the simulations, the
number of iterations for the learning algorithm is set on 500,000 scenarios. In each scenario,
the macroeconomic system is simulated (see Figure 2), and the scenarios indicate the series
of transitions from arbitrary initial states to the terminal state sk. In addition,

(
Aj
)

j∈J+

denotes the action ak, where J+ = {1, 2, . . . , 24}. Actually, we consider 24 possible actions
for the control of the system, and the learning algorithm learns how and when to apply
each control action. Table 1 lists the norms of regulation errors and control inputs.
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Table 1. The norms of the regulation errors and control input.

State (sk) e(t) State (sk) e(t)

1 [−∞,−15] 13 [−0.15,−0.1]
2 [−15,−9] 14 [0.1, 0.15]
3 [−9,−8] 15 [0.15, 0.2]
4 [−8,−6.5] 16 [0.2, 0.5]
5 [−6.5,−5] 17 [0.5, 1]
6 [−5,−4] 18 [1, 1.5]
7 [−4,−3] 19 [1.5, 3]
8 [−3,−1.5] 20 [3, 4]
9 [−1.5,−1] 21 [4, 5]
10 [−1,−0.5] 22 [5, 8]
11 [−0.5,−0.2] 23 [8, 15]
12 [−0.2,−0.15] 24 [15, ∞]

These intervals are user-defined and could be changed. In the current study, we have
classified these intervals into 24 levels, and the controller will try to find an appropriate
control action for each of them. After convergence of the Q table, the agent will select an
action ak =

(
Aj
)

j∈J+ , where j = argmaxQk(sk, ·).
Furthermore, the learning rates that influence the value of the correction after each

iteration are considered as follows:

ηk(sk, ak) = ζ
Epi
Ep f

(12)

where ζ = 0.5 and Epi denote the number of the current episode, and Ep f is the maximum
value of the episode that we want the simulation to run. To control the system, two cases
have been considered. Namely, in the first simulation, we consider the maximum action
(maximum value for the controller) to be 40, and the minimum is equal to −40. In the
second simulation, the maximum and minimum values of actions are considered to be 30
and −30, respectively. Note that two different reinforcement learning agents have been
trained for each of the aforementioned cases.

For both cases, the desired value of income is considered to be two (Yd = 2), and the aim
is to reduce the absolute value of error (|e(t)| = |Y−Yd|) until it becomes equal to zero. The
reward is calculated based on Equation (4), in which ξ = −0.1. The discount factor θ = 0.7.
In order to reduce the convergence time, we set the control policy as: when |e(t)| < 0.1
Uc = K e(t) and parameter K is equal to ten, and other actions are considered as:

A = Umax[0, 0.001, 0.002,−0.002, 0.005,−0.005, 0.1
,−0.1, 0.2,−0.2, 0.3,−0.3, 0.4,−0.4, 0.6,−0.6, 0.7,

−0.7,−0.8, 0.8,−0.9, 0.9,−1, 1].
(13)

At first, we consider Umax = 40. The stabilized states of the macrosystem are depicted
in Figure 4. As is shown in this figure, the states of the system are stabilized in finite time
using the proposed controller.



Mathematics 2022, 10, 499 8 of 13

Mathematics 2022, 10, x FOR PEER REVIEW 8 of 13 
 

 

At first, we consider 𝑈𝑚𝑎𝑥 = 40. The stabilized states of the macrosystem are de-

picted in Figure 4. As is shown in this figure, the states of the system are stabilized in fi-

nite time using the proposed controller. 

Additionally, Figure 5 depicts the control input based on the applied optimal rein-

forcement learning-based controller. Based on the numerical simulation, using the pro-

posed controller, after a short period of time, the system is completely stabilized, and the 

states of the system reach their desired value. 

