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Abstract: Nonadditivity of a fuzzy measure, as an indicator of defectiveness, makes a fuzzy mea-sure
less useful in applications compared to additive, probabilistic measures. In order to neutralize
this indicator of defectiveness to some degree, it is important to study the representations of fuzzy
measures, including, in particular, additive, probabilistic representations. In this paper, we discuss
a couple of probability representations of a fuzzy measure: the Campos-Bolanos representation
(CBR) and the Murofushi–Sugeno representation (MSR). The CBR is mainly represented by the
Associated Probability Class (APC). The APC is well studied and the aspects of its use can be found
in many interesting studies. This is especially true for the environment of interactive attributes in
their identification and multi-attribute group decision-making (MAGDM) models, related to the
attributes’ Shapley values and interaction indexes. The MSR is a less-used tool in practice today. The
main motivation of the research presented here was to explore the connections between these two
representations, which will help increase the usability of the MSR in practice in the future. In the MSR,
we constructed the nonequivalent representation class (NERC) of a fuzzy measure. This probabilistic
new representation is somewhat similar to the APC in the CBR environment. The proposition on
the existence of the MSR induced by the CBR was proven. The presented formula of the APC by the
NERC was obtained. The duality property of fuzzy measures for the CBR is well studied with respect
to fuzzy measures—Choquet second-order dual capacities. Significant properties were proven for
the representation of a monotone expectation (ME) under the NERC conditions: as is known, the
necessary and sufficient conditions for the existence of the second-order Choquet dual capacities are
proven in the terms of the APC of a CBR and ME. After establishing the links between the APC of a
CBR and the NERC of a MSR, we proved the same in the case of the MSR. A recursive connection
formula between the interaction indexes, Shapley values, and the probability distribution of the
NERC of a two-order additive fuzzy measure was obtained in the environment of a general MAGDM.
A new distance concept was introduced for all fuzzy measures’ classes defined in finite sets in terms
of the NERC. The distance between two fuzzy measures was defined as the distance between their
NERCs. This distance is equivalent to the distance defined on the same class under the conditions
of the APC of a CBR. The correctness proposition on the extension of the distance between fuzzy
measures for the NERC was preserved: distances between any two fuzzy measures and between their
dual fuzzy measures also coincided in the CBR as the MSR. After parameterization, the calculation
formula of the new distance was obtained. An illustrative example was considered in order to easily
present the obtained results. The connection schemes between the CBR and MSR and the sequential
scheme of key facts and results obtained are presented at the end of this work.

Keywords: fuzzy measure; Choquet capacities of order two; associated probabilities; probability
representation of a fuzzy measure; distance; monotone expectation

1. Introduction

Often in the expert knowledge-based models of complex processes or events, re-
searchers use nonadditive but monotone estimators instead of additive ones [1–8]. This
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occurs because of the complex nature of the entity of study and the deficiency of statistical
data, or its absence. One such monotone estimator is a fuzzy measure (the same as a mono-
tone measure [6] or a capacity [5]). The requirement of additivity of classical measures
implies the supposition that split sets are noninteractive regarding the measured property.
This is very limiting in some application contexts. For instance, we analyze the work of
workers whose purpose is to produce certain type of products. The workers are split into
groups G1, G2, . . . , Gn, and suppose that ν(Gi) is the number of products produced by
group Gi, i = 1, . . . , n. One may easily suppose that for any two groups Gi, Gj, any of the
following may be true:

a. ν(Gi ∪ Gj) = ν(Gi) + ν(Gj) when groups Gi and Gj work disjointedly;
b. ν(Gi ∪ Gj) > ν(Gi) + ν(Gj) when the groups work together and their collaboration

is effective;
c. ν(Gi ∪ Gj) < ν(Gi) + ν(Gj) when the groups work together and their collaboration

is ineffective.

Clearly, (b) and (c) cases are due to the way the groups work together as they interact
with each other. In these cases, the productivity rate ν. is nonadditive but naturally fulfills
the monotonicity condition with respect to inclusion.

However, the use of fuzzy measure in practical models is associated with a number of
difficulties. In [4], we read “The flexibility of non-additive (fuzzy) measures when mod-
elling interaction comes at a significant cost: the exponential number of coalitions whose
contributions need to be quantified. This gives rise to two problems: their interpretation
and elicitation. If a fuzzy measure based model is to be understood by domain experts,
the large number of capacity values need to be combined into some sort of characteristic
indices, such as the overall importance of an input in all coalitions, or the overall interaction
of a pair of inputs. On the other hand, if a fuzzy measure is to be pecified, either by the
experts or by machine learning techniques, it has to be done through a few desirability
criteria and in a computationally efficient way”.

However, there are also other difficulties when using a fuzzy measure. A fuzzy mea-
sure is distinguished by many important properties from the additive measure, probability,
but it should also be noted that nonadditivity limits the applicability in the practice of
a fuzzy measure. This is why authors have continued to research the additive represen-
tations of fuzzy measures. These can be nonadditivity indexes [9–12] or the degrees of
defectiveness of nonadditivity [2], importance values, interaction indexes [7,13–16], and
other parameters. We especially highlight the probabilistic representations of a fuzzy
measure [8,17–19] as the main object of our research. Therefore, the authors of this work
have continued to study probabilistic representations of fuzzy measures [20–30], which
have received new perspectives for their use.

