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Abstract: In the class of optimal control problems for quantum systems, operator optimality con-
ditions for control are constructed in the form of fixed-point problems in the control space. The
equivalence of the obtained operator optimality conditions to the well-known Pontryagin maximum
principle is shown. Based on the obtained operator forms of optimality conditions, new iterative
methods for finding extreme equations satisfying the maximum principle are developed. A compara-
tive analysis of the effectiveness of the proposed operator methods of the maximum principle with
known methods is carried out on model examples of optimization of quantum systems.
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optimization method

1. Introduction

Mathematical formulations of topical problems related to the optimal control of
quantum systems have been considered in the works of many researchers [1–6]. In the
works of V.F. Krotov, V.I. Gurman, and of their followers [7–9], there are studied classes
of controlled quantum systems described by ordinary differential controls linear in state
and control with nonlinear optimality criteria. In [7], the main features of the selected
class of problems are indicated. The first feature is the high dimension of the system
state vector (n ≈ 104 − 106). The second feature is the absence of restrictions on the state,
including terminal restrictions. The third feature is the use of a scalar control function
characterizing the electric field. In this class, the search for an optimal solution based
on standard necessary optimality conditions in the form of a boundary value problem of
the maximum principle [10,11] causes significant difficulties due to the large dimension.
In [7,8], the global Krotov method [12] was used as a tool for finding solutions to problems,
which was compared in efficiency with the known gradient method.

In this paper, we consider and modify a new approach to finding a solution in the
considered class of problems. This approach is based on the representation of optimality
conditions for control in the form of operator problems about a fixed point in the space of
admissible controls. This representation makes it possible to apply and modify the known
methods of fixed points to find solutions to the considered problems related to the optimal
control of quantum systems.

The new fixed-point approach has been used and developed for more than ten years for
various classes of continuous, discrete, and discrete-continuous optimal control problems,
including those involving terminal and phase constraints, mixed control functions and
parameters, unfixed control process termination time, and other features.

In [13], the fixed-point approach is used to represent conditions for nonlocal improve-
ment of control in a general class of nonlinear optimal control problems with control
functions and parameters. In [14], the fixed-point approach for representing conditions
for the nonlocal improvement of control is modified to the class of problems considered
in [7–9]. The modification of the approach consists of taking into account the characteristic
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property of the singularity of the solutions of the problems under consideration, due to the
above features.

The paper [15] describes the fixed-point approach for representing optimality con-
ditions for control in a general class of nonlinear optimal control problems with control
functions. In this paper, this approach for representing optimality conditions for control is
modified and studied taking into account the characteristic property of the singularity of
solutions in the considered class of optimization problems for quantum control systems.

2. Conditions for Optimality of Control

To illustrate the proposed fixed-point approach, we consider a model class of optimal
control problems for quantum systems with a quadratic optimality criterion similar to
the paper [14], in which new operator forms of optimality conditions have a relatively
simple description:

ẋ(t) = (A + u(t)B)x(t), x(t0) = x0, u(t) ∈ U ⊂ R, t ∈ T = [t0, t1], (1)

Φ(u) = 〈x(t1), Lx(t1)〉 → inf
u∈V

. (2)

The vector x(t) = (x1(t), . . . , xn(t)) describes the state of the system. The control u(t),
t ∈ T is modeled by a piecewise continuous scalar function with values in a compact and
convex set U ⊂ R. The set V denotes the corresponding set of admissible controls. The
matrices A, B and L have real coefficients. The matrix L is symmetric. The initial state x0

and the time interval T have fixed values.
The Pontryagin function with a conjugate variable ψ in problem (1) and (2) has

the form:
H(ψ, x, u, t) = 〈ψ, (A + uB)x〉, ψ ∈ Rn.

The standard conjugate system is represented as:

ψ̇(t) = −(AT + u(t)BT)ψ(t), t ∈ T, ψ(t1) = −2Lx(t1). (3)

Let v ∈ V. Let us introduce the following notation:

- x(t, v), t ∈ T, the solution of the system (1) for u(t) = v(t);
- ψ(t, v), t ∈ T, the solution of the standard conjugate system (3) for x(t) = x(t, v),

u(t) = v(t).

