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Abstract: With the rapid development of technology, improving product life performance has become
a very important issue in recent decades. The lifetime performance index is used in this research for
the assessment of the lifetime performance of products following the Rayleigh distribution. Based
on the hypothesis testing procedure with this index, using the maximum likelihood estimator as a
testing statistic, the sampling design is determined and the related values are tabulated for practical
use to reach the given power level and minimize the total experimental cost under progressive type
I interval censoring. When the inspection interval length is fixed and the number of inspection
intervals is not fixed, the required number of inspection intervals and sample size with the minimum
total cost are determined and tabulated. When the termination time is not fixed, the required number
of inspection intervals, sample size and equal interval length reaching the minimum total cost are
determined and tabulated. Lastly, a practical example is given to illustrate the use of this sampling
design for the testing procedure to determine whether the process is capable.

Keywords: censored sample; Rayleigh distribution; maximum likelihood estimator; lifetime perfor-
mance indices; testing algorithmic procedure; sampling design

1. Introduction

The process capability index CL proposed by Montgomery [1] is frequently used to
measure the larger-the-better quality characteristics such as lifetime, mpg, tensile strength,
durability, etc. For measuring the lifetime of products, this index is called the lifetime
performance index. In many cases, the experimenters can only observe censored data. Two
censoring types, namely type I censoring and type II censoring, are frequently considered.
Type I censoring occurs if the life test of n subjects stops at a predetermined time and the
number of observations is random. Type II censoring occurs if the life test stops when a
predetermined number of failure times is observed. Progressive censoring has the property
of allowing the removal of units at some time points that may not be the final termina-
tion point. More inferences about progressive censored data can be seen in Balakrishnan
and Aggarwala [2] and Aggarwala [3]. For a progressive type II right censored sample,
Wu et al. [4] assessed the lifetime performance index of products with an exponential dis-
tribution. Wu et al. [5] proposed a Bayesian test of the lifetime performance index for
exponential products based on a progressive type II right censored sample. Lee et al. [6]
proposed a decision procedure for the performance assessment of the lifetime index of prod-
ucts for the Gompertz distribution under progressive type II right censoring. Lee et al. [7]
assessed the lifetime performance index of Rayleigh products based on Bayesian estimation
using progressive type II right censored samples. Wu et al. [8] implemented a testing proce-
dure for the lifetime performance index of Burr XII products with a progressive type II right
censored sample. For progressive type I interval censored data from the Gompertz lifetime

Mathematics 2022, 10, 517. https://doi.org/10.3390/math10030517 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10030517
https://doi.org/10.3390/math10030517
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-0611-6701
https://doi.org/10.3390/math10030517
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10030517?type=check_update&version=2


Mathematics 2022, 10, 517 2 of 15

distribution, a testing procedure for the lifetime performance index was proposed by Wu
and Hsieh [9] based on a progressive type I interval censored sample. Based on this testing
procedure, a reliability sampling design was developed by Wu et al. [10] for products
following Gompertz distribution. For products following Weibull lifetime distribution, Wu
and Lin [11] proposed a hypothesis testing procedure for the lifetime performance index
using progressive type I interval censored data. Wu et al. [12] investigated the sampling
design for the testing of the lifetime performance index from Weibull distribution. This
study focuses on the Rayleigh distribution, which is an asymmetric probability distribution.
Wu et al. [13] proposed a testing procedure to test whether the lifetime performance index
meets the desired target for products following Rayleigh distribution under progressive
type I interval censoring, and the related testing procedure is summarized in Section 2. The
progressive type I interval censoring scheme is depicted as follows: there are n products
that are subjected to a life test at time 0. Let (t1, . . . , tm) and (p1, . . . , pm) be the prede-
termined inspection times and the pre-specified removal percentages of the remaining
survival units at time ti, i = 1, . . . , m, where pm = 1 and tm = T is the termination time for the
experiment. At the ith inspection time interval (ti−1,ti), the number of failure units Xi fol-

lows a binomial distribution bin (n−∑i−1
j=1 Xj −∑i−1

j=1 Rj,qi), where qi =
FU(ti)− FU(ti−1)

1− FU(ti−1)
and FU(x) is the cumulative distribution function for the lifetime variable U. Furthermore,
Ri units are randomly removed from the remaining n−∑i

j=1 Xj −∑i−1
j=1 Rj survival units

and Ri follows a binomial distribution bin (n−∑i
j=1 Xj−∑i−1

j=1 Rj,pi), i = 1, . . . , m. Then, the
observed number of failure units (X1, . . . , Xm) for m inspection intervals is the progressive
type I interval censored sample under a progressive censoring scheme (R1, . . . , Rm) with
removal probabilities p1, . . . , pm. There is an increasing relationship between the lifetime
performance index and the conforming rate. If the desired conforming rate is specified, the
desired lifetime performance index c0 is determined. The null hypothesis H0 : CL ≤ c0 vs.
the alternative hypothesis Ha : CL > c0 are set up. Using the maximum likelihood estimator
of the lifetime performance index, the testing procedure for Rayleigh lifetime products
under a level of significance α was developed by Wu et al. [13]. The power function has
also been obtained. Further details of the methodologies for the testing procedure are given
in Section 2. Based on the testing procedure proposed in Wu et al. [13], we conduct a study
on the experimental design for the lifetime performance index from Rayleigh distributed
products based on progressive type I interval censored data. The optimal sampling design
consists of two parts and is given in Section 3. The first part is to determine the minimum
number of inspection intervals yielding the minimum total cost under the pre-specified
power level and level of significance for a fixed total experimental time, which is described
in Section 3.1. The second part considers the case when the interval time of the experiment
is not fixed. Under this consideration, the minimum number of inspection intervals and
the equal interval length reaching the minimum total cost are determined and tabulated in
Section 3.2. In Section 3.3, a practical example is given to illustrate the application of the
optimal sampling design for the testing procedure to test whether the process is capable.
Finally, the conclusions are presented in Section 4.