Let us briefly overview the studies on fuzzy measure representations. One direction is
probabilistic representations. In [17], a monotone expectation was defined as the Choquet fi-
nite integral. The theorems of its existence were proven with respect to the fuzzy measure’s
associated probabilities class. In [18], the authors introduced the notion of distance on
fuzzy measures defined on finite sets as the distance between their associated probability
classes. An application of this distance to measure the uncertainty and specificity of fuzzy
measures was presented. In [19], the MSR of a fuzzy measure was defined. Basic proposi-
tions on the existence of specific fuzzy measures were proven in terms of the MSR. Some
theorems of Murofushi and Sugeno [19] regarding the representation of fuzzy measures
and also the Choquet integral were given in [8]. It was revealed that, if there exists a
certain dependence between two measurable functions, then the Choquet integral turns
out to be additive for those functions. Furthermore, this work discussed null sets regarding
fuzzy measures and also fuzzy measures given on a class distinct from a σ-algebra. Two
probability representations of a finite fuzzy measure—the CBR and MSR from the point of
view of their applicability in practical MAGDM models—were analyzed in [24]. In [31], the
Murofushi–Sugeno-type new representation-interpreter was constructed for the concrete
class of finite fuzzy measures. The universal interpreter of a monotone (fuzzy) measure in
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the probability representation of Murofushi–Sugeno under the Choquet integral environ-
ment and second-order dual capacities were considered in [30]. The next direction is the
study of the fuzzy measure nonadditivity indexes related to the use of a fuzzy measure
in interactive MAGDM models, where some interactions between attributes are observed
in the decision-making process. The nonadditivity index is a competent indicator that
reflects the degree of interaction of the attributes. In [12], this index is used to indicate
the range of advantages with respect to the alternatives of a decision-maker. In [9], the
nonadditivity index for replacement of the Shapley concurrent interaction index and con-
struction of an undated MAGDM-based decision scheme was introduced. In the work, a
scheme was developed to calculate the nonadditivity index. A decision support algorithm
was also built, which generates a dominance relationship to obtain the optimal ranking
of alternatives. Some important properties of the nonadditivity index were discussed
in [11]. A capacity identification algorithm based on the notion of the nonadditivity index
was presented. The algorithm was formulated with linear constraints that represent the
explicit or implicit advantages of the decision-maker over the alternatives. The model
presents a linear programming problem to identify the optimal capacity. On the basis of the
nonadditivity index [10], a capacity identification simulation algorithm was constructed,
taking into account the given interactions of the attributes. Attempts at fewer computations
of the new algorithm in the generation process compared to other similar algorithms ware
established. We single out one more direction of the research—the additivity defectiveness
of the capacity [2]. In this paper, the authors introduced the concept of capacity defec-
tiveness, which is the degree of capacity nonadditivity. For certain capacity classes, the
defectiveness coefficient was calculated or approximated. On the basis of the defectiveness
index, an optimal approximation approach for fuzzy integrals was developed in the case of
the replacement of the fuzzy measure with the classical measure. Particularly noteworthy
are the problems of the identification of fuzzy measures (capacities) in the context of their
representations, such as the interaction indexes of MAGDM attributes and the importance
values (Shapley values). In [14], we find some representations of a fuzzy measure such as
Mobius transformation, interaction indexes of attributes, and importance values (Shapley
values). K-order additive fuzzy measures’ representations were considered. In [15], it
was shown that each discrete fuzzy measure represents a certain k-order additive fuzzy
measure. The paper presented alternative ways to represent capacity by interaction indexes
of attributes and Shapley values. Based on Heuristic Least Mean Squares, the learning
algorithm for identification of k-maxitive measures was designed in [32]. In [33], the au-
thors considered the structure and qualitative properties of a specific type of fuzzy measure
that can be applied to the model of interactive MAGDM. Having constructed the general
form of a nonadditive set function, the authors utilized the interaction coefficient, Möbius
representation, and dual measure regarding the proposed measure. In [34], the generalized
interaction index, gindex, was introduced. Its calculation needs vast resources in both time
and memory. In order to reduce the complexity issues, the authors presented algorithms for
the calculation of the gindex for k-maxitive measures. In [35], a new visualization scheme
for a better understanding of the inner workings of a fuzzy measure was given. In [1],
a joint Choquet integral-fuzzy measures (CI-FM) operator that utilizes the interactions
between elements of information was studied. In [36], the authors, for identification of a
fuzzy measure (capacity), used a hesitant fuzzy linguistic term set in describing the inter-
activity between attributes. In [16], the approaches proposed in the literature presented
today were discussed, as well as their capabilities for capacity identification issues. Their
advantages and disadvantages were discussed. Finally, we note the studies that connect
capacity identification problems with the representations of the probabilities associated
with them and with attribute interaction indices in the context of decision-making models
with the new aggregation operators built there. In [24], in the environment of intuitionistic
MAGDM, the new aggregation weighted operators were constructed that consider pairwise
interactions of attributes. The new aggregates are based on an associated probabilistic class
of a fuzzy measure. In [26], new aggregation operators reflecting the interactions between
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all attribute combinations in fuzzy MAGDM models were built. In [27], the authors created
a Choquet integral-based new aggregation operators’ family under q-rung orthopair fuzzy
sets information. New operators consider all pairwise interactions between attributes.
Based on the Shapley entropy maximum principle, a two-order additive fuzzy measure
was created in the environment of a pair of interaction indexes and importance values
of attributes of a MAGDM model. Approximately similar results were obtained in [28]
under q-rung picture linguistic sets information. Associated intuitionistic fuzzy Choquet
averaging (As-IFCA) and geometric (As-IFCG) aggregation operators were constructed
in [23]. The As-IFPA (As-IFPG) operator coincided with the Intuitionistic Fuzzy Probabilis-
tic Averaging (Intuitionistic Fuzzy Probabilistic Geometric) operator when a probability
measure was used instead of a fuzzy measure in aggregations. Pair interaction indexes
were used for the identification of a two-order additive fuzzy measure. Some variants of
the newly constructed operators were utilized in the decision-making problem on certain
fiscal policies. In [25], the Associated Immediate Probability Intuitionistic Fuzzy Order
Weighted Averaging and Geometric operators were constructed. Associated probability
distributions in the role of uncertainty measure were used. The new aggregation operators
were considered in the intuitionistic fuzzy environment and their certain properties were
given. In [29], a new method of possibilistic discrimination analysis was developed for
the creation of positive and negative discrimination measures used for each alternative
applicant’s specific attribute. The gained discrimination pair reproduces the interaction of
attributes in an intuitionistic fuzzy environment. For the intuitionistic fuzzy assessments,
the new intuitionistic aggregation operators, the AsP-IFOWA and AsP-IFOWG, were in-
troduced and considered. These operators represent the extensions of the Choquet finite
integral and Yager’s OWA operators.

The main object of our study was two probabilistic representations of a fuzzy measure
defined on finite sets—the MSR [8,19] and CBR [17,18]. The motivation for the research
consisted of the following. It should be noted that the use of the CBR for practical purposes
was presented to a higher degree than the MSR. This is related to the more “flexible” struc-
ture of the CBR and the ability to easily embed its APC in problems such as fuzzy measure
identification [13–16] and MAGDM modeling of the Shapley values and interaction indices
of interacting attributes of the environment [9,22,26–28]. The main motivation for this study
was to establish links between these two probabilistic representations and to obtain evidence
for representations of the Choquet integral in the MSR environment as the Choquet integral is
the main aggregation tool in MAGDM modeling, which considers the interactions between
attributes. Clearly, the results obtained would help in the future to increase the usability of
the MSR apparatus in practice, and particularly in MAGDM modeling. Basic definitions
and main propositions on the CBR and MSR are presented in Section 2. The connection
between the CBR and MSR is studied and schematically and compositionally presented
in Section 3. In Section 4, one important class of fuzzy measures—Choquet second-order
capacities—is studied in the MSR environment. Propositions on the existence of Choquet
second-order capacities in the MSR are proven analogously to those proven in the CBR.
Important properties of the monotone expectation (ME) [4] in the MSR environment are also
proven in Section 4. In Section 5, a new definition of distance on the class of fuzzy measures
in the MSR environment is introduced. It is proven that the new distance is equivalent
to the corresponding definition in the CBR. By parameterization of the new distance, its
calculation formula is obtained from a practical point of view. The correctness principle
between two fuzzy measures at corresponding dual measures is preserved. In Section 6,
the linear recursive formula between the attributes’ interaction indexes and probability
distribution of the NERC of a two-order additive fuzzy measure is constructed. In Section 7,
the example of a two-element set is considered, where some of the main results obtained
are shown in a simple way. The last section presents the main results of the research and
the prospects of future research in the direction of the problems discussed in the article.
The sequential scheme of key facts and obtained results is presented by the Scheme 1. New
results are highlighted in pink in the scheme.
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2. Preliminary Concepts

Take a finite set Y = {y1, y2, . . . , yn} and let (Y, B(Y), ν) be a fuzzy measure space [4,17,37].

Definition 1. Ref. [17]: ν, ν∗ : B (Y)→ [0; 1] are dual fuzzy measures if ∀C ∈ B(Y):

ν∗(C) = 1− ν(C), C = Y\C.