Additionally, we will use the notation PY for the projection operator on to a set Y ⊂ Rk

in the Euclidean norm:

PY(z) = arg min
y∈Y

(‖y− z‖), z ∈ Rk.

The projection operation is characterized by an important property that can be repre-
sented as an inequality:

〈y− PY(z), z− PY(z)〉 ≤ 0, y ∈ Y.

The known [10,11] necessary optimality conditions for an admissible control (maxi-
mum principle and differential maximum principle) in problems (1) and (2) are equivalent.

The condition of the maximum principle for control u ∈ V can be represented in
the form:

u(t) = arg max
w∈U
〈ψ(t, u), Bx(t, u)〉w, t ∈ T. (4)

The condition of the differential maximum principle using the projection operation
can be written as the following relation with the parameter α > 0:

u(t) = PU(u(t) + α〈ψ(t, u), Bx(t, u)〉), t ∈ T. (5)
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To fulfill the maximum principle condition (4), it suffices to check condition (5) for
at least one α > 0. Conversely, condition (4) implies the fulfillment of condition (5) for all
α > 0.

We define the mapping u∗ as follows:

u∗(ψ, x) = arg max
w∈U
〈ψ, Bx〉w, ψ ∈ Rn, x ∈ Rn.

We introduce a mapping uα with a parameter α > 0 using the relation:

uα(ψ, x, w) = PU(w + α〈ψ, Bx〉), x ∈ Rn, ψ ∈ Rn, w ∈ U.

Using the introduced mappings, the maximum principle condition (4) can be writ-
ten as:

u(t) = u∗(ψ(t, u), x(t, u)), t ∈ T.

The condition of the differential maximum principle (5) takes the following form:

u(t) = uα(ψ(t, u), x(t, u), u(t)), t ∈ T. (6)

The well-known [10,11] approach to the search for extremal controls, i.e. satisfying
the necessary optimality conditions, is the solution of the boundary value problem of the
maximum principle. This problem in the considered classes, classes (1) and (2), takes the
following form:

ẋ(t) = (A + u∗(ψ(t), x(t))B)x(t), x(t0) = x0, (7)

ψ̇(t) = (−AT − u∗(ψ(t), x(t))BT)ψ(t), ψ(t1) = −2Lx(t1). (8)

Let the pair (x(t), ψ(t)), t ∈ T, be a solution to the boundary value problems (7) and
(8). Let us construct the output control v(t) = u∗(ψ(t), x(t)), t ∈ T. Then, by construction,
we obtain the relations:

x(t) = x(t, v), ψ(t) = ψ(t, v), t ∈ T.

Consequently, the control v(t) satisfies condition (4).
Conversely, let the control v ∈ V be a solution to Equation (4). Let us form a pair of

functions (x(t, v), ψ(t, v)), t ∈ T. Then, by definition, these functions satisfy the boundary
value problem (7) and (8).

Thus, the boundary value problems (7) and (8) are equivalent to the maximum princi-
ple condition (4).

Difficulties in solving the boundary value problems of the maximum principle, (7)
and (8), in the general case are associated with the possible discontinuity and many
meanings of the right-hand sides of the problem for the variables x, ψ. Even in the case
of smoothness and uniqueness of the right-hand sides of the boundary value problem (7)
and (8), its numerical solution by known methods (shooting method, linearization method,
and finite difference method) [11] is computationally unstable due to the presence of
positive real values of the eigenvalues of the corresponding Jacobian matrices.

In this paper, we consider a new approach to the search for extremal controls based
on the transition from the boundary value problem of the maximum principle in the state
space to equivalent operator problems on the fixed point of the maximum principle in the
space of controls.

