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Abstract: The purpose of saliency detection is to detect significant regions in the image. Great progress
on salient object detection has been made using from deep-learning frameworks. How to effectively
extract and integrate multiscale information with different depths is an open problem for salient
object detection. In this paper, we propose a processing mechanism based on a balanced attention
module and interactive residual module. The mechanism addressed the acquisition of the multiscale
features by capturing shallow and deep context information. For effective information fusion, a
modified bi-directional propagation strategy was adopted. Finally, we used the fused multiscale
information to predict saliency features, which were combined to generate the final saliency maps.
The experimental results on five benchmark datasets show that the method is on a par with the state
of the art for image saliency datasets, especially on the PASCAL-S datasets, where the MAE reaches
0.092, and on the DUT-OMROM datasets, where the F-measure reaches 0.763.

Keywords: salient object detection; interactive residual model; balanced attention model; bi-directional
propagation strategy

1. Introduction and Background

Salient object detection (SOD) aims to localize the most visually obvious regions in an
image. SOD has been used in many computer-vision tasks, such as image retrieval [1,2],
visual tracking [3], scene segmentation [4], object recognition [5], image contrast enhance-
ment [6], assisted medicine [7–9], etc. Meanwhile, the specific scenarios of salient object
detection in mobile communications applications, such as image background filtering and
background atomization in mobile applications, all rely on the high accuracy of foreground
target extraction, as shown in Figure 1. Scholars have also proposed many models [10–12],
but the accurate extraction of salient objects in complex and changeable scenes is still a
problem to be solved.

Figure 1. Example of background filtering based on salient object detection.

Traditional salient detection methods [13–15] used bottom-up computational models
and low-level hand-crafted features to predict saliency, such as image contrast [15,16],
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center prior [17], background prior [18], and texture [19]. Although the artificially designed
features can locate some salient areas, it is difficult to improve the accuracy of salient object
detection due to the lack of high-level semantic information. In recent years, SOD has
made with notable progress with the striking development of deep-learning techniques.
Convolutional neural networks (CNNs), which are trained end-to-end, provide more dis-
crimination and distinguishable features, thereby enhancing the performance of the salient
object detection algorithm. Even so, the algorithm of SOD based on the deep-learning
framework still has two issues of concern. First, the spatial correlation becomes worse due
to continuous downsampling for the deeper layer. Second, the potential correlation was
ignored due to the self-attention mechanism needed to extract deep-feature information.

The salient object detection algorithm based on the deep-learning framework actually
extracts the features by layer [20,21]. The features of the deeper layer are a larger receptive
field and stronger representation ability in semantic information. However, the deeper
layer, obtained by continuous downsampling, results in the reduction of the resolution
of the feature maps, which means that the spatial geometric features lack the ability to
represent the detail of the object. On the contrary, the receptive field of the feature of the
shallow network is relatively small, but the resolution of the extracted feature map is higher,
which makes the representation ability of geometric detail information strong. In fact, the
disadvantage of the shallow network is obvious, that is, the representation ability for
semantic information is weak. Based on the above analysis, the multiscale features can be
obtained from different layers, and aggregating multilevel features is undoubtedly one of
the effective methods to solve the first problem mentioned above. Zhao et al. [22] extracted
local and global context information from two different scales of super-pixel blocks, and
then they used it in the multilevel perception of foreground and background classification.
Wang et al. [23] used two CNNs to analyze the local super-pixel block and the global
proposal for the salient object detection. Some literatures [24–27] adopted feature fusion
from shallow layers to deep layers. Due to the continuous accumulation of depth features,
some detailed features from the shallow layers were lost. Zhang et al. [28] proposed an
Amulet network, which integrated multilevel feature maps into multiple resolutions and
learned to combine feature maps. Although the positioning accuracy of salient targets
has improved, external noise was also mixed with characteristic parameters, which makes
it impossible to refine the edge contour of salient objects. Zhang et al. [29] proposed a
saliency model that used a bi-directional structure to pass messages between multilevel
features. This model implemented information fusion using a gate function to control
the message passing rate. However, due to a large amount of noise in the shallow layer,
the final predictions were blurred at the edges. In order to better integrate the features of
different scales, inspired by the literature [30], we adopted an improved fusion scheme
based on a bi-directional propagation model (BPM). Step-by-step fusion in two directions,
from shallow to deep and from deep to shallow, can complement the IRM model, which
can refine the feature edges and improve the accuracy of salient positioning. Not only
are the detail parameters preserved in the shallow features, but also the external noise is
suppressed. At the same time, the weight of high-level semantic information is implicitly
increased to improve the accuracy of salient object detection.