Let Sn denote the permutation group of all-natural numbers from 1 to n.
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Definition 2. Ref. [17]: ∀σ ∈ Sn, the probability distribution

{ψσ(yσ(1)), ψσ(yσ(2)), . . . , ψσ(yσ(n))}

on Y is called an associated probability (AP) of a fuzzy measure ν, if

ψσ(yσ(1)) = ν({yσ(1)}),
ψσ(yσ(2)) = ν({yσ(1), yσ(2)})− ν({yσ(1)}),
. . . . . . . . . . . . . . .
ψσ(yσ(l)) = ν({yσ(1), . . . , yσ(l)})− ν({yσ(1), . . . , yσ(l−1)}),
. . . . . . . . . . . . . . .
ψσ(yσ(n)) = ν({yσ(1), . . . , yσ(n)})− ν({yσ(1), . . . , yσ(n−1)}),

(1)

and a set of all APs {ψσ(yσ(1)), ψσ(yσ(2)), . . . , ψσ(yσ(n))}σ∈Sn
is called an associated probabilities

class (APC) of a fuzzy measure ν.

It is well known [17] that ∀C ∈ B(Y) ∃σ = σC ∈ Sn such that

ν(C) = ψσC (C) (2)

The APC uniquely defines a fuzzy measure ν on B(Y) [4], and we call it the CBR of a
fuzzy measure ν.

Let (Θ,B(Θ), π) be some finite probability measure space, where Θ is a finite set
of some definite “indexes” [19]. Let ζ :B (Y)→B(Θ) be a 0–1 order-preserving homo-
morphism such that ν = π ◦ ζ, i.e., ζ(∅)=∅, ζ(Y) = Θ; if A, B ∈B(Y) and A ⊂ B, then
ζ(A) ⊂ ζ(B) and ∀G ∈ B(Y):

ν(G) = π(ζ(G))

Definition 3.Ref. [19]: (Θ,B(Θ), ζ, π) is called the Murofushi–Sugeno representation (MSR) of
a fuzzy measure ν if ∀G ∈ B(Y):

ν(G) = π(ζ(G)) = ∑
θ∈ζ(G)

πθ ≡ ∑
θ∈ζ(G)

π(θ) (3)

It is clear that the (Θ,B(Θ)) space is not unique. We construct the MSR (ΘY, B(ΘY),
ζY, πY) such that an arbitrary MSR (Θ, B(Θ), ζ, π) is an equivalent representation of (ΘY,
B(ΘY), ζY, πY, where ΘY and ζY do not depend on π and ζ (see Definition 5).

Definition 4. Ref. [19]: Let ΘY denote the set of all semi-filters in B(Y), where the semi-filter Se
in B(Y) is a subset from B(Y) with the properties: Y ∈ Se, ∅ /∈ Se; if C ∈ Se and C ⊂ B, then
B ∈ Se.

Let ζY be a mapping from B(Y) to B(ΘY) by the equality

ζY(C) = {Se ∈ ΘY/C ∈ Se}, ∀C ∈B(Y). (4)

Obviously, ζY is a 0− 1 order-preserving homomorphism and ∀C ∈B(Y).

ν(C) = πY(ζY(C)). (5)

Now, we construct the probability measure πY:

Definition 5. Ref. [19]: Suppose that ∀yi ∈ Y, ν({yi}) > 0. MSRs (ΘY, B(Θ), ζ, π) and
(ΘY, B(ΘY), ζY, πY) are called equivalent if ∃M : B (Y)→B(ΘY) such that

M(ζ(C)) = ζY(C), ∀C ∈ B(Y), π(E) = πY(M(E)), ∀E ∈ B(Θ). (6)
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Note that constraint ∀yi ∈ Y, ν({yi}) > 0 is natural from an application and practical
point of view.

Proposition 1. Ref. [19]: For every MSR (Θ, B(Θ), ζ, π), there exists its equivalent representa-
tion (ΘY), B(ΘY), ζY, πY) and

πY(C) = π(ω−1(C)), ∀C ∈B(ΘY), (7)

where ω : Θ→B(ΘY) is such that ∀θ ∈ Θ:

ω(θ) = {B ∈ B(Y)/θ ∈ ζ(B)}. (8)

It is simple to prove that B(ΘY) are semi-filters. Notice that in (ΘY,B(ΘY), ζY, πY),
(ΘY,B(ΘY)) and ζY do not depend on the fuzzy measure ν.

Proposition 2. Ref. [19]: For every fuzzy measure ν: B (Y)→ [0; 1] , there exists a probability
measure πY : B (Y)→ [0; 1] and MSR (ΘY,B(ΘY), ζY, πY), that ∀C ∈B(Y):

ν(C) = πY(ζY(C)) (9)

From Propositions 1-2, we easily show that for the construction of the representation
(ΘY, B(ΘY), ζY, πY) of a fuzzy measure ν, it is sufficient to construct probability measure
πY. Note that if (ΘY, B(ΘY), ζY, π′Y) and (ΘY, B(ΘY), ζY, π′Y) are two MSRs of ν, then
∀C ∈B(Y):

ν(C) = π
′
Y(ζY(C)) = π

′′
Y(ζY(C)) (10)

i.e., projections of the probability measures π′Y and π
′′
Y on the sets ζY(C) ∈B(ΘY) coincide.

Then, from [0; 1]B(ΘY), we may select the class of probability measures of nonequivalent
representations of the fuzzy measure ν

Lν
Y = {πY ∈ [0; 1]B(ΘY)/∀C ∈B(Y), ν(C) = πY(ζY(C))}. (11)

Definition 6. {ΘY,B(ΘY), ζY, πY}πY∈Lν
Y

representations are called the nonequivalent represen-
tations class (NERC) of the fuzzy measure ν.

Notice that the NERC completely describes the fuzzy measure ν and analogously
describes APC {ψσ}σ∈Sn

in the CBR.

3. Connection between Campos-Bolanos and Murofushi–Sugeno Representations

It is clear that ∀σ ∈ Sn, i = 1, 2, . . . , n,

ψσ(yσ(i)) = π(ζ({yσ(1), . . . , yσ(i)}))− π(ζ({yσ(1), . . . , yσ(i−1)})), (12)

where π(ζ({yσ(0)})) ≡ 0, i.e., if MSR (Θ,B(Θ), ζ, π) of the fuzzy measure ν is known,
then from (12), we obtain APC {ψσ}σ∈Sn

of the CBR. On the contrary, take APC {ψσ}σ∈Sn
of the CBR of the fuzzy measure ν. Then, we construct MSR (Θ,B(Θ), ζ, π) induced
from {ψσ}σ∈Sn

.

Proposition 3. Given APC {ψσ}σ∈Sn
of the fuzzy measure ν, then there exists MSR (Θ,B(Θ), ζ, π)

that is induced by the CBR.

Proof. Let us denote the set

Θ = {ψσ(C) > 0/σ ∈ Sn, C ∈B(Y)} (13)
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and consider probability measure π on B (Θ) : ∀ψσ(C) > 0,

π({ψσ(C)}) = ψσ(C)−max
Θσ

C

ψβ(D), (14)

where
Θσ

C = {ψβ(D)/β ∈ Sn, D ∈B (Y), ψβ(D) < ψσ(C)}.