2. Methodology for Testing the Lifetime Performance Index

The lifetime U of a product following Rayleigh distribution has a probability density
function (pdf) and a cumulative distribution function (cdf) as follows:

fU(u) =
u
λ2 exp{− u2

2λ2 }, u ≥ 0,λ > 0 (1)

and

FU(u) = 1− exp{− u2

2λ2 }, u ≥ 0,λ > 0. (2)
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The failure rate function is defined as

rU(u) =
fU(u)

1− FU(u)
=

u
λ2 . (3)

The curves for the pdf and failure rate function under λ = 1, 1.5, 2, 3, 5 are displayed
in Figure 1a,b, respectively.
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Figure 1. (a) The curve of pdf for Rayleigh distribution; (b) the curve of failure rate function for
Rayleigh distribution.

Let Y = U2. Then, this new random variable Y has a one-parameter exponential
distribution and its pdf and cdf are given as follows:

fY(y) =
1

2λ2 exp{− y
2λ2 }, y ≥ 0,λ > 0 (4)

and
FY(y) = 1− exp{− y

2λ2 }, y ≥ 0,λ > 0, (5)

where λ2 is the shape parameter and the failure rate function is defined as

rY(y) =
fy(y)

1− Fy(y)
=

1
2λ2 , (6)

where λ2 is the scale parameter.
From Montgomery [1], the lifetime performance index is defined as:

CL =
µ− L

σ
, (7)

where µ denotes the process mean, σ represents the process standard deviation, and L is
the known lower specification limit. Suppose that the lower specification limit for U is LU.
Then, the lower specification limit for Y is L = LU2.

The mean and standard deviation of Y are µ = 2λ2 and σ= 2λ2. Substituting µ and σ

by this information, we then have CL =
µ− L

σ
=

2λ2 − L
2λ2 = 1− L

2λ2 .

The conforming rate is obtained as

Pr = P(U ≥ LU) = P(Y ≥ L) = exp
(
− L

2λ2

)
= exp(CL − 1), −∞ < CL < 1.
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The conforming rate is an increasing function of the lifetime performance index CL. If
the experimenter desires the conforming rate to be 0.8607, the desired lifetime performance
index should be c0 = 0.85.

For a progressive type I interval censoring sample (X1, . . . , Xm) under a progressive
censoring scheme (R1, . . . , Rm) with removal probabilities p1, . . . , pm, the likelihood
function is

L(λ) =
m

∏
i=1

(
e−

t2i−1xi
2λ2 − e−

t2i xi
2λ2

)
e−

t2i Ri
2λ2 .

Wu et al. [13] obtained the maximum likelihood estimator (MLE) for λ as the numerical
solution of the following log-likelihood equation:

d
dλ ln L(λ) =

m
∑

i=1

−xi

exp{−
t2
i − t2

i−1
2λ2 }

1−exp{−
t2
i − t2

i−1
2λ2 }

(
t2
i − t2

i−1
λ2

)
+

t2
i−1xi + t2

1Ri

λ3


= − 1

λ3

m
∑

i=1

xi
(
t2
i − t2

i−1
)(

exp{−
t2
i − t2

i−1
2λ2 } − 1

)2

−
(
t2
i−1xi + t2

1Ri
).

(8)

Its asymptotic variance is the reciprocal of the following Fisher’s information:

I(λ) = −E[
d2 ln L(λ)

dλ2 ]=
n
λ2

m
∑

i=1
{1− qi

qi
[4 ln2(1− qi) + 6qi ln(1− qi)]

+
3(t2

i−1qi + t2
i pi(1− qi))

λ2 } ·
i−1
∏
j=1

(
1− pj

)(
1− qj

)
;

(9)

where qi = 1− exp

(
−

t2
i − t2

i−1
2λ2

)
.

Then, we have λ̂
d→

n→∞
N
(
λ, I−1(λ)

)
.

For equal interval lengths, ti − ti−1 = t and ti = it, i = 1, . . . , m are replaced in
Equations (8) and (9).

By the property of the invariance of MLE, the MLE of CL can be obtained as

ĈL = 1− L
2λ̂

.ĈL = 1− L
2λ̂2

(10)

Let c0 be the desired level of the lifetime performance index to make the process
capable. Then, we wish to test H0 : CL ≤ c0 (the process is not capable) vs. Ha : CL > c0

(the process is capable) using the MLE of CL, ĈL = 1 − L
2λ̂2

. as the test statistic, and

the critical region for this test is
{

ĈL
∣∣ĈL > C0

L
}

. From Wu et al. [9], the critical value is

found to be C0
L = 1− L

2
(

λ0 + Zα

√
I−1(λ0)

)2 , under the level of significance α, where

λ0 =

√
L

2(1− c0)
and Zα represents the right-tailed α percentile of standard normal

distribution. We will conclude that the alternative hypothesis is supported if ĈL > C0
L is

satisfied.
Moreover, the power h(c1) of this statistical test at the point of CL = c1 > c0 is

h(c1) = P

(
ĈL > C0

L

∣∣∣c1 = 1− L
λ2

1

)
= Φ

(
λ0 − λ1 + Z1−α

√
I−1(λ0)√

I−1(λ1)

)
, (11)
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where Φ(·) is the cdf for the standard normal distribution, λ0 =

√
L

2(1− c0)
and

λ1 =

√
L

2(1− c1)
.

3. Sampling Design

In this section, the reliability sampling design is investigated under different setups and
considerations. As described in Section 3.1, when the termination time of the experiment T is
fixed, the required sample size and minimal number of inspection intervals are determined
so that the given power of the level α testing procedure can be reached and the total cost
of the experiment can be minimized. In Section 3.2, when the termination time of the
experiment T is fixed, the required sample size, minimal number of inspection intervals
and the equal lengths of the interval are determined so that the given power of the level α
testing procedure can be reached and the total cost of the experiment can be minimized. Let

g(λ) = I−1(λ)/n = λ2
[

m
∑

i=1
{1− qi

qi
[4 ln2(1− qi) + 6qi ln(1− qi)]

+
3(t2

i−1qi + t2
i pi(1− qi))

λ2 } ·
i−1
∏
j=1

(
1− pj

)(
1− qj

)]−1

The function g(λ) is independent of the sample size n. In terms of g(λ), the power

function can be rewritten as h(c1) =Φ

(
(λ0 − λ1)

√
n + Z1−α

√
g(λ0)√

g(λ1)

)
.

In order to attain the pre-specified power 1 − β or the probability of type II error β at
c1 under the level of significance α, we set the above power function to be 1 − β, and then
the sample size is determined as

n = ceiling

(
Zβ

√
g(λ1) + Zα

√
g(λ0)

λ0 − λ1

)2

, (12)

where ceiling(x) is a ceiling function mapping x to the smallest integer greater than or equal
to x.

