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Abstract: Pareto-type distributions are well-known distributions used to fit heavy-tailed data. How-
ever, the standard parameterizations used for Pareto-type distributions are poorly suited to modeling.
On this note, we suggest new parameterizations that are better suited to the purpose. In addition,
we propose many regression models where the response variable is Pareto-type distributed using
new parameterizations that are indexed by mean and precision parameters. The main motivation
for these new parametrizations is the useful interpretation of the regression coefficients in terms of
the mean and precision, as is usual in the context of regression models. The parameter estimation
of these new models is performed, based on the maximum likelihood paradigm. Some numerical
illustrations of the estimators are presented with a discussion of the obtained results. Finally, we
illustrate the practicality of the new models by means of two applications to real data sets.

Keywords: pareto-type distributions; modeling; parameterization; varying precision

1. Introduction

The Pareto distribution was originally applied by Pareto [1] to model the unequal
distribution of wealth. Despite being proposed a long time ago, there are still many
current works that use this distribution. See, for instance, the works of Wang and Li [2],
Shrahili et al. [3] and Sharpe and Juárez [4], to name a few. The random variable Y has the
Pareto distribution if its cumulative distribution function (CDF) for y ≥ β is given by

F(y; α, β) = 1−
(

β

y

)α

, (1)

where β > 0 is a scale parameter and α > 0 is a shape parameter. The parameter β is only a
scale factor, which is known as the tail index. When this distribution is used to model the
distribution of wealth, the parameter α a is called the Pareto index. Here, this distribution
is called Pareto Type I distribution (Pareto [5]).

The Lomax distribution (Lomax [6]), also called the Pareto Type II distribution, is a
Pareto Type I distribution shifted so that its support begins at zero. Its CDF is of the form

F(y; α, β) = 1−
(

1 +
y
β

)−α

, y > 0. (2)

There is a relation between the Pareto Type II distribution and the generalized Pareto
distribution (GPD), which is much used in the study of extreme values and peaks over
thresholds. The CDF of the GPD is given by (Pickands [7])

F(y; σ, ξ) = 1−
(

1 + α
y
β

)−1/α

.
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Regression models are typically constructed to model the mean of a distribution. De-
spite the nice properties of Pareto-type distributions, none of their parameters correspond
to the expectation, which complicates the interpretation of regression models specified
using these distributions. In this context, we proposed a new parameterization of these
distributions that is indexed by mean and precision parameters. Parameterizations of
statistical models are not unique. In general, we use a particular parameterization for inter-
pretation of the parameters and/or for computational convenience. The current manuscript
falls into the first category (interpretation of the parameters). The main advantage of our
new parametrization is the straightforward interpretation of the regression coefficients in
terms of the expectation of the positive real line response variable, as is usual in the context
of generalized linear models.

The paper is organized as follows. In Section 2, we present new parameterizations of
the Pareto-type distributions indexed by mean and precision parameters. Section 3 intro-
duces the Pareto-type regression models with varying mean and precision. Furthermore,
numerical results from Monte Carlo simulation experiments are presented and discussed.
In Section 4, we provide the applications to two real data sets. Concluding remarks and
possible points for future research are given in the Section 5.

2. Pareto-Type Distributions with Alternative Parameterizations

In this Section, we provide four reparameterizations for Pareto-type distributions
indexed by mean and dispersion parameters.

2.1. Pareto Distribution

The probability density function (PDF) related to the Pareto model with PDF indicated
in Equation (1) is given by

f (y; α, β) = α βαy−(α+1), y ≥ β. (3)

The mean and variance of the distribution are given by

E(Y) =
α β

α− 1
, α > 1 and Var(Y) =

α β2

(α− 2)(α− 1)2 , α > 2, (4)

respectively. In practice, α is frequently assumed to be larger than 2, so that the distribution
has a finite variance.