It is not difficult to prove that π is a probability measure on B(Y). Then, ∀C ∈B(Y):

π(ζ(C)) = ∑
ψσ(D)∈η(C)

π({ψσ(D)}), (15)

where ζ(C) is defined as

ζ(C) = {ψσ(D) > 0/σ ∈ Sn, D ∈B (Y), ψσ(D) ≤ ν(C)}. (16)

With regard to (2) and (15), after elementary simplification, we receive

π(ζ(C)) = ∑
ψσ(D) ≤ ψσ(C)

σ ∈ Sn,

{ψσ(D)−max
Θσ

D

ψβ(G)} = ψσC (C) ≡ ν(C), (17)

where Θσ
D = {ψβ(G)/β ∈ Sn, G ∈B(Y), ψβ(G) < ψσ(D). �

The constructed MSR is called an induced representation by APC−{ψσ}σ∈Sn
. Figure 1

presents the schematic connection between Campos-Bolanos and Murofushi–Sugeno repre-
sentations. From Figure 2, it follows that ∀G ∈B(Y):

ξ ◦ ρ(G) = ψσC (G) = ν(G),
π ◦ ζ(G) = π(ζ(G)) = ν(G),
π ◦ µ ◦ ρ(G) = π(µ(ρ(G))) = ν(G).
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be NERCs to the fuzzy measures ν and *ν , respectively. 

Figure 2. The compositional connection between Campos-Bolanos and Murofushi–Sugeno representations.

4. Choquet’s Capacities of Order Two in Murofushi–Sugeno Representations

In this section, propositions on the existence of Choquet extreme capacities in the
environment of the MSR are proven.

Proposition 4. Ref. [17]: Take two fuzzy measures ν and ν∗ on B(Y). ν and ν∗ are dual fuzzy
measures if and only if their APCs coincide: {ψσ(·)}σ∈Sn

= {ψ∗σ(·)}σ∈Sn
, and for ∀σ ∈ Sn and

its dual permutation σ∗ ∈ Sn(∀i = 1, 2, . . . , n : σ(i) = σ∗(n− i + 1)), the following equalities
hold: ψσ(yσ(i)) = ψσ∗(yσ(i)), i = 1, 2, . . . , n. Let

{ΘX ,B(ΘY), ζY, πY}πY ∈ Lν
Y, {ΘX ,B(ΘY), ζY, π∗Y}π∗Y

∈ Lν∗
Y (19)

be NERCs to the fuzzy measures ν and ν∗, respectively.

Proposition 5. Take two fuzzy measures ν and ν∗ on B(Y). ν and ν∗ are dual fuzzy measures if
and only if, for any pair of probability measures ∀πY ∈ Lν

Y, ∀π∗Y ∈ Lν∗
Y , and ∀G ∈B(Y):

πY(ζY(G)) = π∗Y(ζY(G)) (20)

Necessity: Let ν and ν∗ be dual fuzzy measures, i.e., ∀G ∈B(Y): ν(G) = 1 − ν∗(G);
let (Θ,B(Θ), ζ, π) and (Θ∗,B(Θ∗), ζ∗, π∗) be any MSR of ν and ν∗, respectively. Then,
π(ζ(G)) = π∗(ζ(G)). From Proposition 1, there exist probability measures π0

Y ∈ Lν
Y, π∗0Y ∈ Lν∗

Y
such that ∀G ∈B(Y):

π0
Y(ζY(G)) = π0

Y(ω
−1(ζ(G))) = π0

Y(ζ(G)) = π∗0(ζ∗(G)) =

π∗0Y ((ω∗)−1(ζ∗(G))) == π∗0Y (ζY(G)).

As π0, π∗0 are any probability measures of the MSR, then ∀πY ∈ Lν
Y, ∀π∗Y ∈ Lν∗

Y
measures ∃π ∼ πX and ∃π∗ ∼ π∗Y, the probability measures for which (20) is true.

Sufficiency: Let (20) be true for arbitrary probability measures πY ∈ Lν
Y, ∀π∗Y ∈ Lν∗

Y . Take
two MSRs: (Θ,B(Θ), ζ, π) and (Θ∗,B(Θ∗), ζ∗, π∗) corresponding to ν and ν∗, respectively,
and their equivalent representations (ΘY,B(ΘY), ζY, πY) (ΘY,B(ΘY), ζY, π∗Y) such that
∀G ∈B (Y):

ν(G) = π(ζ(G)) = πY(ω
−1(ζ(G))) = πY(ζY(G)) = π∗Y(ζY(G)) =

π∗((τ∗)−1(ζY(G))) = π∗(ζ∗(G)) = 1− π∗(ζ∗(G)) = 1− ν∗(G).
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Notice that if ν is an auto-dual fuzzy measure ((ν)∗ = ν), i.e., ∀G ∈ B(Y) ν(G) =
1− ν(G), but ν is not a probability measure, then (20) will be changed by

πY(ζY(G)) = πY(ζY(G)). (21)

If ν is a probability measure, then ∀G, B ∈B (Y), G ∩ B =∅

πY(ζY(G) ∪ ζY(B)) = πY(ζY(G ∪ B)) (22)

Definition 7. Refs. [5,17]: Take dual fuzzy measures ν, ν∗ on B (Y). ν and ν∗ are called Choquet
lower and upper capacities of order two, respectively, if ∀G, B ∈B (Y):

ν(G ∪ B) + ν(G ∩ B) ≥ ν(G) + ν(B),
ν∗(G ∪ B) + ν∗(G ∩ B) ≤ ν∗(G) + ν∗(B).

(23)

Proposition 6. Ref. [17]: Take dual fuzzy measures ν, ν∗ on B (Y). ν and ν∗ are Choquet lower
and upper capacities of order two, respectively, if and only if ∀C ∈B(Y)

ν(C) = min
σ∈Sn

ψσ(C), ν∗(C) = max
σ∈Sn

ψσ(C),

where {ψσ(·)}σ∈Sn
is the APC of ν and ν∗ (note that {ψσ(·)}σ∈Sn

= {ψ∗σ(·)}σ∈Sn
).

We have an almost similar proposition for the MSR:

Proposition 7. Take dual fuzzy measures ν, ν∗ on B (Y). ν and ν∗ are Choquet lower and upper
capacities of order two, respectively, if and only if, for arbitrary probability measures πY ∈ Lν

Y,
π∗Y ∈ Lν∗

Y , and ∀G, B ∈B (Y),

πY(ζY(G ∪ B)) ≥ πY(ζY(G) ∪ ζY(B)),
π∗Y(ζY(G ∩ B)) ≤ π∗Y(ζY(G) ∩ ζY(B)).

(24)

Necessity: Take dual fuzzy measures ν, ν∗ and let ν and ν∗ be Choquet lower and upper
capacities of order two, respectively, and also take any MSR of ν and ν∗, (ΘY,, B(ΘY), ζ, πY)
and (ΘY, B (ΘY), ζ, π∗Y), respectively. From (23), we have

πY(ζY(G ∪ B)) + πY(ζY(G ∩ B)) ≥ πY(ζY(G)) + πY(ζY(B)). (25)

We know that

ζY(G ∩ B) ⊂ ζY(G), ζY(G ∩ B) ⊂ ζY(B), ζY(G ∩ B) ⊂ ζY(G) ∩ ζY(B),
πY(ζY(G ∩ B)) ≤ πY(ζY(G) ∩ ζY(B))

and from (25), we obtain

πY(ζY(G) ∪ ζY(B)) = πY(ζY(G)) + πY(ζY(B))− πY(ζY(G) ∩ ζY(B)) ≤
≤ πY(ζY(G ∪ B)) + πY(ζY(G ∩ B))− πY(ζY(G) ∩ ζY(B)) ≤

≤ πY(ζY(G ∪ B)).

Analogously, we have proven the second inequality of (24).