The attention mechanism can be regarded as a mechanism for redistributing resources
based on the importance of activation [31,32]. It plays a vital role in the human visual
system, enabling us to find salient objects quickly and accurately from complex scenes.
Therefore, the effect of salient object detection based on the attention mechanism is similar
to that of the human visual system, which extracts the most salient parts from complex
and changeable scenes. In deep learning, the attention method can capture rich semantic
information by choosing to weight and aggregate the features of each target region through
the contextual information of the feature map. Since the self-attention mechanism [33]
can update the feature at each position within a single sequence to capture long-range
dependency, some models [4,11,34] use a self-attention mechanism to detect semantic
information in depth. However, self-attention has a quadratic complexity of location
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numbers in the sample and ignores the potential correlations between different samples.
Guo et al. [35] proposed an external attention mechanism, based on two external, small,
learnable, and shared memories, which uses two cascaded linear layers and two normalized
layers to compute the feature maps by calculating the similarity between the query vector
and the external learnable key memory. The feature map is multiplied by another external
learnable value memory to refine the feature map. External attention has linear complexity
and implicitly considers the correlations between all samples. Combining the advantages
of the self-attention mechanism and the beyond-attention mechanism, this paper proposes
a balanced attention mechanism (BAM). Firstly, the BAM inherits from self-attention mode
and calculates the affinity between features at each position within a single sample. Then,
with the help of the external attention mechanism, the whole data set is shared through
linear and normalization operations, which improves the potential correlation between
different samples and reduces the computational complexity.

Pang et al. [12] proposed a self-interactive module (SIM) to extract features from the
shallow and middle layers so that the multiscale information can be adaptively extracted
from the data. The multiscale information was used to deal with the scale changes of salient
objects, which effectively meets the multiscale requirements of SOD tasks. Inspired by
reference [12], the interactive residual model (IRM) was designed in this paper. IRM models
learned the multiscale features of a single convolution block in two different resolutions,
interactively. To extract richer features and reduce redundant information, IRM removed
the original feedback mechanism of SIM, optimized the internal sampling structure, and
added a dropout block to prevent overfitting. For the deep semantic information, we
used the BAM to extract the features in space and channels. The spatial attention module
computed the affinity between any two feature parameters in the spatial position. For the
channel information, balanced attention was also used to calculate the affinities between
any two-channel maps. Finally, two attention modules were fused together to further
enhance the feature representation. The complete flowchart is shown in Figure 2.

Figure 2. Complete flowchart of MBINet.

A multiscale balanced-aware interactive network (MBINet) is proposed for salient
object detection. Our contributions are summarized as three items:

• An interactive residual model (IRM) was designed to capture the semantic information
of multiscale features. The IRM can extract multiscale information adaptively from
the samples and can deal with the scale changes better.

• We proposed a balanced-attention model (BAM), which not only captures the de-
pendence between different features of a single sample, but considers the potential
correlation between different samples, which improves the generalization ability of
attention mechanism.

• To effectively fuse the output of IRMs and BAM cascade structure, an improved bi-
directional propagation strategy was adopted, which can fully capture contextual
in-formation of different scales, thereby improving detection performance.

The rest of this paper is organized as follows. Section 2 discusses the improved MBINet
algorithm. Section 3 shows the simulation experimental results, and Section 4 concludes
the paper.

2. Proposed Method

In this section, we first introduce the overall framework of the MBINet we have
proposed. Figure 3 shows the network architecture. Next, we introduce the principle of the
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interactive residual model and formula derivation in detail in Section 2.2. In Section 2.3, we
describe how to derive the balanced attention model step-by-step and the implementation
details. Finally, we effectively merge all the features together by introducing the BPM to
reflect the multiscale feature fusion further.

