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Abstract: In this work, a hybrid localized meshless method is developed for solving transient
groundwater flow in two dimensions by combining the Crank–Nicolson scheme and the generalized
finite difference method (GFDM). As the first step, the temporal discretization of the transient
groundwater flow equation is based on the Crank–Nicolson scheme. A boundary value problem in
space with the Dirichlet or mixed boundary condition is then formed at each time node, which is
simulated by introducing the GFDM. The proposed algorithm is truly meshless and easy to program.
Four linear or nonlinear numerical examples, including ones with complicated geometry domains,
are provided to verify the performance of the developed approach, and the results illustrate the good
accuracy and convergency of the method.
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1. Introduction

As an important component of the hydrological cycle system, groundwater is a key
source of domestic and industrial water supply. Therefore, the analysis of the groundwater
flow has great significance for water supply security. Due to the complexity of the problem,
an analytical solution is rarely available for most models of groundwater flow. With the
development of computing techniques, more and more numerical approaches have been
developed and applied to numerical simulations of science and engineering problems, such
as the finite element method (FEM) [1–3], the boundary element method (BEM) [4,5], and
the meshless method [6–10].

As a new approach in recent years, the meshless method is now widely applied in
various fields [11–19], particularly in computational fluid dynamics (CFD). The developed
meshless approaches can be classified into collocation-based and Galerkin-based meth-
ods. Compared with the latter, the meshless collocation methods have the advantages
of no numerical quadrature and mesh generation, and some of these are the localized
method of fundamental solutions (LMFS) [20–22], the generalized finite difference method
(GFDM) [23–33], the localized Chebyshev collocation method [34], the singular boundary
method (SBM) [35–43], and the localized knot method (LKM) [44].

The GFDM, as a popular localized meshless collocation method, employs the Taylor
series expansions and moving least squares (MLS) approximations [45,46] to form the
system of algebraic equations with a spare matrix [47,48]. Thanks to this spare system, this
method is highly efficient and suitable for the numerical simulations of large-scale problems.
Many physical applications have been addressed by the GFDM, such as the thin elastic
plate bending analysis [49], the electroelastic analysis of 3D piezoelectric structures [50],
the acoustic wave propagation [51], the inverse Cauchy problem in 2D elasticity [52], the
heat conduction problems [53], and the stationary flow in a dam [54].

A hybrid localized meshless method is proposed in this paper for the solution of
transient groundwater flow in a two-dimensional space by combining the Crank–Nicolson
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scheme and the GFDM. As the first step, the Crank–Nicolson scheme is applied to the
temporal discretization of the transient groundwater flow equation. At each time node,
a boundary value problem in space is then formed and subsequently solved with the GFDM.
Through the above process, a hybrid localized meshless approach is finally established,
which is truly meshless and easy to program. The rest of the work is organized as follows.
The governing equation of transient groundwater flow with boundary and initial conditions
is described in Section 2. The formulations of the hybrid localized meshless method are
derived in Section 3. Several linear and nonlinear numerical examples are provided in
Section 4 to verify the performance of the developed method. Some conclusions are
presented in Section 5.

2. Problem Definition

The movement of transient groundwater flow of a constant density in a homogeneous
and anisotropic two-dimensional (2D) medium with the domain Ω can be described by
using the following equation:

Tx
∂2H(x, y, t)

∂x2 + Ty
∂2H(x, y, t)

∂y2 + W(x, y, t) = us
∂H(x, y, t)

∂t
, (x, y) ∈ Ω, t > 0, (1)

where H denotes hydraulic head, W is the volumetric flow rate of a source or sink per unit
volume, us means the specific aquifer storativity, Tx and Ty are hydraulic conductivities
along the x- and y-axis, and t is the time.