3.1. The Optimal m and n for Fixed T

The smaller the number of inspection intervals m, the more convenient it is for ex-
perimenters to collect the progressive type I interval sample. Let m0 be the upper limit
of m specified by the experimenter such that m ≤ m0. The default value of m0 is 20 if the
experimenter does not specify it in advance. The sample size n is a function of m. In this
section, we wish to determine the optimal (m,n) to yield the minimum total cost incurred
during the progressive type I interval censoring procedure. Similar to Huang and Wu [14],
we consider the following costs:

1. Installation cost Ca—the cost of installing all test units;
2. Sample cost Cs—the cost per test unit;
3. Inspection cost CI—the cost of using the inspection equipment;
4. Operation cost Co—the cost consisting of the personnel cost, depreciation of test

equipment and so on. It is proportional to the length of the experimental time period.

Integrating all these costs, we have the total cost of

TC(m,n) = Ca + nCs + m CI +T Co, (13)

where n is given in Equation (12).
The Algorithm 1 using the numeration method to search the optimal (m,n) is given

as follows:
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Algorithm 1: Search the optimal (m,n)

Step 1: Give the pre-assigned values of m = 1, c0, c1, α, β, p, T, L and m0 (the default value is 20)
and the four costs Ca = aCo, Cs = bCo, CI = cCo, Co.

Step 2: Compute the sample size n in Equation (12) and then compute the total cost TC(m,n) in
Equation (13).

Step 3: If m < m0, then m = m + 1 and go to Step 2; otherwise, go to Step 4.
Step 4: For an array of total costs, the optimal solution of m value denoted by m* is the m value

with the minimum total cost. Then, the sample size n* in Equation (12) can be computed.

Once the optimal values of m* and n* are determined, the critical value of

C0
L = 1 − L

2
(

λ0 + Zα

√
I−1(λ0)

)2 can be obtained as well. Consider c0 = 0.85, Co = 1

and a = b = c = 1. For testing H0 : CL ≤ 0.85 when β = 0.25, α = 0.05, p = 0.05, c1 = 0.90, m0 =
20, L = 0.05, T = 1.0, we plot the total cost versus m = 1:m0 in Figure 2a. From this figure, we
can see that the minimum total cost is incurred when m = 3, with the total cost of 43. For a
different setup of parameters, β = 0.15, α = 0.05, p = 0.01, c1 = 0.95, another total cost curve
with m = 1:m0 is given in Figure 2b. From this figure, we can see that the curve is a concave
upwards curve and the minimum total cost occurs when m = 2, with the total cost of 13.
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The minimum suggested inspection intervals m* and the corresponding sample size
n* to attain the minimum total cost TC (m*,n*) under the constraint of m < 20 for testing
H0 : CL ≤ 0.85 are tabulated in Tables 1 and 2 for c1 = 0.875, 0.90 and c1 = 0.925, 0.95,
respectively, under the condition of α = 0.01, 0.05, 0.1, β = 0.25, 0.20, 0.15, L = 0.05, T = 1.0,
p = 0.05, 0.075, 0.1. The corresponding critical values are also tabulated in these two tables.

For example, suppose that the users wish to conduct the level 0.05 hypothesis testing
of H0 : CL ≤ 0.85 under the power of 0.85 at c1 = 0.90, p = 0.05 and m0 = 20. According to
Table 1, the minimum required sample size is 53 and the minimum number of inspection
intervals is 3. The minimum total cost can also be found as TC = 58 and the critical value
is 0.881256.

According to Tables 1 and 2, the optimal number of inspection intervals m is nonin-
creasing when c1 is increasing and the range of m is 1~4. In Figure 3, we plot the minimum
total cost TC* vs. c1 for α = 0.01, 0.05, 0.1 at β = 0.25 and p = 0.05. In Figure 4, we plot the
minimum total cost TC* vs. c1 for 1 − β = 0.75, 0.80, 0.85 at α = 0.1 and p = 0.05. In Figure 5,
we plot the minimum total cost TC* vs. c1 for p = 0.05, 0.075, 0.1 at α = 0.1 and β = 0.25.
From Figure 3, we have the finding that the minimum total cost TC* decreases when the
level of significance increases. From Figure 4, we find that the minimum total cost TC*
increases when the test power increases. From Figure 5, we find that the minimum total
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cost TC* increases when the removal probability increases. Overall, the minimum total cost
TC* becomes smaller when the value of c1 becomes larger.

Table 1. The optimal (m*,n*), total cost TC and critical value for c1 = 0.875, 0.90, α = 0.01, 0.05, 0.1,
β = 0.25, 0.20, 0.15 and p = 0.05, 0.075, 0.1 under m0 = 20, L = 0.05 and c0 = 0.85.

c1 0.875 0.90

α β p m*m* n*n* TCTC C0
L C0

L m*m* n*n* TCTC C0
L C0

L

0.01 0.25 0.050 4 309 315 0.869497 3 61 66 0.889173

0.075 3 319 324 0.869534 3 62 67 0.889269

0.100 3 327 332 0.869515 3 64 69 0.889127

0.20 0.050 4 347 353 0.868502 3 69 74 0.887289

0.075 3 359 364 0.868519 3 71 76 0.887197

0.100 3 368 373 0.868502 3 72 77 0.887327

0.15 0.050 4 395 401 0.867445 3 79 84 0.885299

0.075 3 408 413 0.867474 3 81 86 0.885262

0.100 3 418 423 0.867462 3 83 88 0.885237

0.05 0.25 0.050 4 187 193 0.867883 3 38 43 0.885858

0.075 3 194 199 0.867877 2 40 44 0.886332

0.100 3 198 203 0.867895 2 41 45 0.886105

0.20 0.050 4 217 223 0.86671 3 44 49 0.883769

0.075 3 225 230 0.866709 3 45 50 0.883769

0.100 3 230 235 0.866714 3 46 51 0.883778

0.15 0.050 4 255 261 0.865517 3 53 58 0.881256

0.075 3 264 269 0.865527 3 54 59 0.881305

0.100 3 270 275 0.865528 3 55 60 0.881362

0.10 0.25 0.050 3 136 141 0.866571 2 29 33 0.883662

0.075 3 139 144 0.866575 3 28 33 0.883426

0.100 3 143 148 0.866532 2 30 34 0.883447

0.20 0.050 3 162 167 0.865291 3 33 38 0.880926

0.075 3 166 171 0.865277 2 35 39 0.881249

0.100 3 170 175 0.865269 2 36 40 0.881003

0.15 0.050 4 193 199 0.864012 3 41 46 0.878209

0.075 3 200 205 0.864015 2 43 47 0.878647

0.100 3 205 210 0.864002 2 44 48 0.878479

Table 2. The optimal (m*,n*), total cost TC and critical value for c1 = 0.925, 0.95, α = 0.01, 0.05, 0.1,
β = 0.25, 0.20, 0.15 and p = 0.05, 0.075, 0.1 under m0 = 20, L = 0.05 and c0 = 0.85.

