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Abstract: In this paper, a fuzzy (F) proportional (P)–integral (I)–derivative (D) (PID) (FPID) controller
optimized with a water cycle algorithm is proposed for load frequency control of a multi-area multi-
fuel (MAMF) power system. The MAMF system has the realistic feature of communication time
delays (CTDs), in order to conduct an analysis nearer to realistic practice. Initially, the MAMF system
is analyzed when subjected to a step load disturbance (SLD) of 10% on area 1. The superiority of the
fuzzy PID controller is revealed upon comparing it with PID plus double derivative (DD) (PIDD)
and PID controllers. The MAMF system is investigated with and without CTDs, to demonstrate their
impact on system performance. Later, an additional HVDC line is incorporated in parallel with the
existing AC line for further enhancement of the system performance. Finally, the MAMF system is
targeted with random loading to validate the robustness of the presented control scheme.

Keywords: FPID controller; stability analysis; frequency regulation; MAMF power system; CTDs

1. Introduction

In modern times, frequency regulation is the most indispensable task in power systems,
due to the rapid growth in load demand, integration of several renewable conversion units,
formation of microgrids, the emergence of unintentional time delays and power system
intricacy. Frequency fluctuations arise because of the real power gap between demand
and generation. Necessary steps must be taken to minimize the real power mismatch,
in order to hold the power system frequency within the specified range. This action is
governed by the load frequency controller (LFC), which plays a vital role in the automatic
generation control (AGC) of the interconnected power system (IPS). The IPS comprises
several areas with different generation units representing diverse generation sources that
are running in synchronism and are connected through transmission lines in the form of tie
lines. These lines facilitate the real power exchange between deficit and surplus generation
areas. Power interchange between the control areas via tie lines should be done without
violating the limits. Otherwise, the lines reach the maximum feasible thermal limit, leading
to line outages and hence affecting the stability of the IPS.
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The LFC safeguards the IPS stability by regulating the system frequency and power
exchange via tie lines, to prevent violation of the specified range by varying generation
unit operating points. The concept of the LFC was proposed by Cohen [1] using tie-line
bias control in the year 1957. Later, Elgerd and Fosha [2] introduced classical controllers
as frequency regulators for the multi-area thermal system, in the year 1970. Since then,
researchers have concentrated more on designing frequency regulators for the IPS, to
maintain stability. A literature survey discloses the usage of different power system models
comprised of thermal–thermal units, hydrothermal units and a combination of conventional
and renewable-energy-based systems with and without considering the constraints of non-
linearity such as the governor dead band (GDB) and the generation rate constraint (GRC),
etc. These are consolidated in [3]. Irrespective of the power system model, different
classical control strategies such as PI fine-tuned using a simulated annealing (SA)/genetic
algorithm (GA) [4], PI/PID [5] based on the grey wolf optimizer (GWO), PID [6] with
a harmony search algorithm (HSA), PI/PID [7] using a backtracking search algorithm
(BSA), imperialist competitive approach (ICA)-based [8] PI/PID, ant lion optimizer (ALO)-
based [9] PID with double derivative (DD) gain PIDD, PID tuned with differential evolution
(DE) [10], PID using an elephant herd optimizer (EHO) [11], PID optimized with a cuckoo
search algorithm (CSA) [12], firefly algorithm (FA)-based PI [13], whale optimizer (WO)-
based [14] PID, falcon optimization algorithm (FOA)-tuned PID/PIDD [15], PID [16] based
on a grasshopper optimization approach (GOA) and other hybrid (H) algorithms such
as the artificial field (HAEFA) approach [17], HFA–pattern search (PS) method [18], DE–
AEFA [19] etc., are reported in the literature. However, classical regulators are not sufficient
to handle power system models with the non-linearity features of GRC, GDB and time
delays. Some modified classical controllers such as PID with filter (N) PIDN [20] and other
fractional order (FO) FOPI–FOPD controllers [21] have been proposed by researchers using
some of the newest optimization algorithms to overcome the problem stated above, but
only to a certain extent.