3. Operator Forms of the Maximum Principle

We define three mappings, X, Ψ and V∗, using the following relations:

X(v) = x, v ∈ V, x(t) = x(t, v), t ∈ T,

Ψ(v) = ψ, v ∈ V, ψ(t) = ψ(t, v), t ∈ T,
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V∗(ψ, x) = v∗, ψ ∈ C(T), x ∈ C(T), v∗(t) = u∗(ψ(t), x(t)), t ∈ T,

where C(T) is the space of functions continuous on T.
Using the above mappings, the maximum principle condition (4) can be represented

as an operator equation in the form of a fixed-point problem in the control space:

v = V∗(Ψ(v), X(v)) = G∗1 (v), v ∈ V. (9)

Construct new operator equations in the form of fixed-point problems equivalent to
condition (4). Introduce the mapping X∗ as follows:

X∗(ψ) = x, ψ ∈ C(T), x ∈ C(T).

Here x(t), t ∈ T, is the solution of the special Cauchy problem:

ẋ(t) = (A + u∗(ψ(t), x(t))B)x(t), x(t0) = x0.

Based on the introduced mapping X∗, consider the following operator equation:

v = V∗(Ψ(v), X∗(Ψ(v))) = G∗2 (v), v ∈ V. (10)

We define the following mapping:

Ψ∗(x) = ψ, x ∈ C(T), ψ ∈ C(T).

Here ψ(t), t ∈ T is the solution to the special Cauchy problem:

ψ̇(t) = (−AT − u∗(ψ(t), x(t))BT)ψ(t), ψ(t1) = −2Lx(t1).

Consider the operator equation:

v = V∗(Ψ∗(X(v)), X(v)) = G∗3 (v), v ∈ V. (11)

Following the work [15], the operator equations, Equations (9)–(11), are equivalent to
the set of admissible controls. Thus, we obtain the following statement:

Theorem 1. Operator fixed-point problems (9)–(11) are equivalent to the boundary value problems
of the maximum principle, (7) and (8).

The condition of the maximum principle in projection form (5) can also be represented
in the form of equivalent operator equations on the set of admissible controls.

Introduce an additional operator Vα, α > 0, by the relation:

Vα(ψ, x, v) = vα, ψ ∈ C(T), x ∈ C(T), v ∈ V,

vα(t) = uα(ψ(t), x(t), v), t ∈ T.

Define the operator Xα, α > 0:

Xα(ψ, v) = xα, ψ ∈ C(T), v ∈ V, xα(t) = xα(t, ψ, v), t ∈ T,

where xα(t, ψ, v), t ∈ T, is the solution of the Cauchy problem:

ẋ(t) = (A + uα(ψ(t), x(t), v(t))B)x(t), x(t0) = x0.

Construct the operator Ψα, α > 0:

Ψα(x, v) = ψα, x ∈ C(T), v ∈ V, ψα(t) = ψα(t, x, v),
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where ψα(t, x, v), t ∈ T, is the solution of the conjugate Cauchy problem:

ψ̇(t) = (−AT − uα(ψ(t), x(t), v(t))BT)ψ(t), ψ(t1) = −2Lx(t1).

Consider three operator equations in the form of fixed-point problems:

v = Vα(Ψ(v), X(v), v) = Gα
1 (v), v ∈ V, α > 0, (12)

v = Vα(Ψ(v), Xα(Ψ(v), v), v) = Gα
2 (v), v ∈ V, α > 0, (13)

v = Vα(Ψα(X(v), v), X(v), v) = Gα
3 (v), v ∈ V, α > 0. (14)

Similarly, following [15], these equations are equivalent to the set of admissible con-
trols. Thus, the following statement holds:

Theorem 2. Projection operator fixed-point problems (12)–(14) are equivalent to the boundary
value problem of the maximum principle (7) and (8).

Let us note the following important features of the constructed projection problems
on a fixed point.

1. Projection control operators, due to the properties of the projection operation, are
continuous and satisfy the Lipschitz condition, in contrast to discontinuous and generally
multivalued control operators based on the maximum operation in problems (9)–(11).

2. The search for extremal controls, which are solutions to the projection problems on
a fixed point, (12)–(14), can be carried out for any given values of the projection parameter
α > 0, including sufficiently small values.

These features of projection problems on a fixed point are essential factors for increas-
ing the efficiency of the numerical search for extremal controls.