A new parameterization of the Pareto distribution given by µ = α β/(α− 1) > 0 and
φ = α(α− 2) > 0, i.e., α = 1 +

√
1 + φ > 2 and β = (µ

√
1 + φ)/(1 +

√
1 + φ) > 0. With

this new parameterization, it follows from (4) that

E(Y) = µ and Var(Y) =
µ2

φ
.

Henceforth, we consider the notation Y ∼ RPa(µ, φ) to specify that Y is a random
variable following a reparameterized Pareto model, with mean µ > 0 and precision
parameter φ > 0. We highlight that, up to this moment, this parameterization has not been
proposed in the literature.

Using the proposed parameterization, the RPa density in (3) can be written as

f (y; µ, φ) = [1 +
√

1 + φ]

(
µ
√

1 + φ

1 +
√

1 + φ

)1+
√

1+φ

y−(1+
√

1+φ+1), y ≥
µ
√

1 + φ

1 +
√

1 + φ
. (5)

2.2. Power Function Distribution

The power function model is a two-parameter distribution, which is the distribution
of the reciprocal of a variable distributed according to the Pareto distribution, i.e., if X
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has a Pareto distribution with parameters α and β, then Y = X−1 has a power function
distribution with parameters α > 0 (shape parameter) and β > 0 (scale parameter).

We begin with the PDF of the power function distribution given by

f (y; α, β) = α β−αxα−1, 0 < x < β. (6)

The mean and variance of Y are

E(Y) =
α β

α + 1
and Var(Y) =

α β2

(α + 2)(α + 1)2 . (7)

A new parameterization of the power function distribution is given by µ =
α β/(α + 1) > 0 and φ = α(α + 2), i.e., α =

√
1 + φ− 1 and β = µ

√
1 + φ/(

√
1 + φ− 1).

With this new parameterization, it follows from (7) that

E(Y) = µ and Var(Y) =
µ2

φ
.

Hereafter, we consider the notation Y ∼ RPo(µ, φ) to specify that Y is a random vari-
able following a reparameterized power function distribution, with mean µ and precision
parameter φ > 0. We remark that this parameterization has not been proposed in the
statistical literature.

Using this alternative parameterization, the PDF for the RPO distribution in (6) can be
written as

f (y; µ, φ) = [
√

1 + φ− 1][µ
√

1 + φ/(
√

1 + φ− 1)]1−
√

1+φx
√

1+φ−2, 0 < y < µ
√

1 + φ/(
√

1 + φ− 1). (8)

2.3. Lomax Distribution

The PDF associated to a dislocated Pareto in (2) is given by

f (y; α, β) =
α βα

(y + β)α+1 , y ≥ 0. (9)

The mean and the variance for (9) are given by

E(Y) =
β

α− 1
, α > 1 and Var(Y) =

α β2

(α− 2)(α− 1)2 , α > 2. (10)

We considered an alternative parameterization of the Lomax distribution in terms of
the mean and precision parameters. Define µ = β/(α− 1) > 0 and φ = α− 2 > 0, i.e.,
α = φ + 2 > 2 and β = µ(φ + 1) > 0. With this alternative parameterization, it follows
from (10) that

E(Y) = µ and Var(Y) =
µ2(φ + 2)

φ
= µ2ω(φ)2,

where ω(φ) =
√

φ+2
φ represents the coefficient of variation of Y, which depends only

on φ > 0. Moreover, φ represents a precision parameter because, for a fixed µ, and an
increasing φ, the corresponding variance decreases. From now on, we use the notation
Y ∼ RLo(µ, φ) to indicate that Y has a reparameterized Lomax distribution with mean
µ > 0 and precision parameter φ > 0. We highlight that this parameterization has not been
proposed in the statistical literature. Using the proposed parameterization, we can write
the RLo PDF as

f (y; µ, φ) =
[φ + 2] [µ(φ + 1)]φ+2

[y + µ(φ + 1)]φ+3 , y ≥ 0. (11)
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2.4. Generalized Pareto Distribution

The GPD (Pickands [7]) is a two-parameter family of distributions, with PDF given by

f (y; α, β) =
1
β

(
1 +

α y
β

)−( 1
α +1)

, (12)

where β > 0 and α are the scale and shape parameters, respectively. For α > 0 the range of
y is 0 < y < β/α and for α < 0 the range is y > 0. One of the interesting features of this
distribution is its simple mathematical form.