To obtain the solution of Equation (1), the boundary and initial conditions are imposed
as the following:

H(x, y, t) = g1(x, y, t), (x, y) ∈ ∂ΩD, t ≥ 0, (2)

∂H(x, y, t)
∂n(x, y)

= g2(x, y, t), (x, y) ∈ ∂ΩN , t ≥ 0, (3)

H(x, y, 0) = g3(x, y), (x, y) ∈ Ω, (4)

where gi(i = 1, 2, 3) are given functions, ∂ΩD ∪ ∂ΩN = ∂Ω (∂ΩD ∩ ∂ΩN = ∅), and n is
unit outward normal vector to ∂ΩN .

3. Hybrid Localized Meshless Method

To solve the transient groundwater flow of Equations (1)–(4), the temporal discretiza-
tion of this system is first made by using the Crank–Nicolson scheme. The spatial equation
is then formed at each time node. The GFDM is finally used for the solution of the spatial
equation with corresponding boundary conditions.

3.1. Temporal Discretization by the Crank–Nicolson Scheme

We insert n nodes
{

t1 = 0, t2, . . . , tn = Tf

}
in the time domain [0, Tf ] where Tf is the

final time. By using the Crank–Nicolson scheme, the governing Equation (1) at each time
node ti+1 is then recast as the following:

1
2

[
Tx

∂2 H(x,y,ti+1)
∂x2 + Ty

∂2 H(x,y,ti+1)
∂y2 + W(x, y, ti+1) + Tx

∂2 H(x,y,ti)
∂x2 + Ty

∂2 H(x,y,ti)
∂y2 + W(x, y, ti)

]
= us

H(x,y,ti+1)−H(x,y,ti)
∆ti

, i = 1, 2, . . . , n− 1,
(5)

where the time step size ∆ti = ti+1− ti. Then we can reformulate Equation (5) as the following:

∆ti
2

[
Tx

∂2 H(x,y,ti+1)
∂x2 + Ty

∂2 H(x,y,ti+1)
∂y2

]
− usH(x, y, ti+1) =

= −us H(x, y, ti)− ∆ti
2

[
Tx

∂2 H(x,y,ti)
∂x2 + Ty

∂2 H(x,y,ti)
∂y2 + W(x, y, ti) + W(x, y, ti+1)

]
, i = 1, 2, . . . , n− 1,

(6)

As a result, a system of spatial equations with the boundary conditions (2) and (3) at
time node ti+1 is formed and will be solved by using the GFDM.
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3.2. Spatial Discretization by the GFDM

For the GFDM, some collocation nodes are first distributed in the computational
domain Ω and its boundary Γ. A supporting domain called a star for each node x0 = (x0, y0)
is defined by collecting m nearest nodes xj = (xj, yj)(j = 1, 2, . . . , m) as shown in Figure 1.
In the star, x0 and xj(j = 1, 2, . . . , m) are respectively named as the central node and the
supporting nodes. This distance criterion is the simplest way of star selection. However, it
should be noted that distorted (ill-conditioned) stars may be formed based on this distance
criterion, particularly for cases with very irregular distributions of collocation nodes.
To overcome the above drawback, the “cross” and the “Voronoi neighbours” criterions
discussed in Refs. [55,56] can be used to form more reasonable stars.
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To conveniently derive the system of algebraic equations, the Hj(j = 0, 1, . . . , m) are
employed to denote the values of hydraulic head at nodes xj(j = 0, 1, . . . , m) in the star of
central node x0. Based on Taylor series expansions, Hj can be given as

Hj = H0 + aj
∂H0

∂x
+ bj

∂H0

∂y
+

1
2

(
a2

j
∂2H0

∂x2 + b2
j

∂2H0

∂y2

)
+ ajbj

∂2H0

∂x∂y
+ . . . . . . , j = 1, 2, . . . , m, (7)

with
aj = xj − x0, and bj = yj − y0. (8)

By truncating the expansion (7) after second-order derivatives of hydraulic head H,
we can define a residual function R(H) as the following:

R(H) =
m

∑
j=1

[(
H0 − Hj + aj

∂H0

∂x
+ bj

∂H0

∂y
+

a2
j

2
∂2H0

∂x2 +
b2

j

2
∂2H0

∂y2 + ajbj
∂2H0

∂x∂y

)
κj

]2

, (9)

with the following weighting function κj [57,58]:

κj =
exp

(
−λ2

j

)
− exp

(
−λ2

m
)

1− exp(−λ2
m)

, j = 1, 2, . . . , m, (10)

in which λj =
∣∣xj − x0

∣∣, and λm = max
{

λj, j = 1, 2, . . . , m
}

. It should be noted that the
weighting function in the GFDM should be a monotonic decreasing function of λj. Because
the Taylor series approximation becomes more accurate when the distance λj is smaller,
which should have a higher weight κj in residual function R(H) of Equation (9). Some
other weighting functions can be found in [53,59].