4. Operator Methods of the Maximum Principle

We consider the general fixed-point problem for an operator GE : VE → VE, acting on
a set VE in a complete normalized space E with a norm ‖ · ‖E,

v = GE(v), v ∈ VE.

To solve it numerically, one can apply the well-known simple iteration method with
an index k ≥ 0, which has the form:

vk+1 = GE(vk), v0 ∈ VE.

The convergence of the iterative process can be analyzed using the well-known
principle of compressive mappings [16].

Each operator equation from relations (9)–(14) can be considered as a fixed-point
problem on the set of admissible controls in the following general form:

v = G(v), v ∈ V. (15)

To solve the problem (15), an iterative process with the index k ≥ 0 is proposed:

vk+1 = G(vk), v ∈ V. (16)

As an illustration of processes of the form (16), consider iterative processes for search-
ing for extremal controls based on projection problems about a fixed point of the maximum
principle (12)–(14), which, respectively, take the form with index k ≥ 0:

vk+1 = Vα(Ψ(vk), X(vk), vk) = Gα
1 (v

k), v0 ∈ V, α > 0, (17)

vk+1 = Vα(Ψ(vk), Xα(Ψ(vk), vk), vk) = Gα
2 (v

k), v0 ∈ V, α > 0, (18)
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vk+1 = Vα(Ψα(X(vk), vk), X(vk), vk) = Gα
3 (v

k), v0 ∈ V, α > 0. (19)

In the considered projection methods of the maximum principle, the projection pa-
rameter α > 0 is fixed in the iterative process of successive approximations of the control.

The complexity of implementing one iteration of each of the processes (17)–(19) is two
Cauchy problems for phase and conjugate variables.

Indeed, this is obvious for the process (17). In this case, process (17) is written in the
pointwise form as:

vk+1(t) = uα(ψ(t, vk), x(t, vk), vk(t), t), t ∈ T.

For process (18), at each k-th iteration with k ≥ 0, we obtain the following.
After calculating the solution of the Cauchy problem ψ(t, vk), t ∈ T, we find the

solution x(t) , t ∈ T of the special Cauchy problem for the phase system:

ẋ(t) = (A + uα(ψ(t, vk), x(t), vk(t))B)x(t), x(t0) = x0.

Simultaneously, together with the solution of the Cauchy problem, we determine the
output control according to the rule:

vk+1(t) = uα(ψ(t, vk), x(t), vk(t)), t ∈ T.

Then, by construction, we obtain the relation:

x(t) = x(t, vk+1), t ∈ T.

By of this equality, the iterative process (18) in pointwise form can be written in the
following implicit form:

vk+1(t) = uα(ψ(t, vk), x(t, vk+1), vk(t)), t ∈ T. (20)

Similarly, at the k-th iteration of the process (19), after calculating x(t, vk), t ∈ T, we
find the solution ψ(t), t ∈ T, of the special Cauchy problem for the conjugate system:

ψ̇(t) = (−AT − uα(ψ(t), x(t, vk), vk(t))BT)ψ(t), ψ(t1) = −2Lx(t1, vk).

Simultaneously the output control is constructed according to the rule:

vk+1(t) = uα(ψ(t), x(t, vk), vk(t)), t ∈ T.

The theoretical conditions for the convergence of iterative processes (17)–(19) for
sufficiently small projection parameters α > 0 can be substantiated similarly to [17] based
on the formulation of requirements in problems (1) and (2), ensuring the application of the
indicated principle of compressive mappings in the complete space of continuous controls
or the extended complete space of measurable controls:

V ⊂ VL = {v ∈ L∞(T) : v(t) ∈ U, t ∈ T}

with the norm ‖v‖∞ = ess sup
t∈T
‖v(t)‖, v ∈ VL.

Unlike the standard gradient projection method, at each iteration of the proposed
projection methods of the maximum principle, relaxation for the objective functional is
not guaranteed.

In contrast to the global Krotov method, at each iteration of the proposed projection
methods, Cauchy problems with a continuous and uniquely defined right-hand side
are solved.