Sufficiency: Suppose, for the arbitrary pair of probability measures πY ∈ Lν
Y, π∗Y ∈ Lν∗

Y ,
the inequality (24) is valid; let (θ∗, B(θ∗), ζ∗, π∗) be any MSR of the fuzzy measure ν∗. If
π∗0Y ∈ Lν∗

Y is equivalent to π∗, then we have ∀G, B ∈B(Y):

ν∗(G ∪ B) = π∗(ζ∗(G ∪ B)) = π∗((ω∗)−1(ζ∗0Y (G ∪ B))) = π∗0Y (ζ∗0Y (G ∪ B)) ≤
≤ π∗0Y (ζ∗0Y (G) ∪ ζ∗0Y (B)) = π∗0Y (ζ∗0Y (G)) + π∗0Y (ζ∗0Y (B))− π∗0Y (ζ∗0Y (G) ∩ ζ∗0Y (B)) ≤

≤ π∗0Y (ζ∗0Y (G)) + π∗0Y (ζ∗0Y (B))− π∗0Y (ζ∗0Y (G ∩ B)) = π∗0Y (ω∗(ζ∗(G)))+
+π∗0Y (ω∗(ζ∗(G ∩ B))) = π∗(ζ∗(G)) + π∗(ζ∗(B))− π∗(ζ∗(G ∩ B)) =

= ν∗(G) + ν∗(G)− ν∗(G ∩ B),
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i.e., ν∗ is the Choquet upper capacity of order two. Analogously, we have proven the first
inequality of (23).

Definition 8. NERCs Lν
Y and Lν∗

Y of the pair of dual fuzzy measures ν and ν∗ are called nonequiv-
alent probability representations’ dual classes.

It can be trivially proven that a fuzzy measure ν : B (Y)→ [0; 1] is a probability
measure if and only if Lν

Y ∩ Lν∗
Y 6=∅.

Definition 9. Ref. [17]: Take some fuzzy subset W on Y and let χW be its membership function
χW : Y → [0; 1] . A monotone expectation (ME) of χW with respect to the fuzzy measure ν is
defined as the Choquet integral:

MEν(χW) =

1∫
0

ν(χF(y) ≥ α)dα ≡ (Ch)
∫
Y

χWdν, (26)

where dα is the Lebesgue measure on [0;1].
If σ ∈ Sn is such a permutation that

χW(yσ(1)) ≤ χW(yσ(2)) ≤ · · · ≤ χW(yσ(n))

and Ai ≡ {yσ(i), yσ(i+1), . . . , yσ(n)}, i = 1, 2, . . . , n are nested subsets of Y, then ME may be
presented as

MEν(χW) =
n

∑
i=1

χW(yσ(i)){ν(Ai)− ν(Ai+1)}

where ν(An+1) ≡ 0. The Choquet integral has been studied well in the CBR [17,18] under
different fuzzy environments [20,22,24,26–28]:

Proposition 8. Ref. [17]: Take a fuzzy measure ν and its APC {ψσ}σ∈Sn
. Then, there exists the

permutation σ0 ∈ Sn for which

MEν(χW) = Eψσ0
(χW) =

∫
Y

χWdψσ0 (27)

More exactly, a ME is represented as a mathematical expectation of χW with respect to
the probability measure ψσ0 . The analogous proposition for the MSR can be proven:

Proposition 9. Ref. [19]: Take the fuzzy measure ν and its MSR (Θ, B(Θ), ζ, π). Then, there
exists the nonnegative function χ̂W on Θ that

MEν(χW) = (Ch)
∫
Y

χWdν =
∫
Θ

χ̂Wdπ = Eπ(χ̂W) (28)

where ∀θ ∈ Θ:
χ̂W(θ) = sup{α/θ ∈ ζ({y/χW(y) ≥ α, 0 ≤ α ≤ 1})} (29)

More exactly, the Choquet integral is represented as a Lebesgue integral on Θ with
respect to the probability measure π.

Proposition 10. Ref. [17]: Take dual fuzzy measures ν, ν∗. ν and ν∗ are Choquet lower and upper
capacities of order two if and only if

MEν(χW) = min
σ∈Sn

Eψσ (χW), MEν∗(χW) = max
σ∈Sn

Eψσ (χW) (30)
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Now, we prove the analogous proposition for the MSR:

Proposition 11. Take two fuzzy subsets W1 and W2 on Y with compatibility functions χW1 , χW2

and dual fuzzy measures ν, ν∗. ν and ν∗ are Choquet lower and upper capacities of order two,
respectively, if and only if

MEν(χW1 + χW2) ≥ MEν(χW1) + MEν(χW2),
MEν∗(χW1 + χW2) ≤ MEν∗(χW1) + MEν∗(χW2).

(31)

Necessity: Let ν, ν∗ be Choquet dual capacities of order two. Let Proposition 7 and
Equation (24) be true. Using the properties of the supremum’s function and a mathematical
expectation, we have

MEν(χW1 + χW2) = Eπ(sup{α/θ ∈ ζ({y/χW1(y) + χW2(y) ≥ α}), 0 ≤ α ≤ 1}) ≥
Eπ(sup{α/θ ∈ ζ({y/χW1(y) ≥

α
2} ∪ {y/χW2(y) ≥

α
2})}) ≥

≥ Eπ(sup{α/θ ∈ ζ({y
∣∣χW1(y) ≥

α
2}) ∪ {y/χW2(y) ≥

α
2})}) ≥

≥ Eπ(sup{ α
2 /θ ∈ ζ({y/χW1(y) ≥

α
2})}+ sup{ α

2 /θ ∈ ζ({y/χW2(y) ≥
α
2})}) =

Eπ(sup{α′/θ ∈ ζ({y/χW1(y) ≥ α′})}) + Eπ(sup{α′/θ ∈ ζ({y/χW2(y) ≥ α′})}) =
= MEν(χW1) + MEν(χW2).

We have analogously proven the second inequality of (31).

Sufficiency: Let the inequalities (31) be valid ∀C, B ∈B(Y). If χW1 ≡ IC, χW2 ≡ IB, where
IC and IB are indicator sets of C and B, respectively. We have

MEν(IC + IB) ≥ MEν(IC) + MEν(IB)

It is simple to show that

MEν(IC∪B + IC∩B) = MEν(IC∪B) + MEν(IC∩B)

Note that ∀y ∈ Y : IC(y) + IB(y) = IC∪B(y) + IC∩B(y), and from the property of a
monotone expectation MEν(IC + IB) = MEν(IC∪B + IC∩B), we have

ν(C) + ν(B) = MEν(IC) + MEν(IB) ≤ MEν(IC + IB) = MEν(IC∪B + IC∩B) =
= MEν(IC∪B) + MEν(IC∩B) = ν(C ∪ B) + ν(C ∩ B).

i.e., ν is the Choquet lower capacity of order two. Therefore, ν∗ will be an upper capacity of
order two, which follows from the second inequality of (31).

5. Distance on Fuzzy Measures’ Space in MSR

Sometimes, in the practical examples, distances on the space of fuzzy measures are
defined through distances between their APCs [18]:

D(ν1; ν2) = D({ψ1
σ(·)}σ∈Sn

; {ψ2
σ(·)}σ∈Sn

) (32)

where ν1, ν2 ∈ [0; 1]B (Y) are fuzzy measures; {ψ1
σ(·)}σ∈Sn

, {ψ2
σ(·)}σ∈Sn

are APCs of ν1, ν2,
respectively. Consider the distance D2:

D2
2(ν1, ν2) = ∑

σ∈Sn

n

∑
i=1

(ψ
(1)
σ (yσ(i))− ψ

(2)
σ (yσ(i)))

2

. (33)

Practically, the distance D2 between fuzzy measures ν1 and ν2 is reduced to the
distances between probability measures [18].