A vector PH is defined by the following:

PH =

[
∂H0

∂x
,

∂H0

∂y
,

∂2H0

∂x2 ,
∂2H0

∂y2 ,
∂2H0

∂x∂y

]T

(11)
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Minimizing the residual function R(H) with respect to each element in the vector
PH , i.e.,

∂R(H)

∂
{

∂H0
∂x

} = 0,
∂R(H)

∂
{

∂H0
∂y

} = 0,
∂R(H)

∂
{

∂2 H0
∂x2

} = 0,
∂R(H)

∂
{

∂2 H0
∂y2

} = 0,
∂R(H)

∂
{

∂2 H0
∂x∂y

} = 0, (12)

we can have a system of linear equations as the following:

APH = b, (13)

with the following:

A =
m

∑
j=1

diag
(

E(j)
1

)
ä diag

(
E(j)

2

)
, (14)

b = BH =

(
−

m

∑
j=1

κjE
(j)
2 , κ1E(1)

2 , κ2E(2)
2 , · · · , κmE(m)

2

)
5×(m+1)


H0
H1
H2

...
Hm


(m+1)×1

, (15)

where ä is a 5× 5 square matrix that all elements are one, diag
(

E(j)
1

)
and diag

(
E(j)

2

)
are

both diagonal matrices with their diagonal elements as the following:

E(j)
1 = κj

[
aj bj a2

j b2
j ajbj

]T
, and E(j)

2 =
κj

2

[
2aj 2bj a2

j b2
j 2ajbj

]T
, (16)

and H = [H0, H1, H2, . . . , Hm]
T .

With the help of Equation (13) and Equation (15), the vector PH can be formulated as
the following:

PH = A−1B[H0, H1, H2, . . . , Hm]
T . (17)

As a result, all the first- and second-order derivatives of hydraulic head H at central
node x0 are expressed as the linear combinations of values Hj (j = 0, 1, . . . , m). By substi-
tuting the corresponding second-order derivatives of Equation (17) into Equation (6), we
can easily recast Equation (6) as the following:

m

∑
j=0

αj Hj = Q, (18)

where αj (j = 0, 1, . . . , m) and Q are obviously known and can be determined by
Equations (6) and (17). For each collocation node excepting that of satisfying boundary
condition (2), one equation can be obtained by using the above similar derivation. It should
be noted that H0 = g(x0, y0, ti+1) is directly used as one equation for collocation nodes of
satisfying boundary condition (2). Finally, by using the GFDM, the spatial equation with
the corresponding boundary conditions has been transformed into a system of linearly
algebraic equations with a sparse matrix. The values of hydraulic head H at all collocation
nodes can be calculated once this system is solved.

In addition, we consider a case with a nonlinear volumetric flow rate in the following
numerical example 4 to further verify the proposed approach. Through a similar derivation
process, a nonlinear system of algebraic equations is established and solved by using
“fsolve” function of MATLAB.

4. Numerical Examples

In this section, four numerical examples with square and complicated domains are
given to test the accuracy and stability of the proposed method. To preferably estimate
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the precision of numerical results, two different error definitions are provided as the
following [60,61]:

Global error =

√√√√ N

∑
i=1

(Hi − Hi)
2/

√√√√ N

∑
i=1

Hi
2 , (19)

Max error = max
1≤i≤N

{∣∣Hi − Hi
∣∣

|Hi|

}
(20)

in which N denotes the number of collocation nodes, Hi and Hi represents the exact and
numerical results of hydraulic head at the i-th node. Unless otherwise specified, the number
of supporting nodes in a star is set to m = 12 in all numerical examples.