c1 0.925 0.95

α β p m* n* TC C0
L m* n* TC C0

L

0.01 0.25 0.050 2 21 25 0.909725 2 9 13 0.927812

0.075 2 22 26 0.908972 2 9 13 0.928015

0.100 2 22 26 0.909158 2 9 13 0.92822

0.20 0.050 3 23 28 0.906423 2 10 14 0.925489
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Table 2. Cont.

c1 0.925 0.95

α β p m* n* TC C0
L m* n* TC C0

L

0.075 2 25 29 0.906429 2 10 14 0.92569

0.100 2 25 29 0.906611 2 10 14 0.925894

0.15 0.050 3 27 32 0.903317 2 12 16 0.921503

0.075 2 29 33 0.90355 2 12 16 0.921702

0.100 2 29 33 0.903728 2 12 16 0.921903

0.05 0.25 0.050 2 14 18 0.904044 2 6 10 0.921499

0.075 2 14 18 0.904221 2 6 10 0.921699

0.100 2 14 18 0.904399 2 6 10 0.9219

0.20 0.050 2 16 20 0.901514 2 7 11 0.918176

0.075 2 16 20 0.901686 2 7 11 0.918373

0.100 2 17 21 0.900729 2 7 11 0.918571

0.15 0.050 2 20 24 0.897447 2 9 13 0.912881

0.075 2 20 24 0.89761 2 9 13 0.913071

0.100 2 20 24 0.897775 2 9 13 0.913263

0.10 0.25 0.050 2 10 14 0.900971 1 6 9 0.921343

0.075 2 10 14 0.901141 1 6 9 0.921343

0.100 2 11 15 0.899556 1 6 9 0.921343

0.20 0.050 2 13 17 0.896243 1 7 10 0.918022

0.075 2 13 17 0.896404 1 7 10 0.918022

0.100 2 13 17 0.896566 1 7 10 0.918022

0.15 0.050 2 15 19 0.893789 2 7 11 0.907841

0.075 2 16 20 0.892863 2 7 11 0.908024

0.100 2 16 20 0.893017 2 7 11 0.908208

Mathematics 2022, 10, x FOR PEER REVIEW 9 of 17 
 

 

minimum total cost TC* vs. 
1c  for 1−β = 0.75, 0.80, 0.85 at α = 0.1 and p = 0.05. In Figure 5, 

we plot the minimum total cost TC* vs. 
1c  for p = 0.05,0.075,0.1 at   = 0.1 and β = 0.25. 

From Figure 3, we have the finding that the minimum total cost TC* decreases when the 
level of significance increases. From Figure 4, we find that the minimum total cost TC* 
increases when the test power increases. From Figure 5, we find that the minimum total 
cost TC* increases when the removal probability increases. Overall, the minimum total 
cost TC* becomes smaller when the value of 

1c  becomes larger. 

 
Figure 3. Minimum total cost curve for  = 0.01, 0.05, 0.1 at β = 0.25 and p = 0.05. 

 
Figure 4. Minimum total cost curve for 1-β = 0.75, 0.80, 0.85 at α = 0.1 and p = 0.05. 

Figure 3. Minimum total cost curve for α = 0.01, 0.05, 0.1 at β = 0.25 and p = 0.05.



Mathematics 2022, 10, 517 9 of 15

Mathematics 2022, 10, x FOR PEER REVIEW 9 of 17 
 

 

minimum total cost TC* vs. 
1c  for 1−β = 0.75, 0.80, 0.85 at α = 0.1 and p = 0.05. In Figure 5, 

we plot the minimum total cost TC* vs. 
1c  for p = 0.05,0.075,0.1 at   = 0.1 and β = 0.25. 

From Figure 3, we have the finding that the minimum total cost TC* decreases when the 
level of significance increases. From Figure 4, we find that the minimum total cost TC* 
increases when the test power increases. From Figure 5, we find that the minimum total 
cost TC* increases when the removal probability increases. Overall, the minimum total 
cost TC* becomes smaller when the value of 

1c  becomes larger. 

 
Figure 3. Minimum total cost curve for  = 0.01, 0.05, 0.1 at β = 0.25 and p = 0.05. 

 
Figure 4. Minimum total cost curve for 1-β = 0.75, 0.80, 0.85 at α = 0.1 and p = 0.05. Figure 4. Minimum total cost curve for 1 − β = 0.75, 0.80, 0.85 at α = 0.1 and p = 0.05.

Mathematics 2022, 10, x FOR PEER REVIEW 10 of 17 
 

 

 

Figure 5. Minimum total cost curve for p = 0.05, 0.075, 0.1 at   = 0.1 and β = 0.25. 

3.2. The Optimal m, t and n When the Interval Time of the Experiment is not Fixed 
In this subsection, the interval time of experiment t is not fixed. The inspection time 

t for each inspection interval is random. We wish to determine the optimal (m,t,n) to yield 
the minimum total cost incurred during the type I interval censoring procedure. The total 
cost is 

TC(m,t,n) = Ca + nCs + m CI + mt Co, (14)

where n is given in Equation (12). 
The algorithm using the numeration method to search the optimal (m,t,n) is given as 

follows: 
Algorithm 2: Search the optimal (m,t,n) 
Step 1: Give the pre-assigned values of m = 1, c0, c1, α, β and p, L and m0 ( the default value 

is 20) and the four costs Ca = aCo, Cs = bCo, CI = cCo, Co. 
Step 2: Find the optimal value of t* such that TC(m,t,n) in Equation (14) is minimized (the 

optimize function in R is used to find t*). Use t = t* to compute the sample size n in 
Equation (12) and compute the corresponsong total cost TC(m,t*,n) in Equation 
(14). 