Fuzzy logic controllers (FLCs) are proven to be more efficacious in handling IPS
models, especially with non-linearity constraints. However, selecting the shape of the
membership functions (MFs) and the framing of the rule-based interface engine require
the utmost care; otherwise, the FLC may worsen the IPS performance. In general, se-
lection of MFs is based on pragmatic rules, which are never optimal. Thus, various
optimization methods have been implemented to select the most suitable parameters
for FLCs. Hence, fuzzy-aided classical controllers are gaining momentum, especially in
the power system optimization domain, compared to classical controllers alone. Differ-
ent fuzzy (F)-aided classical controllers that have been reported in the recent literature,
such as bacteria foraging optimization (BFO) [22]/ICA [23]/tuned FPI, DEPS-tuned [24]
FPI/FPID, Type-II FPID [25] based on the GWO sine cosine approach, modified DE-
approach-based FPID [26], FA-tuned FPID [27], symbiotic organism search (SOS)-based
FPID [28], SOA-optimized FOFPID [29], etc., are available.

WCA is a recent meta-heuristic and population-based search method which mimics
the movement of the water cycle on the Earth’s surface. WCA is more efficient for solving
constrained optimization problems and is more efficient compared to the other population-
and stochastic-based methods explained briefly in [30]. In [25], it was observed that WCA-
tuned controller parameters are more robust for handling IPSs with parametric uncertainty
and that they show better stability. Implementation of WCA in LFCs has not been much
studied in the recent literature; moreover, its robustness and ability to maintain a balance
between the phases of exploitation and exploration motivated the researchers in this study
to adopt WCA for the optimal tuning of FPID for the stability of an IPS. Moreover, the
MAMF system is considered with the realistic constraints of GRC and CTDs. The literature
survey disclosed the articles that are available with test system models considering the
non-linearity of GRC and GDB. Researchers have concentrated much less on considering
CTDs with a power system model for analysis purposes. Few papers have considered and
demonstrated the impact of CTDs on IPS performance, and their analysis is confined to
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regulation by traditional PID [31] controllers only. Hence, the power system model studied
in this paper is considered with CTDs, and the effect of CTDs on system performance in
combination with a GRC is presented under the regulation of a WCA-tuned FPID controller.

Further, an HVDC line is laid in parallel with the existing AC tie line as a territorial
control strategy to enhance the dynamical behaviour of the MAMF IPS. The designed
secondary regulators can withstand the fluctuations that arise in the system only to a
certain extent. During large load disturbances, secondary regulators alone would not be
able to restore system stability. Thus, territorial control schemes are necessary to prevent
system instability during time-intensive load variations. The presented AC/DC lines of
the territory strategy facilitate the bulk power transfer capability among control areas
whenever required; therefore, the demand in the deficit generation control area is met
quickly from surplus generation areas.

Considering the above discussion, this work makes the following contributions:

a. An LFC for a MAMF IPS depicted in Figure 1 is developed in MATLAB/Simulink
version R2016a.

b. A WCA-based FPID is presented as a frequency regulator whose efficacy is revealed
compared to conventional PIDD/PID controllers.

c. System non-linearity constraints of GRC and CTDs are considered, to conduct re-
search that is close to realistic practice.

d. The effect of CTDs on the MAMF IPS performance is visualized and justified.
e. The territorial control strategy of AC/DC lines is employed to further enhance the

MAMF system dynamical behaviour.
f. The robustness of the presented control schemes is validated by subjecting the MAMF

system to a wide range of load fluctuations in both areas.
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Figure 1. Transfer function model of multi-area multi-fuel power system. Figure 1. Transfer function model of multi-area multi-fuel power system.
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2. Power System Model

The power system model under investigation comprises two areas with a 2:1 ratio
of generation capacities. Area 1 is integrated with conventional hydrothermal–gas power
generation plants and area 2 is integrated with diesel–solar photovoltaic–wind units. The
non-linearity feature of the generation rate constraint (GRC) is considered with the hy-
drothermal units, to conduct an analysis close to realistic practice. For the thermal plant,
a 3%/min GRC is considered, whereas for the hydro units 360%/min and 270%/min
constraints are considered for valve lowering and raising. The model of the power system
depicted in Figure 1 was developed using the MATLAB/Simulink version R2016a plat-
form, and the required parameters were taken from [31]. Individual generation units are
approximated by transfer functions as follows:

∆PGT(S)
∆PmT(S)

=
(1 + STreKre)

(1 + Tgr S)(1 + STre)(1 + TTr S)
(1)

Hydro unit:

∆PGH(S)
∆PmH(S)

=
(1 + STrs)(1 − STW)