Figure 3. The overall framework of the model. IRM: interactive residual model. BAM: balanced-
attention model. BPM: bidirectional propagation model. DC: hollow convolution. RES: residual
structure. U: upsampling. S: supervision. s2d: from shallow to deep. d2s: from deep to shallow.

2.1. Network Architecture

In our model, the VGG-16 [36] network is used as the pre-training backbone network.
Similarly to other SOD methods, we removed all fully connected layers and the last pooling
layer, and marked the side outputs of different scales as {Conv1, Conv2, Conv3, Conv4,
Conv5}. Since the receptive field of Conv1 was too small and there was too much noise,
we decided to only use the side output of Conv2–5 for feature extraction. First, we used
the dilated convolution (DC) with the dilation rate of {1, 2, 4} to extract the features of the
side output, denoted as C = {C1, C2, C3, C4}, and send the output result to the interactive
residual networks (IRMs) model. The characteristic of DC is to expand the receptive field
with a fixed-size convolution kernel. The larger the receptive field, the richer the semantic
information captured. The purpose of introducing DC is to extract features of different
scales from the same feature map. However, IRMs use fixed-size convolution kernels
to extract feature maps of different scales. Through complementary learning of DC and
IRMs, more effective multiscale features can be obtained. In addition, we added a residual
structure (RES) after Conv5, as shown in Figure 4, in order to reduce channel numbers
of in-depth features and to pass the output features to a BAM based on both spatial and
channel directions. The in-depth information output by BAM was fused together, and
the output of IRMs was used as input to the bidirectional propagation network [4]. A
prediction graph was generated at each fusion node. Next, we will introduce these models
in detail.
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Figure 4. Structure of RES. Conv: convolution operation. BN: regularization. PRelu: activation
function.

2.2. Interactive Residual Model

The side output of different depths contains different features of information. We use
DC to extract the features from the side output of the encoder, and the output result is
expressed as Fd. The function of DC is to expand the receptive field, which can improve
the representation ability of small features and ensure the integrity of feature extraction.
However, while improving the integrity of the features, the noise is also preserved. In order
to further refine the features and complement DC, we introduce an interactive residual
model (IRM), as shown in Figure 5. IRM divides the input features into two in a pooling
manner, denoted as fl1 and fh1, where fh1 = Fd. To extract the features of two resolutions
in parallel, and fuse the two output results with their respective sizes, denoted as fl2 and
fh2, the expressions are as follows:

f i
h2 = DownC(Up( f i

l1) + Fi
d)

f i
l1 = DownC(Down(Fi

d))
f i
l2 = Up(DownC(DOwn(Fi

d) + f i
l1))

, (1)

where i ∈ {1, 2, 3, 4} represents the level of the side output depth, Up(·) and Down(·) rep-
resent the de-convolution and pooling operations on the feature, and DownC(·) represents
channel numbers for reducing the feature. Channel numbers of fl2 is 1/4 of the number
of input channels, and the channel numbers of fh2 are the same as the number of input
channels. To keep the input and output consistent and have the same size as the input, we
upsampled fl2, downchanneled fh2, and merged the results of the two branches, denoted
as FI . In order to facilitate optimization, each feature size change underwent normalization
and nonlinear processing, and the input feature Fd was processed again, and the Fd was
changed directly to the output port of IRMs after changing the channel. The whole process
can be expressed by the following formula:

Fi
I = Up( f i

l2) + DownC( f i
h2) + DownC(Fi

d), (2)
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Figure 5. The structure of the interactive residual model.