4.1. Example 1: Hydraulic Head Distribution in a Square Domain

As the first numerical example, we consider the distribution of hydraulic heads in
a unit square domain with its central point (0.5, 0.5). The specific aquifer storativity is
us = 1, and the hydraulic conductivities are Tx = 1 and Ty = 3. The volumetric flow rate
W is given as the following:

W(x, y, t) = sin(0.5πx) sin(0.5πy)
(

π2 sin t + cos t
)

. (21)

The Dirichlet boundary condition H(x, y, t) = 0 is imposed on the boundaries x = 0,
and y = 0. The Neumann boundary condition ∂H(x,y,t)

∂n = 0 is applied to the boundaries
x = 1, and y = 1. The initial condition is H(x, y, 0) = 0. Based on these, the exact solution
can be determined as the following:

H(x, y, t) = sin(0.5πx) sin(0.5πy) sin t. (22)

In the numerical simulation, the final time is set to Tf = 2, and the time step size is
∆t = 0.05. For the spatial discretization, 396 collocation nodes are distributed in the domain
and its boundary, which have the following two different patterns: regular distribution
(case 1) and irregular distribution (case 2), as shown in Figure 2a. From t = 0 to t = 2, the
variations of global and max errors of hydraulic head H calculated by the GFDM with the
Crank–Nicolson scheme (CN-GFDM) are plotted in Figure 2b. As we can see from this
figure, the developed method has good performance for two different collocation node
distributions. We also find that errors obtained by employing the irregular distribution
(case 2) are larger than those obtained by using the regular distribution (case 1).

Mathematics 2022, 10, 515 6 of 15 
 

 

1
Max error max i i

i N
i

H H
H 

    
  

 (20)

in which N  denotes the number of collocation nodes, iH  and iH  represents the exact 
and numerical results of hydraulic head at the i-th node. Unless otherwise specified, the 
number of supporting nodes in a star is set to 12m   in all numerical examples. 

4.1. Example 1: Hydraulic Head Distribution in a Square Domain 
As the first numerical example, we consider the distribution of hydraulic heads in a 

unit square domain with its central point (0.5,0.5) . The specific aquifer storativity is 

1su  , and the hydraulic conductivities are 1xT   and 3yT  . The volumetric flow 

rate W  is given as the following: 

    2( , , ) sin 0.5 sin 0.5 sin cos .W x y t x y t t     (21)

The Dirichlet boundary condition ( , , ) 0H x y t   is imposed on the boundaries 

0, and 0x y  . The Neumann boundary condition 
( , , ) 0H x y t


n

 is applied to the 

boundaries 1, and 1x y  . The initial condition is ( , ,0) 0H x y  . Based on these, the 
exact solution can be determined as the following: 

( , , ) sin(0.5 )sin(0.5 )sin .H x y t x y t   (22)

In the numerical simulation, the final time is set to 2fT  , and the time step size is 

0.05t  . For the spatial discretization, 396 collocation nodes are distributed in the do-
main and its boundary, which have the following two different patterns: regular distribu-
tion (case 1) and irregular distribution (case 2), as shown in Figure 2a. From 0t   to 

2t  , the variations of global and max errors of hydraulic head H  calculated by the 
GFDM with the Crank–Nicolson scheme (CN-GFDM) are plotted in Figure 2b. As we can 
see from this figure, the developed method has good performance for two different collo-
cation node distributions. We also find that errors obtained by employing the irregular 
distribution (case 2) are larger than those obtained by using the regular distribution (case 
1). 

  
(a) (b) 

Figure 2. (a) Irregular distribution of 396 collocation nodes, (b) Global and max errors of hydraulic 
head H  from 0t   to 2t  . 