(1 + Th S)(1 + Trh S)(1 + 0.5TW S)
(2)

Gas unit:

∆PGG(S)
∆PmG(S)

=
(1 + XS)(1 − TCR S)a

(1 + YS)(c + bS)(1 + TF S)(1 + TCD S)
(3)

Diesel unit:
∆PGD(S)
∆PmD(S)

=
KD(1 + STd1)

(1 + Td4 S)(1 + Td2 S)(1 + Td3 S)
(4)

Wind unit:
∆PGW(S)
∆PmW(S)

=
KW1KW2(1 + STW1)

(1 + TW2 S)(1 + 2S + S2
) (5)

Solar photovoltaic unit:
∆PGPV(S)

ϕ
=

KPV

1 + TPVS
(6)

The power generated by the individual units in area 1 and area 2 is modeled as

PG1 = PGT + PGH + PGG (7)

PG2 = PGD + PGW + PGPV (8)

During perturbed conditions, the variation in power generated by the units in area 1
and area 2 is modeled as

∆PG1 = ∆PGT + ∆PGH + ∆PGG (9)

∆PG2 = ∆PGD + ∆PGW + ∆PGPV (10)

The exchange of power between the areas with only an AC tie line is given as

PtieAC = P12sin(δ 1 − δ2) (11)

During perturbed conditions, Equation (11) can be redefined as

∆PtieAC = T12(∆δ1 − ∆δ2)
= T12(∆ f1 − ∆f2)

(12)

With the incorporation of the HVDC link in parallel with the existing AC line, power
flow deviations can be controlled up to a certain level. The HVDC link cannot be designed
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without considering the model of the power system. The gain (K DC) and time (T DC)
parameters of the HVDC line are optimized using the optimization technique. Power flow
in the AC/DC tie line is defined as in Equation (13), and the single-line representation of
the MAMF system with AC/DC lines is shown in Figure 2.

Ptie12 = PtieAC + PtieDC (13)
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The change in power flow via the DC line under perturbing conditions is modeled as

∆PtieDC =
KDC

(1 + TDC S)
(∆f1 − ∆f2) (14)

Modeling of the area control error (ACE) with AC/DC tie-lines is given by

ACE1 = B1∆f1 + (∆ PtieAC + ∆PtieDC) (15)

ACE2 = B2∆f2 + (∆ PtieAC + ∆PtieDC) (16)

3. Communication Time Delays

The modern-day IPS has become very complex with the penetration of different
distributed generation (DG) sources. Usually, the power system network is situated in a vast
area and has more sensing and phase-measuring devices in remote terminal locations. The
measured data from devices located in remote terminals are transmitted to the command
control center. Control signals, generated from the command control center based on the
data received from remote devices, are transmitted to the secondary regulator in the plant
location to alter the operating point of the system with respect to the varying load demand.
The transmission and reception of signals among various devices located at large distances
are achieved via communication channels. Communication channels are characterized by
certain time delays, as data communication cannot take place instantly. Due to these CTDs,
the delay in altering the power plant operating point leads to an increase in the real power
mismatch between load and generation. These real power mismatches lead to fluctuations
in system frequency, thereby affecting the power system stability. Moreover, in the case of
severe CTDs, the designed secondary regulator may not handle the fluctuations and may
become unstable. To overcome the instability issues due to the emergence of unintentional
time delays within the system, the power system model must be considered with CTDs,
and the secondary regulator must be designed in the presence of CTDs. The modeling of
the CTDs considered in this paper is as follows [31]:

e−sτd =
1− τd

2 s
1 + τd

2 s
(17)
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4. Controller and Objective Function