2.3. Balanced-Attention Model

The attention mechanism is widely used in computer vision, and it is also popular
in salient detection. Some attention models [35,37–40] have also been proposed in recent
years. Self-attention is used to compute similarity between local features in order to obtain
large-scale dependence. Specifically, the input features are linearly projected into a query
matrix Q ∈ RN×d′ , a key matrix K ∈ RN×d′ , and a value matrix V ∈ RN×d [33]. The
self-attention model can be formulated as:

FO = V · softmax(Q · KT), (3)

softmax(ai,j) =
exp(ai,j)

∑N
i=1 exp(ai,j)

, (4)

where N represents the number of pixels, ai,j is the corresponding pixel value, d and d′

represent the number of feature dimensions, and FO represents the output. Obviously, the
high computational complexity of self-attention is an obvious disadvantage. Based on this,
the beyond-attention model uses two storage Mk units and Mv to substitute the three self-
attention matrices Q, K, and V, for calculating the correlation between feature pixels and
external storage unit M, and using double-normalization to complete the normalization
of features. Since M is a learnable parameter, affected by the whole datasets, it acts as a
medium for the association of all features and is the memory of the whole training datasets.
Double-normalization is essentially the nesting of softmax, at the expense of computational
cost. Although features can be further refined and the impact of noise can be reduced, the
effect is not obvious for deep features that have been processed multiple times. To this end,
combining the advantages of the two attention models above, we proposed a model named
the balanced-attention model (BAM). The details of the BAM are shown in Figure 6.

First of all, we extracted the deep features in the spatial position, and transformed the
input feature F ∈ RC×H×W projection into a query matrix Q ∈ RN×C/8 and a key matrix
K ∈ RN×C/8, where N = H ×W is the number of pixels, then multiplied the transpose
matrix of Q and K, and calculated the resulting matrix using the soft max function. The
result is the spatial correlation between different pixels. Then a linear layer was used as the
memory Mv to share the whole datasets, and the input was fused into the above operation
results to get the final output FP ∈ RC×H×W . The whole process can be formulated as:

FP = Mv · softmax(Q · KT) + F, (5)

where FP represents the output feature in the spatial direction.
While paying attention to the affinity relationship between different location features,

we also noticed that the interdependence between channel mappings would affect the fea-
ture representation of specific semantics. Therefore, we also used the attention mechanism
in the channel direction to improve the interdependence between channels. First of all, the
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input feature F was transformed into
∼
F ∈ RC×N , and then the multiplication operation was

performed between
∼
F and its own transpose matrix, and the resulting square matrix was

sent to the softmax classification function to calculate the pixel correlation degree in the
channel direction. Then a linear layer was used as the memory to transform the result to
RC×H×W , and the final result is represented by FC. The whole process can be expressed by
the following formula:

FC =
∼
M · softmax(

∼
F ·
∼
FT) + F, (6)

Figure 6. Balance the structure of the attention model. The details of the position-attention model
and channel-attention model are illustrated in (A) and (B).

2.4. Model Interaction and Integration

In order to strengthen the interdependence between different features, we fused the
output results in the space and channel direction together and denoted it as FA. In addition,
the BAM was regarded as an independent part, and the detected semantic information and
the output characteristics of the IRMs were fused in a propagation mode. First, we changed
the number of output feature channels for BAM and IRMs to 21 and produced two results of
the same dimension simultaneously. Then, one of the results of each module was compiled
into a group for cascade fusion in the direction from shallow to deep, and the other group
was cascaded and fused in the direction from deep to shallow, and the output obtained
after each level was fused as the predicted value. The above process is referred to as the
bidirectional propagation model (BPM), as shown in BPM in Figure 3. Take FI as the IRMs
output layer and FA as the BAM output layer. The features are gradually superimposed in
two directions from shallow to deep and from deep to shallow, and the output of each side
is used as the final prediction result. The whole process can be expressed by the following
formula: 

Fi
O(s2d) = f use(Fi

I , Fi+2
I , Fs2d

A ), i = 1, 3, 5, 7

Fi
O(d2s) = f use(Fi−2

I , Fi
I , Fd2s

A ), i = 4, 6, 8, 10
FA = f use(FP, FC, F)
FO = Cat.(Fi

O(s2d), Fi
O(d2s), FA)

, (7)

Among them, f ues(·) is the feature fusion operation, Cat.(·) is the feature stitching
operation according to the channel direction, Fs2d

A and Fd2s
A are the results of FA after the

reduced channel, FO(s2d) is the output of each level from shallow to deep, and FO(d2s) is
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similar. Finally, we used the standard binary cross-entropy to train the predicted value; the
expression is as follows:

L = −∑
x,y

[Gx,y log(Px,y) + (1− Gx,y) log(1− Px,y)], (8)

where Gx,y ∈ {0, 1} represents the true value of pixel (x, y), and Px,y represents the pre-
dicted value of pixel (x, y) training. The calculation process is as follows:

P = Sigmoid(Conv(FO)), (9)

3. Experiment
3.1. Experimental Setup

Datasets: We evaluated the proposed model on six benchmark datasets: DUT- OM-
RON [19], DUTS [41], ECSSD [42], PASCAL-S [43], HKU-IS [44], and SOD [45]. DUTS
contains 10,553 training images and 5019 testing images, of which the images used for
training are called DUTS-TR and the images used for testing are called DUTS-TE, and
both contain complex scenes. ECSSD contains 1000 semantic images with various complex
scenes. PASCAL-S contains 850 images with cluttered backgrounds and complex salient
regions, which are from the verification set of the PASCAL VOC 2010 segmentation datasets.
HKU-IS contains 4447 images with high-quality annotations, and has multiple unconnected
salient objects in many images. DUT-OMRON contains 5168 challenging images. Most of
the images in these datasets contain one or more salient objects with complex backgrounds.
The SOD datasets have 300 very challenging images, most of which contain multiple objects
with low contrast or connection with image boundaries.

Evaluation criteria: We used three metrics to evaluate the performance of the proposed
model MBINet and other state-of-the-art SOD algorithms. The three metrics were Fβ-
measure [46], mean absolute error (MAE) [15], and S-measure [47]. The Fβ-measure was
computed by the weighted harmonic mean of precision value and recall value, and its
expression is:

Fβ =
(1 + β2)Precision× Recall

β2 × Precision + Recall
, (10)

where β2 is generally set to 0.3 for weight precision. Since the precision value and recall
value are calculated on the basis of a binary image, we first needed to threshold the
prediction map to a binary image. Threshold calculation is to combine multiple thresholds
to calculate the appropriate value adaptively. Different thresholds corresponded to different
Fβ scores. Here we reported the maximum Fβ score of all thresholds. MAE is calculated to
measure the average difference between the predicted map P and the ground-truth map
G ∈ {0, 1}. The expression of MAE is:

MAE =
1

W × H

W

∑
x=1

H

∑
y=1
|P(x, y)− G(x, y)|, (11)

where W and H are the width and height of the image respectively. S-measure calculates the
structural similarity of object perception So and region perception Sr between the predicted
map and the ground-truth map, and the expression is:

S = γ · So + (1− γ) · Sr, (12)

where γ is set to 0.5 [47].
Implementation details: We implemented our proposed model based on the Pytorch

framework. To facilitate comparison with other works, we chose VGG-16 [36] as the
backbone network. Following most existing methods, we used the DUTS-TR datasets as
a training set, the SOD datasets as a validation set to update best weights, the DUTS-TE,
ECSSD, PASCAL-S, HKU-IS, and DUT-OMRON as testing sets, and the DUTS-TE datasets
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as the benchmark for ablation experiments. Our network was based on the NVIDIA GTX
1080 Ti GPU, and the operating system was trained on Ubuntu 16.04. To ensure that the
model converges, we used the Adam [48] optimizer to train our model. The initial learning
rate was set to 1e-4, the batch size was set to 8, and the resolution was adjusted to 320 × 320.
The training process of our model took about 18 h and converged after 22 epochs.

3.2. Ablation Studies

The proposed model is composed of three parts: IRM, BAM, and BPM. In this section,
we conducted ablation studies to verify the effectiveness of each module combination. The
experimental setup follows Table 1, and we mainly report the results using the DUTS-TE
datasets.

Table 1. Ablation analysis on the DUTS-TE datasets. BAMp is the BAM submodule at the position,
BAMc is the BAM submodule at the channel, and BAM means BAMp+BAMc.