Let us single out other features of the proposed projection methods that are important
for increasing their computational efficiency:
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- The non-locality of successive approximations of control, due to the fixed choice of
the projection parameter α > 0;

- The absence of the operation of varying control in the vicinity of the current approxi-
mation to provide improved control, which is characteristic of gradient methods;

- The possibility of obtaining extreme controls for sufficiently small values of the projection
parameter α > 0, which ensure the fundamental convergence of iterative processes.

Simple iteration methods for solving fixed-point problems (9)–(11) based on the
maximization operation have a similar structure. In particular, the iterative process with
the index k ≥ 0 for searching for extremal controls based on the fixed-point problem (9)
takes the form:

vk+1 = V∗(Ψ(vk), X(vk)) = G∗1 (v
k), v0 ∈ V, α > 0.

In pointwise form, this process is written as:

vk+1(t) = u∗(ψ(t, vk), x(t, vk)), t ∈ T. (21)

Note that method (21) is essentially equivalent to the well-known method of successive
approximations of phase and conjugate variables [18] for solving the boundary value
problems of the maximum principle, (7) and (8).

In contrast to the global Krotov method, at each iteration of the considered method (21),
two simple Cauchy problems with a precomputed control are solved. In the Krotov method,
at each iteration, in the general case, a special Cauchy problem with a discontinuous and
multivalued right-hand side is solved.

5. Examples

The main feature of the considered class of optimal control problems for quantum
systems is the property of singularity of extremal controls. This property is expressed in
the existence of singular time intervals of non-zero measure for extremal controls, on which
the derivative of the Pontryagin function becomes equal to zero:

Hu(ψ(t, u), x(t, u), u(t), t) = 〈ψ(t, u), Bx(t, u)〉 = 0.

On such singular time intervals, it becomes impossible to determine the values of the
extremal control from the condition of the maximum principle (4).

The proposed operator methods of the maximum principle, taking into account the
indicated property of singularity, are modified in specific examples under consideration
and compared in terms of computational efficiency with known methods.

The computational implementation of the proposed methods of the maximum princi-
ple is characterized by the following features.

The numerical solution of phase and conjugate Cauchy problems was performed by
the Runge–Kutta–Werner method of variable (5–6) order of accuracy using the DIVPRK
program of the IMSL Fortran PowerStation 4.0 library [19]. The values of the controlled,
phase, and conjugate variables were stored in the nodes of a fixed uniform grid Th with a
sampling step h > 0 on the interval T. In the intervals between neighboring grid nodes
Th, the control value was assumed to be constant and equal to the value in the left node.
The numerical calculation of the fixed-point problem was carried out before the condition
was fulfilled:

max{|vk+1(t)− vk(t)|, t ∈ Th} ≤ εm,

in which εm > 0 is the given accuracy of calculating the fixed-point problem.

Example 1. (projection methods (17) and (18)).
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The well-known model problem of control of the system of spins of quantum particles is
considered [20], which can be represented in the following form:

Φ(u) = 1− 〈x(t1), Lx(t1)〉 → in f ,

L =


a2

1 + b2
1 a1a2 + b1b2 0 a1b2 − b1a2

a1a2 + b1b2 a2
2 + b2

2 a2b1 − b2a1 0
0 a2b1 − b2a1 b2

1 + a2
1 b1b2 + a1a2

a1b2 − b1a2 0 b1b2 + a1a2 b2
2 + a2

2

,

ẋ1(t) = u(t)x3(t) + x4(t), ẋ2(t) = x3(t)− u(t)x4(t),

ẋ3(t) = −u(t)x1(t)− x2(t), ẋ4(t) = −x1(t) + u(t)x2(t),

x1(0) =
1√
2

, x2(0) =
1√
2

, x3(0) = 0, x4(0) = 0, t ∈ T = [0, t1], t1 = 1.5,

a1 = 0.6, b1 = −0.3, a2 = 0.1, b2 =
√

0.54.

The vector x(t) describes the state of the quantum system, the function u(t) characterizes the
effect of an external field, u(t) ∈ U = [−30, 30], t ∈ T .