Take NERCs {(ΘY,B(ΘY), ζY, πY)πY∈L
νi
Y
}, i = 1, 2 of fuzzy measures ν1 and ν2, respec-

tively. Let us introduce a new distance between fuzzy measures ν1, ν2:
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Definition 10. A distance between fuzzy measures is defined as the distance between NERCs Lν1
Y

and Lν2
Y :

D2(ν1, ν2) = D2(Lν1
Y , Lν2

Y ) = inf
π
(1)
X ∈L

ν1
Y ,π(2)

Y ∈Lν2
Y

D2(π
(1)
Y , π

(2)
Y ) (34)

The main goal of this section is to parameterize the distance D from a calculation point
of view. Let Θ be a given “specific” set [19]:

Θ = {π0, π1, . . . , πn, π12, . . . , πn−1,n, π123, . . . , πn−2,n−1,n, . . . , π12...n} (35)

and let ζ be constructed as

ζ({yj1 , yj2 , . . . , yjk}) = {0, j1, j2, . . . , jk, j1 j2, . . . , jk−1 jk, . . . , j1, . . . , jk−1, jk}

where expression ab on a and b is a “concatenation” operation of numbers a and b. Then,
∀C = {yj1 , . . . , yjk} ∈B (Y):

ν(C) = ∑
θ∈ζ(C)

πθ = π0 + πj1
+ πj2

+ . . . + πjk
+ πj1 j2

+ . . . + πjk−1 jk
+ πj1 j2 ...jk

(36)

We have to present (36) as the sum of “parts” of yji ∈ Y, the elements’ indexes of
which are constructed by all subsets B ⊂ C, where yji ∈ B. If ν : B (Y)→ [0; 1] is a known
fuzzy measure, then the scheme of finding parameters of the probability π is as follows:

ν1 ≡ ν({y1}) = π0 + π1,
. . . . . . . . . . . .

νn ≡ ν({yn}) = π0 + πn,
ν12 ≡ ν({y1, y2}) = π0 + π1 + π2 + π12,

. . . . . . . . . . . .
νn−1,n ≡ ν({yn−1, yn}) = π0 + πn−1 + πn + πn−1,n,

(37)

ν123 ≡ ν({y1, y2, y3}) = π0 + π1 + π2 + π3 + π12 + π13 + π23 + π123,
. . . . . . . . . . . .

1 ≡ ν({y1, y2, . . . , yn}) = π0 + π1 + . . . + πn + π12 + . . . + πn−1,n + π123 + . . . + π12...n.

We have 2n − 1 equations with 2n unknown parameters of the probability π. One
parameter is free and, for convenience, let it be π0. Then,

π1 = ν1 − π0,
π2 = ν2 − π0,

. . . . . . . . .
πn = νn − π0,

π12 = ν12 − π1 − π2 − π0,
. . . . . . . . . . . . . . . . . .

πn−1,n = νn−1,n − πn−1 − πn − π0,
π123 = ν123 − π1 − π2 − π3 − π12 − π13 − π23 − π0,

. . . . . . . . . . . . . . . . . .
π12...n = ν12...n − π1 − π2 − π3 − . . .− π23...n − π0,

(38)

It is clear that ∀C ∈B (Y):

ν(C) = π(ζ(C)) ≡ f (π0) (39)

where f is a linear function of π0. Let 0 ≤ N−0 ≤ π0 ≤ N+
0 ≤ 1. Let ν1 and ν2 be fuzzy

measures on B(Y). We know that ∀C ∈ B(Y) πY(ζY(C)) = π(ω−1(C)) and the value
of πY is also a linear function of parameter π0. Let πY(ζY(C)) = π0 + π̃(C), where π̃(C)
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is known as a certain expression of parameters and numbers π1, . . . , π12...n, which may
be calculated by (36). Let D ≡ D2 be the distance between probability measures. By
transformation (34), we obtain:

D2
2(ν1, ν2) = inf

π
(1)
Y ∈L(2)

Y ,π(2)
Y ∈L(2)

Y

D2
2(π

(1)
Y , π

(2)
Y )

de f
= inf

π
(1)
Y ∈L(2)

Y ,π(2)
Y ∈L(2)

Y

n

∑
i=1

(π
(1)
Y (yi)− π

(2)
Y (yi))

2

.

Then,

D2
2(ν1, ν2) = inf

N−1 ≤ π
(1)
0 ≤ N+

1

N−2 ≤ π
(2)
0 ≤ N+

2

D2
2(π

(1)
0 + π̃1(·), π

(2)
0 + π̃2(·)) =

= inf
N−1 ≤ π

(1)
0 ≤ N+

1

N−2 ≤ π
(2)
0 ≤ N+

2

n
∑

i=1
((π

(1)
0 − π

(2)
0 ) + (π̃1(yi)− π̃2(yi)))

2 == inf
N−1 ≤ π

(1)
0 ≤ N+

1

N−2 ≤ π
(2)
0 ≤ N+

2

{n(π(1)
0 − π

(2)
0 )

2
+

2(π(1)
0 − π

(2)
0 )

n
∑

i=1
((π̃1(yi)− π̃2(yi)) +

n
∑

i=1
(π̃1(yi)− π̃2(yi))

2}.

Denote

π
(1)
0 − π

(2)
0 ≡ π0,

n

∑
i=1

(π̃1(yi)− π̃2(yi)) ≡ b,
n

∑
i=1

(π̃1(yi)− π̃2(yi))
2 ≡ c

Then,

D2
2(ν1, ν2) = inf

N−1 −N+
2 ≤π0≤N+

1 −N−2
{nπ2

0 + 2bπ0 + c} =

=

{
min{n(N−)2

+ 2bN− + c : n(N+)
2
+ 2bN+ + c}, i f − b

n /∈ [N−; N+]
nc−b2

n , i f − b
n ∈ [N−; N+],

(40)
where N− ≡ N−1 − N+

2 , N+ = N+
1 − N−2 .

Analogously [18], we prove the proposition on the correctness of the definition of a
distance between fuzzy measures.

Proposition 12. If ν1 and ν2are any fuzzy measures on B(Y), then

D2(ν1, ν2) = D2(ν
∗
1 , ν∗2 ). (41)

Therefore, from an information analysis point of view, a fuzzy measure and its dual
fuzzy measure contain the same information but codified in a different way.

6. Connections between Two-Order Additive Fuzzy Measure and Interaction Indexes
of Attributes in the MSR Environment

A fuzzy measure, as a basic uncertainty index of subjective information measurement
in the decision-making process, in some MAGDM represents flexibly a certain kind of
interaction among the decision attributes and can vary from redundancy (negative interac-
tion) to synergy (positive interaction). In this section, connections between the interaction
indexes and the probability distribution of the NERC of a two-order additive fuzzy measure
are constructed.