No. Model F-Measure↑ MAE↓ S-Measure↑
a VGG 0.760 0.074 0.790
b VGG + IRM 0.782 0.065 0.803
c VGG + BAMp 0.775 0.066 0.804
d VGG + BAMc 0.763 0.069 0.801
e VGG + BAMp + BAMc 0.781 0.066 0.806
f VGG + BPM 0.777 0.068 0.801
g VGG + IRM + BAM 0.800 0.061 0.820
h VGG + IRM + BPM 0.789 0.063 0.809
i VGG + BAM + BPM 0.785 0.060 0.822
j VGG + IRM + BAM + BPM 0.809 0.058 0.824

Effectiveness of the BAM: BAM combines the advantages of the self-attention and
the beyond-attention models. These attention models are embedded into our model, and
compared on the DUTS-TE datasets, and the results are recorded in Table 2.

Table 2. The different models embedded and measured on the DUTS-TE datasets.

No. Model F-Measure↑ MAE↓ S-Measure↑
a +Self-attention 0.804 0.060 0.824
b +Beyond-attention 0.801 0.059 0.818
c +BAM 0.809 0.058 0.824

We found that the performance of BAM was better than that of the self-attention and
the external attention models alone. Especially in terms of MAE, which increased by 1.72%
and 3.45% compared with the beyond-attention and self-attention models respectively, and
the visual effects are shown in Figure 7. We can see that BAM can capture richer contextual
information.
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Effectiveness of the IRM and BPM: IRM mainly processes the features of the shallow
layer and the middle layer in order to further refine the features extracted by DC. BPM
is a feature fusion mechanism between IRM and BAM. In Table 1, different combinations
of the three models are shown. From Table 1, it is obviously that the integration of these
independent modules can complement each other.

For a more comprehensive analysis of IRM, we further studied the impact of the
number of dilate convolutions and the dilation rate. First of all, we tested the number
of convolutions k when the dilation rate is {1, 2, 4}. We conducted five different k values
experiments, and recorded the test results in Table 3. It can be found from Table 3 that k = 3
has the best performance. Next, in order to test the influence of the dilation rate, we chose
five different sets of dilation rates: {1,1,1}, {1,2,3}, {1,3,5}, {1,2,4} and {1,4,7}, and recorded
the test results in Table 4. We found that the performance is the best when the dilation rate
is {1,2,4}. Therefore, we finally determined the dilation rate of {1, 2, 4}.

Table 3. Evaluate convolutions on DUTS-TE. k represents the number of dilate convolutions.

k F-Measure↑ MAE↓ S-Measure↑
1 0.7534 0.0742 0.7860
2 0.7517 0.0756 0.7859
3 0.7634 0.0711 0.7927
4 0.7578 0.0741 0.7899
5 0.7588 0.0715 0.7881

Table 4. Evaluation of different dilation rates with the DUTS-TE datasets.

No. F-Measure↑ MAE↓ S-Measure↑
{1,1,1} 0.7634 0.0711 0.7927
{1,2,3} 0.7658 0.0710 0.7988
{1,3,5} 0.7683 0.0694 0.7971
{1,2,4} 0.7768 0.0678 0.8014
{1,4,7} 0.7513 0.0760 0.7848

3.3. Comparison with State-of-the-Art

In this section, we compare our proposed module with the state-of-the-art salient
detection methods, including RFCN [10], MCDL [22], LEGS [23], Amulet [28], CANet [34],
MDF [44], RSD [49], DSS [50], NLDF [51], DCL [52], BSCA [53], ELD [54], and UCF [55].
For fair comparison, the salient maps of the above methods are provided by the author or
calculated by running the source code.

Quantitative comparison: We evaluated the proposed method from the three aspects
of Fβ-measure, MAE, and S-measure, and also compared it with other SOD methods, as
shown in Table 5. It can be seen from the results that our method is significantly better
than other salient detection methods. In particular, in terms of MAE, the best scores are
obtained on all five datasets, and the performance is improved on average compared to the
second-best method.
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Table 5. Quantitative evaluation. Comparison of different salient detection methods (the best three
results are marked as red, green, and blue respectively).