In [20], to calculate the optimal control problem under consideration, the global Krotov method
was used, the efficiency of which was compared with the well-known gradient method. The control
determined from physical considerations was chosen as the initial control approximation for the
specified iterative methods:

u(t) = tg(2γ(2t− 1.5)), t ∈ T, γ = −1
3

arctg(−30).

The Pontryagin function in the problem has the form:

H(ψ, x, u, t) = ψ1(ux3 + x4) + ψ2(x3 − ux4) + ψ3(−ux1 − x2) + ψ4(−x1 + ux2).

The standard conjugate system is written as:

ψ̇1(t) = u(t)ψ3(t) + ψ4(t), ψ̇2(t) = ψ3(t)− u(t)ψ4(t), t ∈ T,

ψ̇3(t) = −u(t)ψ1(t)− ψ2(t), ψ̇4(t) = u(t)ψ2(t)− ψ1(t), t ∈ T,

ψ1(t1) = 2(a2
1 + b2

1)x1(t1) + 2(a1a2 + b1b2)x2(t1) + 2(a1b2 − b1a2)x4(t1),

ψ2(t1) = 2(a1a2 + b1b2)x1(t1) + 2(a2
2 + b2

2)x2(t1) + 2(a2b1 − b2a1)x3(t1),

ψ3(t1) = 2(a2b1 − b2a1)x2(t1) + 2(b2
1 + a2

1)x3(t1) + 2(b1b2 + a1a2)x4(t1),

ψ4(t1) = 2(a1b2 − b1a2)x1(t1) + 2(b1b2 + a1a2)x3(t1) + 2(b2
2 + a2

2)x4(t1).

The fixed-point projection problems (12) and (13) have the same pointwise form:

v(t) = PU(v(t) + α(ψ1(t, v)x3(t, v)− ψ2(t, v)x4(t, v)− ψ3(t, v)x1(t, v) + ψ4(t, v)x2(t, v))).

The explicit iterative method of the maximum principle (17) for solving this fixed-point problem
at index k ≥ 0 has a pointwise form:

vk+1(t) = PU(vk(t) + α(ψ1(t, vk)x3(t, vk)− ψ2(t, vk)x4(t, vk)

− ψ3(t, vk)x1(t, vk) + ψ4(t, vk)x2(t, vk))).

Accordingly, the implicit iterative method (20) at index k ≥ 0 takes the form:

vk+1(t) = PU(vk(t) + α(ψ1(t, vk)x3(t, vk+1)− ψ2(t, vk)x4(t, vk+1)

− ψ3(t, vk)x1(t, vk+1) + ψ4(t, vk)x2(t, vk+1))).



Mathematics 2022, 10, 507 9 of 14

The calculation was carried out on a sampling grid with a step h = 10−5 and the criterion for
stopping the calculation εm = 10−3.

Table 1 shows the comparative results of the first four iterations of improving the
objective functional with an index s ≥ 0, starting from the starting control v0 = u specified
in [20]. We compare the results of the explicit projection method (PPM1) and the implicit
projection method (PPM2) for the parameter α = 10−2 with known [20] calculation data by
the global method ( GlM) and the gradient method (GRM).

Table 1. The comparative results of the first four iterations.

Number s Φ(us) GlM Φ(us) GrM Φ(vs) PPM1 Φ(vs) PPM2

0 0.7681 0.7681 0.7680 0.7680
1 0.1401 0.6911 0.6705 0.6610
2 0.0040 0.6107 0.4049 0.3881
3 0.0021 0.5421 0.2404 0.2175
4 0.0015 0.4913 0.1718 0.1191

Figure 1 shows the final computational control v1(t), t ∈ T obtained by the PPM1
method with the number of control improvement iterations equal to 14, and the value of
the functional Φ∗ ≈ 0.001421.

Figure 1. u—starting control; v1—computational control obtained by the PPM1 method.

Figure 2 shows the final computational control v2(t), t ∈ T, obtained by the PPM2
method with the number of control improvement iterations equal to 26 and the value of
the functional Φ∗ ≈ 0.000704.

Figure 2. u—starting control; v2—computational control obtained by the PPM2 method.