Step 3: If m < m0, then m = m + 1 and go to Step 2; otherwise, go to Step 4. 
Step 4: For an array of total costs, we determine the optimal value of m denoted by m* such 

that TC(m*,t*,n) = TC* *= 
0

min
mm

TC(m,t*,n) is reached. With m = m* and t = t*, the related 

sample size n* in Equation (12) can be computed. 
Once the optimal values of m*, n* and t* are determined, the critical value of 

 20
1

0

0

)(2
1

 



IZ

L
CL

can be determined as well. 

Consider c0 = 0.85, Co = 1 and a =b = c = 1. When   = 0.15,   = 0.05, p = 0.1, c1 = 0.9, 
m0 = 20, L = 0.05, T = 1.0, we plot m = 1:m0 against its corresponding total cost in Figure 6a. 

Figure 5. Minimum total cost curve for p = 0.05, 0.075, 0.1 at α = 0.1 and β = 0.25.

3.2. The Optimal m, t and n When the Interval Time of the Experiment Is Not Fixed

In this subsection, the interval time of experiment t is not fixed. The inspection time t
for each inspection interval is random. We wish to determine the optimal (m,t,n) to yield the
minimum total cost incurred during the type I interval censoring procedure. The total cost is

TC(m,t,n) = Ca + nCs + m CI + mt Co, (14)

where n is given in Equation (12).
The Algorithm 2 using the numeration method to search the optimal (m,t,n) is given

as follows:

Algorithm 2: Search the optimal (m,t,n)

Step 1: Give the pre-assigned values of m = 1, c0, c1, α, β and p, L and m0 (the default value is 20)
and the four costs Ca = aCo, Cs = bCo, CI = cCo, Co.

Step 2: Find the optimal value of t* such that TC(m,t,n) in Equation (14) is minimized (the
optimize function in R is used to find t*). Use t = t* to compute the sample size n in
Equation (12) and compute the corresponsong total cost TC(m,t*,n) in Equation (14).

Step 3: If m < m0, then m = m + 1 and go to Step 2; otherwise, go to Step 4.
Step 4: For an array of total costs, we determine the optimal value of m denoted by m* such that

TC(m*,t*,n) = TC* *= min
m≤m0

TC(m,t*,n) is reached. With m = m* and t = t*, the related sample

size n* in Equation (12) can be computed.
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Once the optimal values of m*, n* and t* are determined, the critical value of
C0

L = 1− L

2
(

λ0+Zα

√
I−1(λ0)

)2 can be determined as well.

Consider c0 = 0.85, Co = 1 and a =b = c = 1. When β = 0.15, α = 0.05, p = 0.1, c1 = 0.9,
m0 = 20, L = 0.05, T = 1.0, we plot m = 1:m0 against its corresponding total cost in Figure 6a.
We can see that it is a concave upwards curve and the minimum total cost occurs when
m = 3, with the total cost of 58.14254. For a different setup of parameters, β = 0.25, α = 0.05,
p = 0.1, c1 = 0.875, another total cost curve with m = 1:m0 is given in Figure 6b. We can
see that this is a concave upwards curve and the minimum total cost is incurred when
m = 4, with the total cost of 198.2394. For other combinations of setups, we also find
similar patterns.
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The minimum suggested inspection intervals m*, inspection interval time length t*
and sample size n* to yield the minimum total cost TC(m*,t*,n*) denoted by TC** under the
constraint of m < m0, where m0 = 20 for testing H0 : CL ≤ 0.85, are tabulated in Tables 3
and 4 at α = 0.01, 0.05, 0.1, β = 0.25, 0.20, 0.15, L = 0.05, T = 1.0, p = 0.05, 0.075, 0.1 for
c1 = 0.875, 0.90 and c1 = 0.925, 0.95, respectively. The corresponding critical values are
also tabulated.

Table 3. The optimal (m*,t*,n*), total cost TC and critical value for c1 = 0.875, 0.90, α = 0.01, 0.05, 0.1,
β = 0.25, 0.20, 0.15 and p = 0.05, 0.075, 0.1 under m0 = 20, L = 0.05 and c0 = 0.85.

c1 0.875 0.90

α β p m* t* n* TC** C0
L m* t* n* TC** C0

L

0.01 0.15 0.050 5 0.26 297 304.285 0.8696 4 0.28 58 64.127 0.8895
0.075 5 0.27 307 314.352 0.8696 3 0.35 61 66.052 0.8894
0.100 4 0.31 317 323.256 0.8696 3 0.36 62 67.093 0.8895

0.20 0.050 6 0.24 332 340.464 0.8686 4 0.28 66 72.118 0.8875
0.075 5 0.27 345 352.343 0.8686 4 0.32 67 73.293 0.8876
0.100 4 0.32 356 362.263 0.8686 3 0.39 70 75.163 0.8876

0.25 0.050 6 0.25 377 385.484 0.8675 4 0.3 75 81.219 0.8856
0.075 5 0.28 391 398.416 0.8675 4 0.32 77 83.271 0.8856
0.100 4 0.32 404 410.288 0.8675 4 0.33 79 85.317 0.8856

0.05 0.15 0.050 5 0.25 180 187.25 0.8679 3 0.34 37 42.018 0.8862
0.075 4 0.3 187 193.2 0.8679 3 0.34 38 43.006 0.8861
0.100 4 0.31 192 198.239 0.8679 3 0.38 38 43.142 0.8864

0.20 0.050 5 0.25 209 216.236 0.8668 3 0.36 43 48.084 0.8840
0.075 5 0.28 215 222.415 0.8668 3 0.36 44 49.079 0.8840
0.100 4 0.31 223 229.223 0.8668 3 0.36 45 50.08 0.8840
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Table 3. Cont.

c1 0.875 0.90

α β p m* t* n* TC** C0
L m* t* n* TC** C0

L

0.25 0.050 5 0.25 245 252.254 0.8656 3 0.37 51 56.098 0.8817
0.075 4 0.31 254 260.244 0.8656 3 0.37 52 57.12 0.8817
0.100 4 0.32 261 267.264 0.8656 3 0.38 53 58.143 0.8817

0.10 0.15 0.050 5 0.26 129 136.314 0.8666 3 0.34 27 32.019 0.8836
0.075 4 0.32 134 140.282 0.8666 3 0.33 28 32.978 0.8834
0.100 4 0.31 138 144.24 0.8666 3 0.36 28 33.067 0.8836