Model
DUTS-TE ECSSD PASCAL-S HKU-IS DUT-OMROM

F↑ M↓ S↑ F↑ M↓ S↑ F↑ M↓ S↑ F↑ M↓ S↑ F↑ M↓ S↑

Ours 0.809 0.058 0.824 0.909 0.058 0.886 0.821 0.092 0.806 0.901 0.042 0.880 0.763 0.069 0.781
CANet [34] 0.796 0.056 0.840 0.907 0.049 0.898 0.832 0.120 0.790 0.897 0.040 0.895 0.719 0.071 0.795
NLDF [51] 0.813 0.065 0.816 0.905 0.063 0.875 0.822 0.098 0.805 0.902 0.048 0.878 0.753 0.080 0.771

Amulet [28] 0.773 0.075 0.796 0.911 0.062 0.849 0.862 0.092 0.820 0.889 0.052 0.886 0.737 0.083 0.771
DCL [52] 0.782 0.088 0.795 0.891 0.088 0.863 0.804 0.124 0.791 0.885 0.072 0.861 0.739 0.097 0.764
UCF [55] 0.771 0.116 0.777 0.908 0.080 0.884 0.820 0.127 0.806 0.888 0.073 0.874 0.735 0.131 0.748
DSS [50] 0.813 0.065 0.812 0.906 0.064 0.882 0.821 0.101 0.796 0.900 0.050 0.878 0.760 0.074 0.765
ELD [54] 0.747 0.092 0.749 0.865 0.082 0.839 0.772 0.122 0.757 0.843 0.072 0.823 0.738 0.093 0.743

RFCN [10] 0.784 0.091 0.791 0.898 0.097 0.860 0.827 0.118 0.793 0.895 0.079 0.859 0.747 0.095 0.774
BSCA [53] 0.597 0.197 0.630 0.758 0.183 0.725 0.666 0.224 0.633 0.723 0.174 0.700 0.616 0.191 0.652
MDF [44] 0.729 0.093 0.732 0.832 0.105 0.776 0.763 0.143 0.694 0.860 .0129 0.810 0.694 0.092 0.720
RSD [49] 0.757 0.161 0.724 0.845 0.173 0.788 0.864 0.155 0.805 0.843 0.156 0.787 0.633 0.178 0.644

LEGS [23] 0.655 0.138 - 0.827 0.118 0.787 0.756 0.157 0.682 0.770 0.118 - 0.669 0.133 -
MCDL [22] 0.461 0.276 0.545 0.837 0.101 0.803 0.741 0.143 0.721 0.808 0.092 0.786 0.701 0.089 0.752

Qualitative evaluation: Figure 8 shows some representative examples. These examples
reflect different scenes, including small objects, complex scenes, and images with low
contrast between foreground and background. It can be seen from the figure that the
proposed method can predict the foreground area more accurately and completely.

Figure 8. Visual comparisons of different methods.

4. Conclusions

In this paper, we proposed a novel multiscale balanced-attention interactive percep-
tion network for salient object detection. First, we used dilated convolutions to extract
multiscale features on the side output of the encoder. Next, interactive residual modules
(IRMs) were designed to further refine the edge information of the multiscale features.
Thus, the features, extracted by the interactive residual network and the dilated convo-
lutions module, were complementary to each other, and the noise was suppressed. In
addition, we proposed a balanced-attention model (BAM), which captured the deep context
information of the objects in both spatial and channel directions respectively. The ablation
experiments showed that the BAM’s and IRM’s cascade structures could extract richer
semantic information for different scales features. Finally, in order to better describe and
accurately locate the predicted object, we adopted the improved bi-directional propagation
module (BPM) to improve the interdependence between different features. Whether IRM
and BPM modules were cascaded for testing, or BAM and BPM modules were cascaded
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for testing, the results showed that the bi-directional propagation module could more
effectively integrate multiscale features. In conclusion, the experimental evaluation on
five datasets demonstrated that the designed method could predict the saliency map more
accurately than the existing partial saliency detection methods under different evaluation
metrics. In further research, we will plan to maintain the existing strengths of our method
while considering the challenging problem of model lightweighting. In the future, we will
try to further optimize our solution to achieve better predictive performance.
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