Definition 11. [6]: Let ν be a set function (not necessarily capacity) on some MAGDM attributes’
set Y = {y1, . . . , yn}. The Mobius representation of ν is a set function mν : 2S → R1 defined by

mν(G) = ∑
B⊂G

(−1)|G\B|ν(B) ∀G ⊂ Y, (42)

where |G| is the cardinality of the set G, R1 = (−∞, +∞).
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It is known [6] that any capacity (fuzzy measure), more generally, any set function, ν
can be uniquely expressed in terms of its Mobius representation by

ν(G) = ∑
B⊂G

mν(B) ∀G ⊂ Y. (43)

Definition 12. [15]: Take some fuzzy measure ν on Y. ν is said be k, k ∈ {1, 2, . . . , n} additive, if
its Mobius representation satisfies mν(G) = 0 for all G ⊂ Y such that G > k and there exists at
least one subset G ⊂ Y such that mν(G) 6= 0.

In the following, we consider the two-order additive fuzzy measure [15].

Definition 13. [15]: Take some fuzzy measure ν on Y. (1) The overall importance value of an
attribute yi ∈ Y is called its Shapley value

Ii = ∑
G⊂Y\{yi}

[(|Y|−|G|−1)!/(|Y|!)] · [ν(G ∪ {yi} )− ν(G)], (44)

(2) The interaction index of two attributes yi, yj ∈ Y, i 6= j is defined by

Iij = ∑
G⊂Y\{yi ,yj}

[(
∣∣Y∣∣−∣∣G∣∣−2)!/(

∣∣Y∣∣!− 1)] · [ν(G ∪ {yi, yj} )

−ν(G ∪ {yi})− ν(G ∪ {yj}) + ν(G)].
(45)

In [27], the linear connection between a two-order additive fuzzy measure, some at-
tributes importance values, and interaction indexes was shown. ∀σ = {σ(1), . . . , σ(n)} ∈ Sn,
l = 1, . . . , n,

ν({yσ(1), . . . , yσ(l)}) =
l

∑
q=1

Iσ(q) −
1
2
·

l

∑
j=1

∑
q∈Nσ(l)

Iσ(j)q (46)

where Nσ(l) denotes an index subset Nσ(l) = { 1, . . . , n }\{ σ(1), . . . , σ(l) }. Using the
definition of the APC of a fuzzy measure, the connections between associated probabilities,
importance values, and interaction indexes of attributes were obtained in [27]:

ψσ(yσ(l)) = Iσ(l) + (1/2) ·
l−1

∑
q=1

Iσ(l)σ(q) − (1/2) ·
n

∑
q=l+1

Iσ(l) σ(q) , (47)

It was mentioned in [27] that “if l = 1, then the second addend is zero, and if
l = n, then the third addend is zero. Representation of the associated probability (47)
has an interesting interpretation in terms of the representation of interaction between
attributes. In (47) in the positive role are involved corresponding interaction indexes
of {yσ(1)}, {yσ(1), yσ(2)}, . . . , {yσ(1), yσ(2), . . . , yσ(l−1)} structure, while in negative role
are involved relevant interaction indexes of {yσ(l+1)}, . . . , {yσ(l+1), . . . , yσ(n)} structure.
Therefore, n × n! probabilities are constructed with n (n + 1)/2 interaction indexes
J = {Iij}, i 6= j, Iij = Iji and n values of overall importance values (I = {Ii}, i = 1, . . . , n)”.

From Definition 2 (Formula (1)), we have the linear connection between the proba-
bility of the APC of a two-order additive fuzzy measure, pair-wise interaction indexes of
attributesand Shapley values:

ψσ(yσ(l)) = ν({yσ(1), . . . , yσ(l)})− ν({yσ(1), . . . , yσ(l−1)}), l = 1, . . . , n (48)

From Section 3, for every probability distribution {πY}πY∈Lν
Y

of NERC of the fuzzy
measure ν − {ΘY,B (ΘY), ζY, πY}πY∈Lν

Y
, we have: ∀σ ∈ Sn, i = 1, 2, . . . , n,

ψσ(yσ(l)) = πY(ζY({yσ(1), . . . , yσ(l)}))− πY(ζY({yσ(1), . . . , yσ(l−1)})), l = 1, . . . , n (49)
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Comparing Formulas (47)–(49), we obtain the recursive calculation connection for the
NERC probability πY on attributes’ set Y = {y1, . . . , yn} by the composition ζY ◦ πY:

πY(ζY({yσ(1), . . . , yσ(l)})) = πY(ζY({yσ(1), . . . , yσ(l−1)})) +

+Iσ(l−1) + (1/2) ·
l−2
∑

q=1
Iσ(l−1) σ(q) − (1/2) ·

n
∑

q=l
Iσ(l−1) σ(q) ,

l = 2, . . . , n; πY(ζY({yσ(0)})) ≡ 0; πY(ζY({yσ(1)})) ≡ ψσ(yσ(1)).

(50)

7. An Illustrative Example

For a clearer representation of the results obtained above, we consider an example
when Y = {y1, y2} with the following semi-filters:

Se1 = {{y1}, Y}, Se2 = {{y2}, Y}, Se3 = {Y}.

Then,

ΘY = {Se1, Se2, Se3}, B(ΘY) = {∅, Se1, Se2, Se3, ΘY}; ∀C ∈B(Y) :

ζY(C) = {Se ∈ θY/C ∈ Se};

ζY({y1}) = {Se1} = {{y1}, Y}, ζY({y2}) = {Se2} = {{y2}, Y},
ζY(Y) = {Se1, Se2, Se3} = θY, ζ(∅) = ∅.

In addition, ζY is a 0–1 order-preserving homomorphism.
Let ν1 = ν({y1}), ν2 = ν({y2}), ν∗1 = ν∗({y1}), ν∗2 = ν∗({y2});
Let (θY, B(ΘY), ζY, πY) be the MSR of ν. Then,

ν1 = πY(ζY({y1})) = πY({Se1}) = 1− ν∗2 ,
ν2 = πY(ζY({y2})) = πY({Se2}) = 1− ν∗1 ,
πY({Se1 ∪ Se2}) = πY({Y}) = 1− ν1 − ν2,

π(ΘY) ≡ 1

This representation is schematically shown in Figure 3. From (35), we have MSR

(θ, B(Θ), ζ, π), where θ = {0, 1, 2, 12}, and

ζ({y1}) = {0, 1} ⇒ ν1 = ν({y1}) = π0 + π1;
ζ({y2}) = {0, 2} ⇒ ν2 = ν({y2}) = π0 + π2;

ζ({Y}) = {0, 1, 2, 12} ⇒ 1 = ν(Y) = π0 + π1 + π2 + π12.
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We obtain the following system of linear equations:
ν1 = π0 + π1,
ν2 = π0 + π2,

1 = π0 + π1 + π2 + π12.

We have three equations with four unknowns. We have to calculate D2
2(ν1, ν2), where

ν1, ν2 are two fuzzy measures on B(Y). We obtain

D2
2(ν1, ν2) = inf

−1≤λ0≤1
{4λ2

0 − 4(ν̃1 + ν̃2)λ0 + [ν̃2
1 + ν̃2

2 + (ν̃2
1 + ν̃2

2)
2
]} = ν̃2

1 + ν̃2
2

where π0(min) =
ν̃1+ν̃2

2 , ν̃1 ≡ ν
(1)
1 − ν

(2)
1 , ν̃2 ≡ ν

(1)
2 − ν

(2)
2 .