0.20 0.050 6 0.24 153 161.421 0.8653 3 0.38 32 37.139 0.8813
0.075 4 0.3 160 166.195 0.8653 3 0.36 33 38.069 0.8811
0.100 4 0.31 164 170.26 0.8653 3 0.35 34 39.042 0.8810

0.25 0.050 5 0.25 185 192.275 0.8641 3 0.38 39 44.132 0.8788
0.075 4 0.31 192 198.245 0.8641 3 0.37 40 45.104 0.8787
0.100 4 0.32 197 203.298 0.8641 3 0.36 41 46.093 0.8786

Table 4. The optimal (m*,t*,n*), total cost TC and critical value for c1 = 0.925, 0.95, α = 0.01, 0.05, 0.1,
β = 0.25, 0.20, 0.15 and p = 0.05, 0.075, 0.1 under m0 = 20, L = 0.05 and c0 = 0.85.

c1 0.925 0.95

α β p m* t* n* TC** C0
L m* t* n* TC** C0

L

0.01 0.15 0.050 2 0.48 21 24.958 0.9097 2 0.52 8 12.047 0.9306
0.075 3 0.35 20 25.043 0.9095 2 0.55 8 12.108 0.9310
0.100 3 0.39 20 25.166 0.9099 2 0.61 8 12.22 0.9317

0.20 0.050 3 0.33 23 27.988 0.9064 2 0.46 10 13.919 0.9254
0.075 3 0.36 23 28.065 0.9067 2 0.47 10 13.943 0.9256
0.100 3 0.4 23 28.192 0.9072 2 0.48 10 13.97 0.9259

0.25 0.050 3 0.37 26 31.111 0.9040 2 0.61 11 15.213 0.9245
0.075 3 0.35 27 32.054 0.9036 2 0.48 12 15.954 0.9216
0.100 3 0.38 27 32.151 0.9040 2 0.49 12 15.978 0.9219

0.05 0.15 0.050 2 0.42 14 17.843 0.9042 1 0.74 7 9.736 0.9220
0.075 2 0.43 14 17.866 0.9044 1 0.74 7 9.736 0.9220
0.100 2 0.45 14 17.892 0.9044 1 0.74 7 9.736 0.9220

0.20 0.050 2 0.47 16 19.947 0.9014 2 0.45 7 10.906 0.9181
0.075 2 0.49 16 19.987 0.9017 2 0.46 7 10.926 0.9183
0.100 2 0.52 16 20.042 0.9019 2 0.47 7 10.947 0.9185

0.25 0.050 2 0.51 19 23.014 0.8984 2 0.53 8 12.067 0.9155
0.075 2 0.54 19 23.083 0.8988 2 0.55 8 12.1 0.9159
0.100 3 0.42 18 23.256 0.8987 2 0.57 8 12.137 0.9162

0.10 0.15 0.050 2 0.47 10 13.935 0.9009 2 0.54 4 8.085 0.9198
0.075 2 0.49 10 13.971 0.9011 2 0.56 4 8.126 0.9201
0.100 2 0.51 10 14.017 0.9013 2 0.59 4 8.173 0.9205

0.20 0.050 2 0.51 12 16.017 0.8977 2 0.56 5 9.113 0.9152
0.075 2 0.54 12 16.084 0.8980 2 0.58 5 9.152 0.9156
0.100 2 0.44 13 16.885 0.8967 2 0.6 5 9.197 0.9159

0.25 0.050 2 0.49 15 18.99 0.8938 2 0.47 7 10.938 0.9078
0.075 2 0.52 15 19.032 0.8940 2 0.48 7 10.957 0.9080
0.100 2 0.55 15 19.09 0.8943 2 0.49 7 10.977 0.9082

For example, suppose that the user wishes to conduct the level 0.05 hypothesis testing
of H0 : CL ≤ 0.85 under power of 0.75 at c1 = 0.875, p = 0.05 and m0 = 20. According to
Table 3, the minimum required sample size is 245, the minimum number of inspection
intervals is 5 and the inspection interval time length is 0.25. The total cost is calculated as
TC = 252.254 and the critical value is 0.8656.

For any other setup of testing procedure, a software program is provided by the
authors for users to input L, T, m, c0, c1, α, β to output the minimum required sample size
n; or input L, T, c0, c1, α, β to output the minimum suggested number of inspections m; or
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input L, m, c0, c1, α, β to output the minimum recommended number of inspections m and
the equal length of time t for each inspection interval.

According to Tables 3 and 4, the optimal number of inspection intervals m is nonin-
creasing when c1 is increasing and the range of m is 2~6. The optimal length of inspection
interval t* is within 0.24 and 0.32 units of time for c1 = 0.875. The value of t* is within 0.28
and 0.39 units of time for c1 = 0.90. The value of t* is within 0.33 and 0.55 units of time for
c1 = 0.925. The value of t* is within 0.45 and 0.74 units of time for c1 = 0.95. In Figure 7, we
plot the minimum total cost TC* vs. c1 for α = 0.01, 0.05, 0.1 at β = 0.25 and p = 0.05. In
Figure 8, we plot the minimum total cost TC* vs. c1 for 1 − β = 0.75, 0.80, 0.85 at α = 0.1
and p = 0.05. In Figure 9, we plot the minimum total cost TC* vs. c1 for p = 0.05, 0.075, 0.1 at
α = 0.1 and β = 0.25. From Figure 7, we find that the minimum total cost TC** decreases
when the value of α increases. From Figure 8, we find that the minimum total cost TC**
increases when the test power 1 − β increases. From Figure 9, we find that the minimum
total cost TC** becomes larger when the removal probability becomes larger. Overall, the
minimum total cost TC** becomes smaller when the value of c1 grows larger.

Mathematics 2022, 10, x FOR PEER REVIEW 13 of 17 
 

 

or input L, T, c0, c1, α, β to output the minimum suggested number of inspections m; or 
input L, m, c0, c1, α, β to output the minimum recommended number of inspections m and 
the equal length of time t for each inspection interval. 