0 0.2 0.4 0.6 0.8 1
X

0

0.2

0.4

0.6

0.8

1
Boundary collocation nodes Interior collocation nodes

Figure 2. (a) Irregular distribution of 396 collocation nodes, (b) Global and max errors of hydraulic
head H from t = 0 to t = 2.
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To investigate the convergence behavior of the CN-GFDM, the program is rerun by
only changing the number of collocation nodes compared with the previous setting. Here,
the distribution of nodes is regular. By using the developed method with a different number
of collocation nodes (or a different mean distance of collocation nodes), Table 1 provides
the max and global errors of the numerical results of the hydraulic head at time t = 2. It can
be obviously observed that the errors decay with an increasing collocation node number,
which indicates the CN-GFDM has a good convergence property for this case.

Table 1. Max and global errors of hydraulic head H with different number of collocation nodes.

Number of
collocation nodes 21 96 192 285 396

Mean distance of
collocation nodes 2.50× 10−1 1.11× 10−1 7.69× 10−2 6.25× 10−2 5.26× 10−2

Max error 1.01× 10−2 3.75× 10−3 2.05× 10−3 1.42× 10−3 1.04× 10−3

Global error 5.94× 10−3 2.74× 10−3 1.57× 10−3 1.11× 10−3 8.18× 10−4

4.2. Example 2: Hydraulic Head Distribution in a Heart-Shaped Domain

The second numerical example is a hydraulic head distribution in a heart-shaped
domain, and the dimension of this domain is shown in Figure 3. The specific aquifer
storativity and hydraulic conductivity are assumed to be as the following:

us = 3, Tx = 2Ty = 2. (23)

The volumetric flow rate is W = 0. In this case, the Dirichlet boundary and initial
conditions are imposed as the following:

H(x, y, t) = e−t cos x cos y + c, (x, y) ∈ Γ, (24)

H(x, y, 0) = cos x cos y + c, (x, y) ∈ Ω, (25)

where c = 0.2. The exact solution for this example is determined as
H(x, y, t) = e−t cos x cos y + c.
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To simulate the solution from t = 0 to t = 5, the developed method employs 218, 464
(see Figure 4), and 1700 collocation nodes. The time step size is set to ∆t = 0.05. Figure 5
provides the contours of relative errors (RE) of the hydraulic head at final time t = 5 by
using these three distributions of collocation nodes. It can be found that the max relative
error of numerical results in the computational domain is less than 3× 10−4 even only using



Mathematics 2022, 10, 515 7 of 14

218 collocation nodes. Moreover, all numerical errors overall decreased with an increasing
number of collocation nodes.
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Next, we keep the above-mentioned setting and distribute 1700 collocation nodes. The
mean distance of these nodes is 0.101. Table 2 lists the max and global errors of hydraulic
head H at final time t = 5, which are calculated by the CN-GFDM with different time step
sizes. As we can observe, the errors decay rapidly when decreasing the time step size.

Table 2. Max and global errors of hydraulic head H with different time step size.

Time step size 0.625 0.50 0.25 0.125 0.05

Max error 2.51× 10−3 1.60× 10−3 4.05× 10−4 8.42× 10−5 1.17× 10−5

Global error 1.20× 10−3 7.80× 10−4 1.91× 10−4 3.89× 10−5 4.97× 10−6

Finally, we investigate the influence of supporting node number m on the precision and
computational efficiency of the developed approach. The time step size is reset as ∆t = 0.25.
Table 3 provides the variations of two kinds of errors and CPU time with different numbers
of supporting nodes. As we can observe, the accuracy of numerical results obtained by the
present method is relatively insensitive to the number of supporting nodes. To have a higher
computing efficiency of the CN-GFDM, we should choose a relatively small number of
supporting nodes when the numerical results satisfy the accuracy requirement.
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Table 3. Max and global errors of hydraulic head H and CPU time with different supporting
node numbers.

m 12 16 20 24 28

Max error 4.05× 10−4 3.53× 10−4 3.45× 10−4 3.38× 10−4 3.23× 10−4

Global error 1.91× 10−4 1.71× 10−4 1.66× 10−4 1.61× 10−4 1.55× 10−4

CPU time (s) 0.27 0.34 0.38 0.44 0.49

4.3. Example 3: Hydraulic Head Distribution in a Complicated Domain

As the third numerical example, the distribution of hydraulic head in a complicated
domain is considered. The dimension of this domain is 2.7× 1.4, as shown in Figure 6. The
specific aquifer storativity is set to us = 0.3, and hydraulic conductivities are assumed to
be functions as the following:

Tx = e|x|, and Ty = e|y|. (26)

The volumetric flow rate is given as the following:

W(x, y, t) = ex+y[us cos t− (Tx + Ty) sin t
]

(27)

The Dirichlet boundary condition is imposed as the following:

H(x, y, t) = ex+y sin t, (x, y) ∈ Γ, (28)

and initial condition is H = 0. The exact solution for this example is H(x, y, t) = ex+y sin t.
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Figure 6. The dimension of a complicated domain.

We first consider the simulation from t = 0 to t = 5, and set the time step size as
∆t = 0.1. By using the present approach with 3398 (see Figure 7) and 8918 collocation
nodes, Figures 8 and 9 respectively plot the contours of relative errors of hydraulic head
H and its flux ∂H

∂x at final time t = 5. The numerical results in these figures illustrate the
availability and convergency of the developed CN-GFDM.

Finally, a long-time simulation of hydraulic head H from t = 0 to t = 100 is considered.
The number of collocation nodes is 8918, and the time step size is ∆t = 0.1. Figure 10 shows
the max and global errors of hydraulic head H, which are changed as functions of time. As
we can see from this figure, the two kinds of errors both remain stable in this simulation.
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4.4. Example 4: Nonlinear Hydraulic Head Distribution in a Gear Domain

As the final numerical example, we consider the distribution of nonlinear hydraulic
head in a gear domain. Figure 11 shows the dimension of the gear domain. The specific
aquifer storativity is assumed to be us = 1200, and hydraulic conductivities are the following:

Tx = x2, and Ty = y2. (29)
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The volumetric flow rate is a nonlinear term given as the following:

W(x, y, t) = H2(x, y, t)−
[(

x4 + y4
)

e
t

100 + 0.1
]2

(30)

The Dirichlet boundary condition is imposed as the following:

H(x, y, t) =
(

x4 + y4
)

e
t

100 + 0.1, (x, y) ∈ Γ, (31)

and initial condition is the following:

H(x, y, t) = x4 + y4 + 0.1, (x, y) ∈ Ω. (32)

The exact solution for this case is determined as the following:

H(x, y, t) =
(

x4 + y4
)

e
t

100 + 0.1 (33)
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The numerical simulation for this case is run from t = 0 to t = 10. The time step size
is set to ∆t = 0.05, and 1186 collocation nodes are distributed in the gear domain and its
boundary as shown in Figure 12. The contours of relative errors of the hydraulic head H
at t = 5 and t = 10 are plotted in Figure 13. As we can see from this figure, the present
approach obtains the satisfied numerical results for this nonlinear case, and max relative
error is less than 4× 10−3. Figure 14 provides the max and global errors of hydraulic
head H at each time node, which illustrates that the developed CN-GFDM yields accurate
numerical results as an increasing time.
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Crank–Nicolson scheme for temporal discretization and the GFDM for spatial discretiza-
tion. The present approach is truly meshless and easy to program. 
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errors of hydraulic head are both provided for numerical examples with different bound-
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tivities. Numerical results indicate that the hybrid localized meshless method developed 
in this work obtains the satisfied accuracy and convergency in time and space. 
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5. Concluding Remarks

To simulate the transient groundwater flow in homogeneous and anisotropic
two-dimensional mediums, a hybrid localized meshless method is constructed based
on the Crank–Nicolson scheme for temporal discretization and the GFDM for spatial
discretization. The present approach is truly meshless and easy to program.

To fully investigate the performance of the developed method, the max and global
errors of hydraulic head are both provided for numerical examples with different boundary
conditions, complicated geometry domains, and several kinds of hydraulic conductivities.
Numerical results indicate that the hybrid localized meshless method developed in this
work obtains the satisfied accuracy and convergency in time and space.
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