The mean and the variance associated with (12) are given by

E(Y) =
β

1− α
, α < 1 and Var(Y) =

β2

(1− α)2(1− 2 α)
, α < 1/2, (13)

respectively.
A new insight into the GPD can be obtained by performing a reparameterization

on the random variable X, whose PDF is given in (12). Consider the parameterization
µ = β/(1− α) > 0 and φ = 1− 2 α > 0, i.e., β = µ(1 + φ)/2 > 0 and α = (1− φ)/2 > 2.
With this alternative parameterization, it follows from (13) that

E(Y) = µ and Var(Y) =
µ2

φ
.

Hereafter, we use Y ∼ RGPD(µ, φ) to say that Y follows a reparameterized GPD
distribution with mean µ > 0 and precision φ > 0. We also note that this parameteriza-
tion is already known in the statistical literature (see, for instance, Bourguignon and do
Nascimento [8]). Thus, the RGPD PDF in equation (12) can be written as

f (y; µ, φ) =
2

µ(1 + φ)

[
1 +

(1− φ) y
µ(1 + φ)

]− 3−φ
1−φ

. (14)

2.5. Other Models Parameterized in Terms of the Mean and Precision Parameters

For the RPa and RLo models, we considered the restriction α > 2 and for the RGPD
model we take into account the restriction α < 1/2, in order to guarantee the existence of
the mean and variance terms. In principle, this can be a disadvantage because the class of
models that we are considering is smaller than the original proposals. In return, we obtain
models where, under some conditions, the coefficients can be interpreted in a very useful
way, as we will see in the Section 3.

In the literature, there are many models with positive support parameterized in terms
of the mean, and with a quadratic form to the variance, i.e, the mean and variance of the
model are given by µ and µ2[ω(φ)]2, respectively, where µ, φ > 0 and ω(·) is a positive
function. To name a few examples, we referred to the reparametrized gamma and Weibull
models, both available with the GA and WEI3 functions in the gamlss.dist [9] package of the
software R [10]; the reparameterized Birnbaum-Saunders model [11]; the reparameterized
slash half-normal distribution [12]; among others. The recommendation is to fit part of
such models and, based on model selection criteria such as the Akaike [13] (AIC) and
Schwartz [14] (BIC) criteria, choose a model and validate it based on some kind of residuals.
For instance, we suggest the quantile residuals (QR) discussed in Dunn and Smyth [15].

3. Modelling and Inference

The main advantage of the reparameterization of models in terms of the mean is
the possible interpretation of the coefficients when a regression structure is incorporated
into the mean. For this, let Y1, . . . , Yn be n independent random variables, where each Yi,
i = 1, . . . , n, follows the PDF given in Equation (5), (8), (11) or (14), depending on whether
we are interest in the use of the RPa, RPo, RLo or RGPD model, with mean µi and precision
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parameter φi. In order to introduce a regression structure in the Pareto-type models, we
assume that

g1(µi) = η1i = x>i β and g2(φi) = η2i = z>i ν, (15)

where β = (β1, . . . , βp)> and ν = (ν1, . . . , νq)> are vectors of unknown regression coeffi-
cients, which we assumed to be functionally independent, β ∈ Rp and ν ∈ Rq, with p + q <
n, η1i and η2i are the linear predictors, and xi = (xi1, . . . , xip)