According to Tables 3–4, the optimal number of inspection intervals m is nonincreas-
ing when 

1c is increasing and the range of m is 2~6. The optimal length of inspection in-
terval t* is within 0.24 and 0.32 units of time for 

1c  = 0.875. The value of t* is within 0.28 
and 0.39 units of time for 

1c  = 0.90. The value of t* is within 0.33 and 0.55 units of time 
for 

1c  = 0.925. The value of t* is within 0.45 and 0.74 units of time for 
1c  = 0.95. In Figure 

7, we plot the minimum total cost TC* vs. 
1c  for α = 0.01, 0.05, 0.1 at β = 0.25 and p = 0.05. 

In Figure 8, we plot the minimum total cost TC* vs. 
1c  for 1-β = 0.75, 0.80, 0.85 at α = 0.1 

and p = 0.05. In Figure 9, we plot the minimum total cost TC* vs. 
1c  for p = 0.05,0.075,0.1 

at α = 0.1 and β = 0.25. From Figure 7, we find that the minimum total cost TC** decreases 
when the value of α increases. From Figure 8, we find that the minimum total cost TC** 
increases when the test power 1 − β increases. From Figure 9, we find that the minimum 
total cost TC** becomes larger when the removal probability becomes larger. Overall, the 
minimum total cost TC** becomes smaller when the value of 

1c  grows larger. 

 
Figure 7. Minimum total cost curve for α = 0.01, 0.05, 0.1 at β = 0.25 and p = 0.05. Figure 7. Minimum total cost curve for α = 0.01, 0.05, 0.1 at β = 0.25 and p = 0.05.

Mathematics 2022, 10, x FOR PEER REVIEW 14 of 17 
 

 

 
Figure 8. Minimum total cost curve for  1-β = 0.75, 0.80, 0.85 at α = 0.1 and p = 0.05. 

 
Figure 9. Minimum total cost curve for p = 0.05, 0.075, 0.1 at α = 0.1 and β = 0.25. 

3.3. Example 
We use the data in Caroni [15] consisting of the failure times (number of cycles in 

1000 times) of n = 25 ball bearings in an automatic life test, listed as follows: 
0.1788  0.2892  0.3300  0.4152  0.4212  0.4560  0.4848  0.5184  0.5196  0.5412   
0.5556  0.6780  0.6780  0.6780  0.6864  0.6864  0.6888  0.8412  0.9312  0.9864 

Figure 8. Minimum total cost curve for 1 − β = 0.75, 0.80, 0.85 at α = 0.1 and p = 0.05.



Mathematics 2022, 10, 517 13 of 15

Mathematics 2022, 10, x FOR PEER REVIEW 14 of 17 
 

 

 
Figure 8. Minimum total cost curve for  1-β = 0.75, 0.80, 0.85 at α = 0.1 and p = 0.05. 

 
Figure 9. Minimum total cost curve for p = 0.05, 0.075, 0.1 at α = 0.1 and β = 0.25. 

3.3. Example 
We use the data in Caroni [15] consisting of the failure times (number of cycles in 

1000 times) of n = 25 ball bearings in an automatic life test, listed as follows: 
0.1788  0.2892  0.3300  0.4152  0.4212  0.4560  0.4848  0.5184  0.5196  0.5412   
0.5556  0.6780  0.6780  0.6780  0.6864  0.6864  0.6888  0.8412  0.9312  0.9864 
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3.3. Example

We use the data in Caroni [15] consisting of the failure times (number of cycles in
1000 times) of n = 25 ball bearings in an automatic life test, listed as follows:

0.1788 0.2892 0.3300 0.4152 0.4212 0.4560 0.4848 0.5184 0.5196 0.5412

0.5556 0.6780 0.6780 0.6780 0.6864 0.6864 0.6888 0.8412 0.9312 0.9864

1.0512 1.0584 1.2792 1.2804 1.7340

In Figure 10, we plot the empirical cumulative distribution function (ecdf) for this
data set. The G test based on the Gini statistic (see Gail and Gastwirth [16]) is computed as
0.5052237 with p value 0.9293607 > 0.05. Therefore, we conclude that this data set fits the
Rayleigh distribution well. We will now use this example to illustrate the implementation
of the previous subsections.
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For Section 3.1, we consider the case of α = 0.01, the power 1 – β = 0.85 at c1 = 0.95
under fixed T = 1.0. From Table 1, we can find that the optimal sampling design is m* = 2,
n* = 12, yielding the minimum total cost of 20 units under the cost setup of Co = 1 and a = b
= c = 1. The critical value C0

L = 0.921702 is also found in this table.
We can thus start to perform the testing procedure for H0 : CL ≤ 0.85 as follows:

Step 1: Take a random sample of size n = 12 from the data set. Observe the progressive
type I interval censored sample (X1,X2) = (3,4) at the pre-set times (t1,t2) = (0.5,1.0)
with censoring schemes of (R1,R2) = (2,3).

Step 2: Obtain the MLE of λ as λ̂ = 0.6625991 and then obtain the test statistic
ĈL = 1− 0.05

2(0 .6625991)2 = 0.9430573.

Step 3: Compared with the critical value, we have ĈL = 0.9557158 > C0
L = 0.9042. Thus, we

can conclude that the lifetime performance index of the product meets the required
level of 0.85.

For Section 3.2, we consider the case of α = 0.05, the power 1 – β = 0.85 at c1 = 0.925.
From Table 4, we can find that the optimal sampling design is m* = 2,
n* = 14 and t* = 0.42, yielding the minimum total cost of 17.843 units under the cost
setup of Co = 1 and a = b = c = 1. The corresponding critical value C0

L =0.9042 is also found
in this table.

We can thus start to perform the testing procedure for H0 : CL ≤ 0.85 as follows:

Step 1: Take a random sample of size n = 14 from the data set. Observe the progressive
type I interval censored sample (X1,X2) = (1,5) at the pre-set times (t1,t2) = (0.42,0.84)
with censoring schemes of (R1,R2) = (2,6).

Step 2: Obtain the MLE of λ as λ̂ = 0.7513559 and then obtain the test statistic
ĈL = 1− 0.05

2(0 .7513559)2 = 0.9557158.

Step 3: Compared with the critical value, we have ĈL = 0.9557158 > C0
L = 0.9042. Therefore,

we reach the same conclusion and reject the null hypothesis.