In [20], the final calculated value of the functional Φ∗ ≈ 0.000952 obtained by the
global Krotov method at the ninth iteration of control improvement is indicated.
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Thus, within the framework of the considered example, the proposed projection
methods of the maximum principle allow one to achieve similar results in terms of the
value of the functional with the global Krotov method. The methods differ in the number
of calculated control improvement iterations. However, at each iteration of the global
method, it is necessary to solve the complex Cauchy problem for phase variables with
a special right-hand side based on a multivalued and discontinuous operation to the
maximum for calculating control values. In the proposed fixed-point method, at each
iteration, much simpler Cauchy problems with a uniquely defined and continuous right-
hand side are solved, which makes the considered projection methods of the maximum
principle much easier to implement than the global Krotov method. Due to the simplicity
of implementation and easy adjustment of the convergence, controlled by the choice of
the projection parameter α > 0, these methods can be successfully used to obtain practical
initial approximations for subsequent refinement by other iterative methods for solving
optimal control problems of the class under consideration.

Example 2. (method (21)).
To illustrate the work of the maximum principle method based on the maximization operation (21),

the problem from the previous example is considered.
The corresponding fixed-point problem of the maximum principle (9) has the following form:

v(t) = u∗(ψ(t, v), x(t, v)), t ∈ T,

u∗(ψ, x) =


+30, g(ψ, x) > 0,
−30, g(ψ, x) < 0,
w ∈ U, g(ψ, x) = 0,

where g(ψ, x) = ψ1x3−ψ2x4−ψ3x1 +ψ4x2. The iterative process (21) for solving this fixed-point
problem at k ≥ 0, respectively, takes the form:

vk+1(t) = u∗(ψ(t, vk), x(t, vk)), t ∈ T,

with the above switching function g(ψ, x).
In the case of the existence of a time interval [Θ1, Θ2] ⊂ T of a non-zero measure, where

g(ψ(t), x(t)) = 0, t ∈ [Θ1, Θ2], the control u∗ is called singular on this interval. Singular
controls are determined by the sequential differentiation by an argument t ∈ T of the identity
g(ψ(t), x(t)) = 0 taking into account the phase and conjugate systems. In practical calculations,
similarly to the work [20], the equality of the switching function g(ψ, x), to zero, which determines
a singular mode, is understood in the sense of belonging to some small ε, neighborhood of zero, where
ε > 0. Thus, we obtain the following practical calculation formula for the simple iteration method:

vk+1(t) =


+30, g(ψ(t, vk), x(t, vk)) > ε,
−30, g(ψ(t, vk), x(t, vk)) < −ε,
w ∈ U, |g(ψ(t, vk), x(t, vk))| ≤ ε.

If at the time t the condition is satisfied:

|g(ψ(t, vk), x(t, vk))| ≤ ε,

the value w ∈ U is determined by the following rule.
The value is calculated:

gk = g(ψ(t + δ, vk), x(t + δ, vk)),

for a given δ > 0.
If gk > ε, then w = 30.
If gk < −ε, then w = −30.
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If |gk| ≤ ε, then the value w ∈ U is determined by the special control calculation rule
as follows.

The value is calculated as:

ak = −ψ1(t, vk)x4(t, vk) − ψ2(t, vk)x3(t, vk) + ψ3(t, vk)x2(t, vk) + ψ4(t, vk)x1(t, vk).

If |ak| > ε, then

1. The value is calculated as ck =
bk
ak

, where:

bk = −ψ1(t, vk)x3(t, vk) + ψ2(t, vk)x4(t, vk) + ψ3(t, vk)x1(t, vk) − ψ4(t, vk)x2(t, vk).

If |ck| ≤ 30, then the value w = ck.
If |ck| > 30, then go to step 2.
If ak ≤ ε, then:

2. The value is calculated as

dk = ψ1(t, vk)x2(t, vk) − ψ2(t, vk)x1(t, vk) + ψ3(t, vk)x4(t, vk) − ψ4(t, vk)x3(t, vk).