> and zi = (zi1, . . . , ziq)
> are

p and q known regressors, respectively, for i = 1, . . . , n. Additionally, we assume that
the rank of X = (x1, . . . , xn)> and Z = (z1, . . . , zn)> are p and q, respectively. The link
functions g1 : R→ R+ and g2 : R→ R+ in (15) must be strictly monotone, positive and at
least twice differentiable, such that µi = g−1

1 (x>i β) and φi = g−1
2 (z>i ν), with g−1

1 (·) and
g−1

2 (·) being the inverse functions of g1(·) and g2(·), respectively.
For the case where g1(u) = exp(u), the interpretations about the components of β are

as following:

• exp(β0) represents the mean of the response variable when all the covariates are equal
to 0. Of course, this interpretation is valid as long as it makes sense.

• exp(β j), j = 1, . . . , p represents the increment (in percentage terms) when the j-th
covariates increased in 1 unit and the others are fixed.

On the other hand, the log-likelihood function is given by

`(β, ν) =
n

∑
i=1

`(µi, φi),

where `(µi, φi) = log f (yi; µi, φi), with f (yi; µi, µi) the PDF given in Equation (5), (8), (11)
or (14), depending on the reparameterized model to be used.

The maximum likelihood (ML) estimators of β and ν, say β̂ and ν̂, respectively, can be
obtained by solving simultaneously the nonlinear system of equations ∂`(β, ν)/∂β = 0 and
∂`(β, ν)/∂ν = 0. However, no closed-form expressions for the ML estimates are obtained,
except in the Pareto and Lomax models in the case where xi = zi = 1, for i = 1, . . . , n,
i.e., for the instance where only the intercept term is included in both set of covariates.
Therefore, we must use an iterative method for nonlinear optimization.

A Simulation Study

Here, we present a simulation study. For this, we consider the RLo model and the same
covariate to model the parameters µ and φ. The covariates were drawn from the uniform
distribution. We considered two combinations of parameters: scenario 1, β0 = 1.5, β1 = 0.8,
ν0 = −1.2 and ν1 = 0.7 and; scenario 2, β0 = −2.1, β1 = 1.3, ν0 = 0.8 and ν1 = 1.2. We also
considered three sample sizes: 50, 100, and 200. For each combination of parameters, we
drew 1000 replicates of the respective sample size and compute the maximum likelihood
estimators and their respective estimated standard errors. Table 1 summarizes the mean
bias (bias), the mean of the estimated standard errors (se), and the respective 95% coverage
probabilities (cp). Results suggest that the bias for all the cases is acceptable, and both the
bias and the se terms are reduced when the sample size is increased. Additionally, the
coverage probabilities are closer to the nominal value when n is increased. Those results
suggest that the estimators for the RLo model are consistent.
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Table 1. Estimated bias, standard errors and coverage probabilities for the estimators in the
reparametrized Lomax model.

n = 50 n = 100 n = 200
Scenario Estimator bias se cp bias se cp bias se cp

1 β0 −0.0604 0.4442 0.909 −0.0481 0.2941 0.941 −0.0254 0.2046 0.947
β1 −0.0326 0.6318 0.929 −0.0125 0.4417 0.935 −0.0052 0.3351 0.941
ν0 0.0669 0.6213 0.968 0.0407 0.5665 0.961 0.0316 0.4049 0.955
ν1 0.0934 0.5640 0.960 0.0689 0.4717 0.958 0.0283 0.3449 0.953

2 β0 −0.0992 0.4245 0.909 −0.0616 0.2895 0.930 −0.0427 0.1885 0.949
β1 0.0562 0.6192 0.920 0.0487 0.4412 0.932 0.0308 0.3064 0.946
ν0 0.0634 0.9408 0.938 0.0417 0.7089 0.941 0.0307 0.6292 0.945
ν1 0.0764 0.6649 0.936 0.0658 0.4683 0.943 0.0357 0.3787 0.946

4. Real-World Data Analysis

In this section, we present two applications of the proposed models using real data for
illustrative purposes.