Here, we consider 𝑈𝑚𝑎𝑥 = 30. Actually, to investigate the proposed control in an-

other condition, we confine the controller with actions that have fewer values. Figure 6 

demonstrates the time history of the macroeconomic system by applying the designed 

control when 𝑈𝑚𝑎𝑥 = 30. In addition, the control input is displayed in Figure 7. The sim-

ulation results evidently corroborate that the proposed controller satisfies the expected 

performances. Moreover, the numerical simulations clearly corroborate that the pro-

posed controller effectively finds optimal actions for the control of the nonlinear macro-

economic system, even when we confined the control actions. It is noteworthy that the 

results of the examined model show that it is possible to control and stabilize the varia-

bles at constant values, e.g., Y (national income) = 2 and I (investments) = 0. This means 

simple reproduction, which is normal when investments are zero. 

In [20], a fuzzy controller has been presented for macroeconomic models. Although 

a fuzzy controller is a good candidate for economic systems, in that study, only some 

simple fuzzy rules are considered, and the controller is not robust against uncertainties 

and disturbances. In addition, that controller is only suitable for continuous systems, 

which is not the case in most studies on macroeconomic models. 

 

Figure 4: The time history of the macroeconomic system based on the proposed reinforcement 

learning controller when 𝑈𝑚𝑎𝑥  = 40. 

Figure 4. The time history of the macroeconomic system based on the proposed reinforcement
learning controller when Umax = 40.

Additionally, Figure 5 depicts the control input based on the applied optimal reinforce-
ment learning-based controller. Based on the numerical simulation, using the proposed
controller, after a short period of time, the system is completely stabilized, and the states of
the system reach their desired value.
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Here, we consider Umax = 30. Actually, to investigate the proposed control in an-
other condition, we confine the controller with actions that have fewer values. Figure 6
demonstrates the time history of the macroeconomic system by applying the designed
control when Umax = 30. In addition, the control input is displayed in Figure 7. The
simulation results evidently corroborate that the proposed controller satisfies the expected
performances. Moreover, the numerical simulations clearly corroborate that the proposed
controller effectively finds optimal actions for the control of the nonlinear macroeconomic
system, even when we confined the control actions. It is noteworthy that the results of
the examined model show that it is possible to control and stabilize the variables at con-
stant values, e.g., Y (national income) = 2 and I (investments) = 0. This means simple
reproduction, which is normal when investments are zero.
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Figure 7. The control input of the closed-loop system based on the proposed reinforcement learning
controller when Umax = 30.

In [20], a fuzzy controller has been presented for macroeconomic models. Although
a fuzzy controller is a good candidate for economic systems, in that study, only some
simple fuzzy rules are considered, and the controller is not robust against uncertainties and
disturbances. In addition, that controller is only suitable for continuous systems, which is
not the case in most studies on macroeconomic models.

Remark 1. The numerical results show that the proposed controller can be applied to nonlinear
economic systems. Since the controller can be used for tracking control and stabilization, from an
economic point of view, this method is useful to remove business cycles, even when these systems are
not chaotic and have deterministic results.

Remark 2. The nonlinear Goodwin model and other models that are similar to it are the most
plausible in science, but they have serious limitations that the researcher must be aware of. There are
differences between the data generated by Goodwin’s simple nonlinear model and actual macroeco-
nomic data. The former is purely deterministic, while the latter is burdened with significant noise
and may be complex. In the current study, we only use this model to investigate the developed
control approach. Consequently, applying the developed method to a real-world economic system
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will provide better insight into the control of the macroeconomic model, and it is the next step for
this study. Hence, we will consider it as a future direction for our study.

6. Conclusions

The control and stabilization of macroeconomic systems using the reinforcement
learning-based controller were studied. The proposed control scheme uses a reinforcement
learning algorithm to find optimal control actions. Based on the Q-learning algorithm, the
best optimal action for the system was obtained. The proposed method can control the
system using restricted actuation, and, this way, it provides highly effective performance
and optimal strategies using possible actions. Through numerical simulation, the adequate
performance of the proposed reinforcement learning-based controllers was demonstrated
by using different numerical simulations. The possibility of controlling the behavior of
the macroeconomic system using the proposed reinforcement learning-based controller
suggests the extension of the application of the reinforcement learning algorithms to the
control of other nonlinear economic systems. Future studies will also be devoted to a
complete comparison with other learning-based strategies, as well as alternative algorithms
from the Q-learning method.
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