If |dk| > ε, then the value w = 0.
If |dk| ≤ ε, then the value w ∈ U is chosen randomly from the interval U.
In the numerical implementation of the algorithm, the value δ > 0 chosen equal to the grid

step h > 0.

Table 2 shows the comparative results of the calculation by the considered maximum
principle method (MPM) for the first four iterations of improving the functional with an
index s ≥ 0, starting from the above starting control, with the known [20] calculation data
by the global method (GlM) and the gradient method (GrM). For an adequate comparison of
the methods, the ε-neighborhood of zero was determined by the value ε = 0.001, specified
in [20].

Table 2. The comparative results of the calculation by the considered maximum principle method for
the first four iterations.

Number s Φ(us) GlM Φ(us) GrM Φ(vs) MPM

0 0.7681 0.7681 0.7680
1 0.1401 0.6911 0.5714
2 0.0040 0.6107 0.3612
3 0.0021 0.5421 0.1904
4 0.0015 0.4913 0.1380

In [20], the final calculated value of the functional Φ∗ ≈ 0.000952, obtained by the
global method at the ninth iteration of control improvement, is indicated. In this case, a
singular section of the final control, determined according to the rules [20], is the interval
[0.0667, t1].

Figure 3 shows the final computational control v3(t), t ∈ T, obtained by the MPM
method, with the achieved value of the functional Φ∗ ≈ 0.000989 and the number of
control improvement iterations equal to 18. A singular section of the final control with the
discretization grid accuracy is [0.0693, 1.4717].

Figure 4 shows the final computational control v4(t), t ∈ T, obtained by the MPM
method from the initial approximation v0 = u1, which was obtained by the PPM1 method
in example 1. In this case, the value of the functional is Φ∗ ≈ 0.000907 with the number
of control improvement iterations equal to 7. A singular section of the final control is
approximately equal to [0.0698, 1.4609].
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Figure 3. u—starting control, v3—computational control obtained by the MPM method.

Figure 4. u1—starting control; v4—computational control obtained by the MPM method.

Figure 5 shows the final computational control v5(t), t ∈ T, obtained by the MPM
method from the initial approximation v0 = u2, which was obtained by the PPM2 method
in example 1. In this case, the value of the functional is Φ∗ ≈ 0.000620, with the number
of control improvement iterations equal to 3. A singular section of the final control is
approximately equal to [0.0751, 1.4512].

Figure 5. u2—starting control; v5—computational control obtained by the MPM method.

The calculations performed within the framework of the model problem show a high
quantitative and qualitative efficiency of the implicit projection method of the maximum
principle (20), which makes it possible to accurately calculate complex singular sections
of extreme controls, which are typical in optimal control problems for quantum systems
of the class under consideration. The main feature of this method, which is important for
increasing efficiency, is the solution at each iteration of the Cauchy problems with a special
uniquely defined and continuous right-hand side, in contrast to the global Krotov method.

6. Conclusions

In the considered class of optimal control problems for quantum systems, new operator
forms of the maximum principle are proposed in the form of fixed-point problems in the
control space, which make it possible to effectively apply and modify the well-known
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apparatus of the theory and methods of fixed points for constructing iterative algorithms
to find extremal controls.

The developed iterative operator methods for searching for extremal controls are
characterized by the following properties:

1. computational stability, in contrast to standard methods for solving the boundary
value problem of the maximum principle;

2. nonlocality of successive control approximations;
3. the absence of a laborious procedure of needle or convex variation of the control in

a small neighborhood of the considered approximation, which is typical for gradi-
ent methods;

4. the numerical solution of the Cauchy problems with a continuous and uniquely
defined right-hand side at each iteration of the constructed projection methods, in
contrast to the well-known global Krotov method.

The indicated properties of the proposed methods for searching for extremal controls
are important factors for increasing the efficiency of the numerical solution of optimal
control problems for quantum systems of the class under consideration.

In quantum systems with multidimensional control, the structures of the proposed
operator methods of the maximum principle and the well-known global Krotov method
remain the same, but the advantage of the indicated properties of the proposed projec-
tion methods of the maximum principle increases significantly in comparison with the
global method.
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