Usually, traditional controllers such as I/PI/PID controllers are extensively adopted by
researchers to regulate the power system frequency, due to their easy implementation and
design simplicity. However, these classical controllers are not competent enough during
uncertainties or for power system models with non-linear features. Fuzzy logic controllers
(FLC) are the most efficient for handling non-linear systems [32]. However, the design of
the FLC interface and the selection of the membership functions (MFs) requires the utmost
care. Otherwise, the FLC may degrade the power system performance. Triangular MFs,
as shown in Figure 3, were chosen for the FLC in this study, because of their simplicity
and low memory utilization. Moreover, these triangular MFs with an overlap of 50% yield
satisfactory results. Triangular MFs with linguistic variables such as (LP) large positive, (SP)
small positive, (Z) zero, (SN) small negative and (LN) large negative [33] were considered.
The area control error (ACE) and the derivative of the ACE were given as input to the FLC
unit, and then the output of the FLC was fed to the PID to generate the final output to shift
the operating point subjected to load fluctuations. The fuzzy PID structure utilized in this
work is depicted in Figure 4 [34].
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A Mamdani-type FLC system was designed in this work, with the center of gravity
method [35,36] of defuzzification. The fuzzy output was calculated based on the rules
shown in Table 1. The gains of the fuzzy-aided PID were optimized using the meta-
heuristic optimization approach of a WCA subjected to the minimization of the ISE objective
function. Compared to other time-domain-based objective functions, ISE is more effective
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in dampening peak deviations by maintaining the average balance with settling time.
Therefore, we adopted ISE in this work, as shown in Equation (18).

JISE =

TSim∫
0

(∆ f2
1 + ∆P2

tie12 + ∆f2
2

)
(18)

Table 1. FLC system input and output rules.

ACE
∆ACE

LN SN Z SP LP

LN LN LN LN SN Z
SN LN LN SN Z SP
Z LN SN Z SP LP

SP SN Z SP LP LP
LP LP Z SP LP LP

5. Water Cycle Algorithm

The water cycle algorithm (WCA) is one of the newest population-based meta-heuristic
optimization techniques that many researchers are focusing on, especially for constrained
engineering optimization problems. The evolution of this algorithm, introduced by Eskan-
der et al. [37] in 2012, was inspired by the phenomena of the water cycle on the Earth’s
surface. Since then, this approach has found applications in many research fields. How-
ever, the implementation of the WCA approach in power system regulation has not been
significant to date. This motivated the researchers in this study to implement this search-
ing algorithm to find the optimal parameters of the secondary regulator to regulate the
frequency and maintain the stability of interconnected power system models.

The searching strategy of the WCA starts with an initial population of raindrops or
snowflakes that accumulate on hills or mountains and later collectively move downwards
to form streams and rivers. Finally, these streams and rivers are assumed to be joined at the
sea, treated as the global best solution.

For a solution with variables 1×Nvar, the vector of rain drops (RD) is formulated as

RDi = Yi = [y 1, y2 . . . . . . . . . yNvar
]

(19)

RD Population =


RD1

− − −
RDi

− − −
RDNPOP

 (20)

After defining the initial population, the cost of an individual RD is evaluated consid-
ering the time-domain objective index of ISE, as formulated in Equation (18).

Subsequently, the positions (P) of rivers/streams are updated, as shown in
Equations (21) and (22), based on the assumption that these join at the sea eventually.

Pnew
stream = Pstream + rand() ∗ C ∗ (P river − Pstream) (21)

Pnew
river = Priver + rand() ∗ C ∗ (P sea − Priver) (22)

The parameter C is constant and is generated randomly, taking a value lying between
0 and 2, whereas rand () takes a value between 0 and 1. If the evaluated cost index value of
the stream happens to be less than that of the river, then the positions of the stream and
river will be exchanged. A similar process is applied for rivers and the sea.

To facilitate space for rainwater in the sea, the optimization algorithm is operated
with an evaporation phase for seawater. Further, this loop will avoid rapid convergence
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and impart excellent capability to the searching mechanism. The phase of evaporation
terminates if

|Psea − Priver| < dmax (23)

where dmax is a number close to zero, which decreases automatically as

dnew
max = dmax − (d max/max.iteration) (24)

The phase of rain starts immediately after the termination of the evaporation process.
During rain, new streams will be formed at different locations, and their positions are
found using

Pnew
stream = Psea +

√
U × rand(1, Nvar

)
(25)

where U indicates the rate of search close to the sea. The algorithm displays the global best
solution when it reaches the maximum iteration count. The parametric values implemented
while designing the WCA algorithm for power system optimization in this study are given
in Table 2, and the flowchart is depicted in Figure 5.
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Table 2. WCA parameters.