It is clear that ν̃1 = ν̃∗1 , ν̃2 = ν̃∗2 .
Let {ψσ(·)}σ∈S2

be the APC of the ν: σ(1) ψσ(yσ(2)) = 1− ν({yσ(2)}) (see Figure 4).
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We have the APC of the ν∗ similarly. ∀C ∈B(Y)

ν(C) = π(ζ(C)) = ψσC (C)⇔


ν1 = π0 + π1 = ψ1

1,
ν2 = π0 + π2 = ψ1

2,
π0 + π1 + π2 + π12 = ψ1

1 + ψ2
1 = ψ1

2 + ψ2
2 = 1

and following (13): Θ = {ψ1
1, ψ2

1, ψ1
2, ψ2

2}.
Let ψ1

1 < ψ2
1 < ψ1

2 < ψ2
2 < 1, then π(ψ1

1) = ψ1
1,π(ψ1

2) = ψ1
2 − ψ1

1, π(ψ2
1) = ψ2

1 − ψ1
2,

π(ψ2
2) = ψ2

2 − ψ2
1 . We construct the MSR (θ, B(Θ), ζ, π). ∀θ ∈ Θ :

ω(θ) = {C ∈B(Y)/θ ∈ ζ(C)}

and
ω(ψ1

1) = {{y1}, Y} = S1, ω(ψ1
2) = {{y2}, Y} = Se2,

ω(ψ1
1) = {{y1} ∪ {y2}} = Y, ω(ψ2

2) = Se1 ∪ Se2.

Then, ∀E ∈B(θY) : πY(E) = π(ω−1(E)) and

πY(Se1) = π(ψ1
1) = ψ1

1, πY(Se2) = π(ψ1
2) = ψ1

2,
πY(Y) = π(ψ2

1) = 1− ψ1
1 = ψ2

1,
πY(Se1 ∪ Se2) = π(ψ2

2) = 1− ψ1
2 = ψ2

1,
π(ΘY) ≡ 1.

Assume that ν is a two-order additive fuzzy measure on some MAGDM attribute set Y.
Using Formula (50), we can write the connection between ν and pairwise interaction indexes of
attributes in the MSR environment. For the permutation σ1 = (σ(1), σ(2)) = (1, 2), we have

πY(ζY({y1})) ≡ ψσ1(y1),

πY(ζY({y1, .y2})) = πY(ζY({y1})) + I1 − (1/2)I12 ≡ 1

and for the permutation σ2 = (σ(1), σ(2)) = (2, 1), we have

πY(ζY({y2})) ≡ ψσ2(y2),

πY(ζY({y1, .y2})) = πY(ζY({y2})) + I2 + (1/2)I12 ≡ 1
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8. Conclusions

The nonadditivity of a fuzzy measure poses problems for its use in demanding prob-
lems such as interactive MAGDM. The CBR of a fuzzy measure fits well with some MAGDM
models and enhances their reliability, which we cannot say in the case of the MSR of a fuzzy
measure. The main motivation of the research was to increase the practical application
possibilities of the MSR in various application fields. For this, connections were built
between the CBR and MSR. In addition, the representations of the Monotone Expectation
(Choquet finite integral) as the most distinctive aggregation operator of the interacting
MAGDM models were studied in the MSR environment, as studied in the case of the CBR.
In the MSR, we constructed the nonequivalent representation class (NERC) of a fuzzy
measure. The proposition on the existence of the MSR induced by the CBR was proven. The
presented formula of the APC by the NERC was obtained. The duality of fuzzy measures
is an important phenomenon for the presentation of the same but differently codified
uncertain expert information. Significant properties were proven for the representation of
a monotone expectation (ME) under the NERC conditions: the necessary and sufficient
conditions for the existence of the second-order Choquet dual capacities were proven in
terms of the NERC of a MSR and ME. A recursive connection formula between the interac-
tion indexes, Shapley values, and the probability distribution of the NERC of a two-order
additive fuzzy measure was obtained in the environment of general MAGDM. A new defi-
nition of distance on the class of fuzzy measures in the MSR environment was introduced.
It was proven that the new distance is equivalent to the corresponding definition in the
CBR: distances between any two fuzzy measures and between their dual fuzzy measures
coincided as in the CBR and, thus, in the MSR. By parameterization of the new distance, its
calculation formula was obtained from a practical point of view. The obtained new results
were illustrated by the figures and the Scheme. In addition, for illustration of the obtained
results, an illustrative example was presented. Regarding the limitations of the study, it can
be said that there are only two possibilistic representations of the fuzzy measures: the CBR
and MSR. It is clear from the literature presented in the article that the use of the CBR in
practical tasks has significant results, which we cannot say about the MSR, as the latter is
quite a complex tool in its use and it is, to some extent, limited. The results of the study
presented here, which, to some extent, linked these two presentations, will allow one to
increase the use of the MSR. However, future research should confirm the effectiveness
of using the latter in some areas, such as cluster analysis tasks. For the future studies of
the problems presented here, different fuzzy environments for the aggregation tools in
MAGDM by the MSR will be developed. A probability distributions’ class of the NERC
of the concrete subspaces of fuzzy measures will be constructed and investigated. New
results will give us an opportunity to efficiently develop modeling of MAGDM and other
problems of complex process investigations under expert evaluations.
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List of Symbols
Y finite set (universum)
y, yi, yσ(i) elements of Y
B(Y) set of all subsets of Y
ν fuzzy measure on B(Y)
ν∗ dual fuzzy measure to ν

(Y, B(Y), ν) fuzzy measure space
A, B, C, D, G subsets of Y
C complement of C(Y\C)
N natural number
Sn permutation group of natural numbers from 1 to n
σ, β elements of Sn
σ∗ dual permutation of σ

ψσ, ψ∗σ associated probabilities on B(Y)
{{ψσ(yσ(1)), ψσ(yσ(2)), . . . , ψσ(yσ(n))}σ∈Sn

associated probability class (APC) of the fuzzy
measure ν

Θ finite set of some definite “indexes”
θ element of Θ
B(Θ) set of all subsets of Θ
ζ 0–1 order-preserving homomorphism
π, π∗ dual probability measures on B(Θ)

(Θ,B(Θ),ζ,π) Murofushi–Sugeno representation (MSR) of the
fuzzy measure ν

ΘY set of all semi-filters in B(Y)
Se semi-filter
ζY , ζ+Y 0-1 order-preserving homomorphisms
πY , π∗Y , π+

Y probability measures on B(ΘY)
M mapping B(Y)→B(ΘY)
Θ+

Y subset of ΘY
ω mapping: Θ→B(ΘY)
(ΘY ,B(ΘY),ζY , πY) equivalent MSR of the fuzzy measure ν.

Lν
Y , Lν∗

Y classes of probability measures of nonequivalent
MSRs of dual fuzzy measures ν and ν∗.

{ΘY , B(ΘY),ζY , πY}πY∈Lν
Y

nonequivalent representation class of the fuzzy
measure ν.

Θσ
β subset of APC {ψσ}σ∈Sn

µ, ξ, ρ mapping from the composition connection between
CBR and MSR

W fuzzy subset of Y
χW membership function of fuzzy subset W
MEν(χW) monotone expectation of χW with respect to the

fuzzy measure ν

(ch)
∫
Y

χW dν Choquet’s integral on Y

dα Lebesgue measure on [0;1]
Ki subset of Y
Eψ(χW) mathematical expectation of χW with respect to the

probability measure ψ

IC indicator of subset C
D, D2 distances between fuzzy measures
ab concatenation operation of numbers a and b
f linear function
N−, N+ lower and upper limit values
a,b, c constants
Ii Shapley value
Iij Interaction index
mν Mobius transformation
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