4.1. Lomax Regression Model

This data set was obtained from the Department of Mining of the University of
Atacama, Chile, to study the concentration of some ores in the soil. The data set corresponds
to 86 measurements of the concentration of the Zinc (Zn) and Uranium (U) ore respectively,
both in parts per million (ppm). We consider a regression model to explain the quantity of
Zn in terms of the quantity of U. For this, we considered that Zni ∼ RLo(µi, φi), where

µi = exp(β0 + β1 × Ui) and φi = exp(ν0 + ν1 × Ui), i = 1, . . . , 86. (16)

For comparative purposes, we also considered yi ∼ RGa(µi, φi), a reparametrized
version of the gamma distribution such as E(Yi) = µi and Var(Yi) = µ2

i φ2
i , a very similar

structure for the mean and variance as the RLo model, where µi and φi are defined based on
the regression structure given in (16). Table 2 shows the results for these models. Note that
the RLo model presents lower AIC and BIC criteria, suggesting the use of the RLo model
instead of the RGa model for this particular problem. Additionally, as exp(β̂1) = 0.974, the
mean of Zn decrease in 2.6% (95% confidence interval 1.5–3.6%) for each ppm in which U is
increased. Finally, Figure 1 shows the estimated mean for Zn for each value of U.
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Figure 1. Plots for Zn versus U and the estimated conditional mean for the RLo regression model.
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Table 2. Estimated parameters in mineral data set.

RGa RLo

Estimate se Estimate se
β0 4.7518 0.1198 4.7114 0.1572
β1 −0.0288 0.0100 −0.0260 0.0108
ν0 −0.1212 0.0915 1.2420 0.9530
ν1 0.0041 0.0079 0.0187 0.0732

AIC 958.01 953.79
BIC 967.83 963.61

4.2. Pareto Regression Model

This data set was presented in Gunst and Mason (1980). The data set gives different
measure of air pollution, and environmental, demographic and socioeconomic variables
for 60 Standard Metropolitan Statistical Areas of the United States. We considered the
percent of families with income under $3000 (poor) and the relative pollution potential
of hydrocarbons (hc). We consider a regression model to explain hc in terms of poor,
considering that hci ∼ RPa(µi, φi), where

µi = exp(β0 + β1 × poori) and φi = exp(ν0 + ν1 × poori), i = 1, . . . , 60. (17)

For comparative purposes, we also considered yi ∼ RWe(µi, φi), a reparameterized ver-
sion of the Weibull distribution such as E(Yi) = µi and Var(Yi) = µ2

i Γ(1/φi + 1)/Γ2(1/φi +
1), again a very similar structure for the mean and variance as the RPa model, where µi and
φi are defined based on the regression structure given in (17). Table 3 shows the results for
this case. Note that the RPa model presents lower AIC and BIC criteria, suggesting the use
of the RPa model instead of the RWe model for this particular problem. Finally, Figure 2
shows the estimated mean for hc for each value of poor.
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Figure 2. Plots for poor versus hc and the estimated conditional mean for the RPa regression model.
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Table 3. Estimated parameters in metropolitan areas of USA data set.

RWe RPa

Estimate se Estimate se
β0 3.7712 0.3870 3.7549 0.8921
β1 −0.0239 0.0080 −0.0228 0.0175
ν0 −0.9357 1.1873 −8.5153 1.3215
ν1 0.0487 0.0255 0.1982 0.0132

AIC 345.11 326.47
BIC 353.48 334.84

5. More Concluding Remarks and Discussion

In this work, we study new parameterizations for the Pareto-type distributions in terms
of the mean and precision parameters. Furthermore, we have proposed regression models
where the response variable is Pareto-type distributed using these new parameterizations.
The models’ parameters are estimated by the maximum likelihood method. A Monte Carlo
simulation study shows that the maximum likelihood estimators have a reasonable behavior.
Finally, the usefulness of the proposed methodology is shown through two applications.
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