Parameter Value

NVar 21
NPOP 100

C 2
U 0.04

dmax 0.001
Max.iteration 50

6. Simulation Results
6.1. Case 1: Analysis of MAMF System without Considering CTDs

The performance of the MAMF system was assessed without taking the feature of
CTDs into account. Various controllers such as PID/PIDD/fuzzy PID were implemented
as secondary regulators one after the other in both the areas, and were optimized using
the WCA algorithm. To obtain the most comparative analysis, responses under different
controllers are compared in Figure 6 in terms of frequency deviation in area 1 (∆f1) and
area 2 (∆f2), and tie-line power flow deviations (∆Ptie12). Moreover, the responses shown
in Figure 6 are numerically interpolated with regard to the settling time (Ts) provided
in Table 3, and the controller’s optimum gains are noted in Table 4. Further, the peak
undershoot (US) values obtained with the presented FPID were lower (∆f1 = 0.0098 Hz,
∆Ptie12 = 0.00541 Pu.MW, ∆f2 = 0.000303 Hz) than those using PIDD (∆f1 = 0.01311 Hz,
∆Ptie12 = 0.00868 Pu.MW, ∆f2 = 0.00068 Hz) and PID (∆f1 = 0.01659 Hz, ∆Ptie12 = 0.01315
Pu.MW, ∆f2 = 0.001021 Hz). From Figure 6 and Table 3, it can be primarily concluded
that the fuzzy PID completely outperforms the PID/PIDD in diminishing the peak under-
shoots/overshoots as well as in damping out the oscillations. Further, with the fuzzy PID,
the objective index is very slightly minimized, whereas it is enhanced by 60.94% with PIDD
and 78.63% with PID.
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Table 3. MAMF system response settling time (in sec) for various cases.

Settling Time
(in sec)

Case 1 Case 2

FPID PIDD PID FPID PIDD PID

∆f1 7.56 8.95 12.69 9.721 11.88 15.97
∆Ptie12 10.160 11.46 13.21 11.23 12.40 14.26

∆f2 8.322 11.80 14.89 9.834 13.16 16.39
ISE × 10−3 7.769 19.893 36.355 29.275 52.283 85.098
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Table 4. MAMF system response settling time (in sec) for various cases.

Controller
Area 1 Area 2

FPID PIDD PID FPID PIDD PID

Case 1

K1 = 0.5757
K2 = 0.7573
K3 = 0.8315
K4 = 0.3394

KP = 2.0755
KI = 1.1281
KD = 0.7329

KDD = 0.1430

KP = 3.1388
KI = 2.0944
KD = 1.4939

K1 = 0.8861
K2 = 0.6994
K3 = 0.8606
K4 = 0.3766

KP = 1.9575
KI = 1.6113
KD = 0.5889

KDD = 0.1495

KP = 2.9936
KI = 1.8112
KD = 0.8632

Case 2

K1 = 0.5014
K2 = 0.7113
K3 = 0.6592
K4 = 0.4588

KP = 1.8098
KI = 1.2760
KD = 0.9630

KDD = 0.0607

KP = 2.9861
KI = 1.9060
KD = 1.1464

K1 = 0.8130
K2 = 0.8248
K3 = 0.6416
K4 = 0.4268

KP = 1.9623
KI = 1.2260
KD = 0.6232

KDD = 0.4939

KP = 3.0283
KI = 2.0519
KD = 0.8964

6.2. Case 2: Analysis of MAMF System with CTDs Considered

The MAMF system performance was assessed taking the feature of CTDs into account.
A realistic time delay of 0.25 sec was considered in this work, to analyze its impact on
system performance. The WCA-optimized controllers such as PID/PIDD/fuzzy PID
were implemented in the MAMF system one after another in both the areas for the same
disturbance loading on area 1 of 10% SLD. The responses for this case are shown in
Figure 7, and the corresponding numerical results are given in Table 3. From the responses
depicted in Figure 7, it can be concluded that the fuzzy PID showed superior performance
in handling the system behaviour, even when considering CTDs. Moreover, the peak
US values are greatly diminished with FPID (∆f1 = 0.0187 Hz, ∆Ptie12 = 0.01074 Pu.MW,
∆f2 = 0.00064 Hz) compared with using PIDD (∆f1 = 0.02033 Hz, ∆Ptie12 = 0.01293 Pu.MW,
∆f2 = 0.00086 Hz) and PID (∆f1 = 0.02569 Hz, ∆Ptie12 = 0.01813 Pu.MW, ∆f2 = 0.001359 Hz).
The ISE index is greatly minimized by the fuzzy PID but is improved by 44.06% with PIDD
and 65.59% with PID.
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6.3. Case 3: Comparative Analysis of MAMF System Responses without and with Consideration
of CTDs