4. Conclusions

Process capability indices are widely applied by manufacturers to evaluate the capa-
bility performance of a specific process when the lifetime of a product follows Rayleigh
distribution. For many practical cases, a progressive type I interval censored sample is
collected instead of a complete sample. We investigate the required minimum number of
inspection intervals when the termination time of the experiment is fixed to reach given
power and the minimum total cost for a level α test. When the termination time of the
experiment is not fixed, the required minimum sample size, number of inspection intervals
and the inspection interval time length are determined in this paper to reach given power
and the minimum total cost for a level α test under progressive type I interval censoring.
In the future, we plan to propose a testing procedure and study the experimental design
for other lifetime distributions such as Lomax distribution. Other than the procreative
type I interval sampling scheme, our studies can be applied to type II progressively hybrid
censored samples.

Author Contributions: Conceptualization, S.-F.W.; methodology, S.-F.W.; software, S.-F.W., T.-H.L.,
Y.-H.L. and W.-T.C.; validation, T.-H.L., Y.-H.L. and W.-T.C.; formal analysis, S.-F.W.; investigation, S.-
F.W., T.-H.L., Y.-H.L. and W.-T.C.; resources, S.-F.W.; data curation, S.-F.W., T.-H.L., Y.-H.L. and W.-T.C.;
writing—original draft preparation, S.-F.W. and W.-T.C.; writing—review and editing, S.-F.W.; visu-
alization, T.-H.L., Y.-H.L. and W.-T.C.; supervision, S.-F.W.; project administration, S.-F.W.; funding
acquisition, S.-F.W. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Ministry of Science and Technology, Taiwan under
MOST 108-2118-M-032-001 and MOST 109-2118-M-032-001-MY2 and the APC was funded by MOST
109-2118-M-032-001-MY2.



Mathematics 2022, 10, 517 15 of 15

Data Availability Statement: Data are available in a publicly accessible repository The data presented
in this study are openly available in Caroni [15].

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Montgomery, D.C. Introduction to Statistical Quality Control; John Wiley and Sons Inc.: New York, NY, USA, 1985.
2. Balakrishnan, N.; Aggarwala, R. Progressive Censoring: Theory, Methods and Applications; Birkhäuser: Boston, MA, USA, 2000.
3. Aggarwala, R. Progressive interval censoring: Some mathematical results with applications to inference. Commun. Stat.-Theory

Methods 2001, 30, 1921–1935. [CrossRef]
4. Lee, W.C.; Wu, J.W.; Hong, C.W. Assessing the lifetime performance index of products with the exponential distribution under

progressively type II right censored samples. J. Comput. Appl. Math. 2009, 231, 648–656. [CrossRef]
5. Wu, J.W.; Lee, W.C.; Lin, L.S.; Hong, M.L. Bayesian test of lifetime performance index for exponential products based on the

progressively type II right censored sample. J. Quant. Manag. 2011, 8, 57–77.
6. Lee, W.C.; Wu, J.W.; Hong, C.W.; Pan, H.Y.; Hung, W.L. Decision procedure of performance assessment of lifetime index of

products for the Gompertz distribution. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2010, 224, 493–499. [CrossRef]
7. Lee, W.C.; Wu, J.W.; Hong, M.L.; Lin, L.S.; Chan, R.L. Assessing the lifetime performance index of Rayleigh products based on the

Bayesian estimation under progressive type II right censored samples. J. Comput. Appl. Math. 2011, 235, 1676–1688. [CrossRef]
8. Wu, J.W.; Lee, W.C.; Hong, C.W.; Yeh, S.Y. Implementing Lifetime Performance Index of Burr XII Products with Progressively

Type II Right Censored Sample. Int. J. Innov. Comput. Inf. Control. 2014, 10, 671–693.
9. Wu, S.F.; Hsieh, Y.T. The assessment on the lifetime performance index of products with Gompertz distribution based on the

progressive type I interval censored sample. J. Comput. Appl. Math. 2019, 351, 66–76. [CrossRef]
10. Wu, S.F.; Xie, Y.J.; Liao, M.F.; Chang, W.T. Reliability sampling design for the lifetime performance index of Gompertz lifetime

distribution under progressive type I interval censoring. Mathematics 2021, 9, 2109. [CrossRef]
11. Wu, S.F.; Lin, M.J. Computational testing algorithmic procedure of assessment for lifetime performance index of products with

weibull distribution under progressive type I interval censoring. J. Comput. Appl. Math. 2017, 311, 364–374. [CrossRef]
12. Wu, S.F.; Wu, Y.C.; Wu, C.H.; Chang, W.T. Sampling design for the lifetime performance index of Weibull lifetime distribution

under progressive type I interval censoring. Symmetry 2021, 13, 1691.
13. Wu, S.F.; Lin, Y.T.; Chang, W.J.; Chang, C.W.; Lin, C. A computational algorithm for the evaluation on the lifetime performance

index of products with Rayleigh distribution under progressive type I interval censoring. J. Comput. Appl. Math. 2018, 328,
508–519. [CrossRef]

14. Huang, S.R.; Wu, S.J. Reliability sampling plans under progressive type-I interval censoring using cost functions.
IEEE Trans. Reliab. 2008, 57, 445–451. [CrossRef]

15. Caroni, C. The correct “ball bearings” data. Lifetime Data Anal. 2002, 8, 395–399. [CrossRef] [PubMed]
16. Gail, M.H.; Gastwirth, J.L. A scale-free goodness of fit test for the exponential distribution based on the Gini Statistic.

J. R. Stat. Soc. B 1978, 40, 350–357. [CrossRef]

http://doi.org/10.1081/STA-100105705
http://doi.org/10.1016/j.cam.2009.04.018
http://doi.org/10.1243/09544054JEM1598
http://doi.org/10.1016/j.cam.2010.09.009
http://doi.org/10.1016/j.cam.2018.10.044
http://doi.org/10.3390/math9172109
http://doi.org/10.1016/j.cam.2016.08.005
http://doi.org/10.1016/j.cam.2017.07.004
http://doi.org/10.1109/TR.2008.928239
http://doi.org/10.1023/A:1020523006142
http://www.ncbi.nlm.nih.gov/pubmed/12471947
http://doi.org/10.1111/j.2517-6161.1978.tb01048.x

	Introduction 
	Methodology for Testing the Lifetime Performance Index 
	Sampling Design 
	The Optimal m and n for Fixed T 
	The Optimal m, t and n When the Interval Time of the Experiment Is Not Fixed 
	Example 

	Conclusions 
	References