To demonstrate the predominance of CTDs in the MAMF system performance, re-
sponses with and without considering CTDs under the supervision of the WCA-based
fuzzy PID controller are compared in Figure 8. As the fuzzy PID exhibits more dominance
in regulating the deviations in responses compared to the PID/PIDD, the responses under
fuzzy PID only are compared in Figure 8. From the MAMF system responses compared
in Figure 8, it can be concluded that the responses with CTDs have more deviations and
take slightly more time for the oscillations to settle down. Moreover, the responses of the
MAMF system with CTDs take more time to reach a steady condition. This is because of the
time delay between transmission and reception of the measured data signals and control
signals among different devices situated in various locations. With these time delays, the
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data from sensors installed at distant locations will be transmitted to the command control
center with some delay. Based on these data, the control signal will be generated and fed
as input to the regulator in the plant location to alter the real power generation subjected
to a fluctuating load demand. Hence, the delay in generating the control signal and the
delay in transmitting the control signal to the regulator in the plant location leads to a
more real power mismatch between generation and demand and hence to deviations in the
system dynamical behaviour. Thus, we strongly endorse considering the CTDs within the
power system when designing the regulator, to avoid stability issues. A regulator designed
without taking CTDs into account will no longer maintain system stability in the event of
unintentional time delays emerging within the power system.
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6.4. Case 4: Analysis of MAMF System with AC/DC Lines

To substantiate the oscillations that occur in the system dynamical behaviour because
of CTDs and the deviations in peak undershoot/overshoot, an additional HVDC tie line
was incorporated in the MAMF system in parallel with the existing AC line. The system
responses with the AC line and AC/DC lines are compared in Figure 9, to visualize the
efficacy of adopting the additional HVDC tie line in the system and numerical results
are provided in Table 5. The deviations were greatly mitigated, and the responses settled
down more quickly when employing AC/DC lines than when employing only AC lines.
Thus, it is concluded that the territorial control strategy of employing AC/DC lines in the
interconnected power system enhances the system dynamical behaviour.
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Table 5. MAMF system response settling time (in sec) for AC/DC lines.

Parameter ∆f1 ∆Ptie12 ∆f2 ISE × 10−3

With AC line only 9.721 11.23 9.834 29.275
With AC/DC lines 7.758 6.746 7.112 17.362

6.5. Case 5: Robustness Analysis

To show the robustness of the presented control mechanism, the MAMF system with
CTDs was subjected to loadings of 10% SLD on area 1 only, and 10% SLD and 20% SLD on
both areas. Even though the system was subjected to different loadings, the deviations in
system dynamical behaviour, as shown in Figure 10, are not marked. Thus, the presented
control strategy of the fuzzy PID and the territorial control strategy of AC/DC lines were
considered robust. Further, to validate the presented control scheme, the MAMF system
was targeted with random loadings, as shown in Figure 11.
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7. Conclusions

In this paper, a WCA-tuned fuzzy PID controller was suggested for frequency regula-
tion of the MAMF power system. The efficacy of fuzzy PID was demonstrated, compared
with the performance of traditional PID/PIDD. The dynamical behaviour of the MAMF
system was analyzed by subjecting area 1 to 10% SLD. Moreover, the investigation was
performed on the MAMF system without and with consideration of CTDs, to exhibit their
dominance with regard to the system performance. To further substantiate the fluctuations
in the MAMF system responses due to the effect of CTDs, a territorial control strategy of
AC/DC lines was operated within the system. The simulation results demonstrated the ef-
fect of the AC/DC line on the MAMF system performance in damping out the fluctuations
in less time. Furthermore, considering the advantages of fuzzy PID, we suggest adopting
and testing the efficacy of FO-based intelligent FLC controllers for stability analysis of
interconnected power systems considering CTDs in future work.
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Abbreviations

SLD Step load disturbance
AGC Automatic generation control
CTDs Communication time delays
IPS Interconnected power system
LFC Load frequency control
DG Distributed generation
MAMF Multi-area multi-fuel
GDB Governor dead band
GRC Generation rate constraint
HVDC High-voltage DC line
WCA Water cycle algorithm
COG Center of gravity
MFs Membership functions
ISE Integral square error
ACE Area control error
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