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Abstract: Cassava is a crucial food and nutrition security crop cultivated by small-scale farmers
and it can survive in a brutal environment. It is a significant source of carbohydrates in African
countries. Sometimes, Cassava crops can be infected by leaf diseases, affecting the overall pro-
duction and reducing farmers’ income. The existing Cassava disease research encounters several
challenges, such as poor detection rate, higher processing time, and poor accuracy. This research
provides a comprehensive learning strategy for real-time Cassava leaf disease identification based
on enhanced CNN models (ECNN). The existing Standard CNN model utilizes extensive data
processing features, increasing the computational overhead. A depth-wise separable convolution
layer is utilized to resolve CNN issues in the proposed ECNN model. This feature minimizes the
feature count and computational overhead. The proposed ECNN model utilizes a distinct block
processing feature to process the imbalanced images. To resolve the color segregation issue, the
proposed ECNN model uses a Gamma correction feature. To decrease the variable selection process
and increase the computational efficiency, the proposed ECNN model uses global average election
polling with batch normalization. An experimental analysis is performed over an online Cassava
image dataset containing 6256 images of Cassava leaves with five disease classes. The dataset classes
are as follows: class 0: “Cassava Bacterial Blight (CBB)”; class 1: “Cassava Brown Streak Disease
(CBSD)”; class 2: “Cassava Green Mottle (CGM)”; class 3: “Cassava Mosaic Disease (CMD)”; and
class 4: “Healthy”. Various performance measuring parameters, i.e., precision, recall, measure, and
accuracy, are calculated for existing Standard CNN and the proposed ECNN model. The proposed
ECNN classifier significantly outperforms and achieves 99.3% accuracy for the balanced dataset. The
test findings prove that applying a balanced database of images improves classification performance.

Keywords: convolutional neural network model; ECNN; deep neural network; cassava leaf disease
identification; global average election polling layer
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1. Introduction

Cassava is the main crop in Africa and many other nations. Africa is the largest
producer of Cassava crops. Cassava can be cultivated successfully in any climate, includ-
ing drought and unproductive soil. Cassava crops encounter several challenges during
production, i.e., leaf diseases and poor quality. Cassava leaf diseases are the principal cause
of production reduction, and they can directly affect farmers’ revenue [1].

Cassava leaf disease identification must be treated on a priority basis to improve
production capacity. The automatic detection of crop diseases focused on crop leaves is
critical in crop production. Furthermore, effective and accurate detection of leaf diseases
significantly affects crop productivity improvement. Cassava leaf diseases are similar to
Maize leaf diseases [2].

Early recognition of leaf disease facilitates the rescue of cultivars well before the plant
can be infected permanently [3]. A few researchers focused on building fusion plants
resistant to pathogenic organisms and created a system to recognize and anticipate crop
disease formation from leaf images [4].

Farm owners can significantly raise farm yields by using smart farming. Farmers
spend a lot of time, money, and effort in the manual identification of plant diseases, and
the results are still inaccurate. Research [5] has developed an intelligent system based on
image classification and deep-learning methods.

A deep-learning and machine-learning-based model is discussed in research [6] for
leaf disease detection. The automated machine-learning model for detecting and treating
Cassava crop diseases enables farmers and experts to increase system throughput and
accuracy. Deep-learning-based CNN classifiers can enhance leaf disease detection in all the
possible situations where image-based diagnostics with advanced training are involved.
Various portable devices are also used in leaf disease detection.

In all the instances where an intelligent classifier is installed on portable devices and
contains a novel disease, datasets can enhance detection accuracy. Portable devices, i.e.,
smartphones, drones, and laptops, can be easily tested in realistic scenarios [7].

Researchers have considered various novel techniques to resolve leaf disease detection
issues, i.e., image classification, AI, machine learning, and deep learning [8]. Data pre-
processing is an essential phase in image analysis, which includes various processes,
i.e., image optimization, color adjustment, reshaping, and feature extraction. An image
classification method must be applied with an image enhancement technique for better
outcomes [9].

A hybrid deep-learning and image-classification-based model for leaf disease detection
is discussed in [10]. However, these existing research works have several challenges, which
need immediate attention. This motivates researchers to work on Cassava leaf disease
detection [11]. These factors also encourage researchers to develop a more robust and
reliable Cassava leaf disease detection system.

This research aims to fill the gaps by presenting a better overview of leaf disease
detection and analysis in Cassava plants. This research provides a comprehensive learning
strategy for real-time Cassava leaf disease identification based on enhanced CNN models
(ECNN). The main contributions of this research are as follows:

• This research presents a complete overview of Cassava leaf diseases.
• This research presents a detailed overview of the CNN model and describes how the

CNN model can improve Cassava leaf disease detection.
• The existing Standard CNN models [12] utilize a complex set of features and a mas-

sive computational overhead. To overcome these issues, in the proposed model, we
upgraded the traditional convolution network model by adding new features.

• The proposed ECNN model utilizes a depth-wise separable convolution, which mini-
mizes the feature count and computational overhead.

• The proposed ECNN also utilizes a distinct block processing feature to process imbal-
anced images.
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• Furthermore, the proposed ECNN model utilizes de-correlation stretching with Gamma
correction. It enhances the image color segregation feature and provides a higher
band-to-band correlation.

• The proposed model utilizes a global average election polling layer to replace the fully
connected layer to decrease the number of variables. After that, ECNN utilizes a batch
normalization layer that enhances the overall computational efficiency [13].

• The proposed ECNN method is validated by calculating the standard performance
measuring parameters, and the results are compared with the existing Standard
CNN method.

The research article is organized as follows. Section 1 covers introductory work related
to the research; Section 2 covers related positions in Cassava leaf disease identification and
classification. Next, Section 3 covers materials and methods related to research. Section 4
covers the proposed ECNN model’s implementation, results, and discussion. Section 5
covers the conclusion and future work.

2. Related Work

Cassava is the most popular commercial and industrial crop in Africa and Thailand.
Due to the apparent pleasant environment and soil, it is primarily produced in these
countries. Cassava crop encounters several issues, i.e., leaf disease and fungal infection,
thus reducing production and increasing cost. Early and accurate detection of Cassava
leaf disease is a promising research area for researchers. Various research articles suggest
different methods and models to improve Cassava leaf disease detection. Existing research
has also tried to determine effective methods for improving Cassava crop production. This
section covers the existing research on Cassava leaf disease detection.

2.1. Machine Learning Based

ResNet-50- and SVM-classifier-based Cassava leaf disease model is presented in [14].
The proposed model first extracts all the relevant features and then classifies the image
dataset using an SVM classifier in the next phase. The outcomes show better accuracy and
performance by incorporating ResNet-50 and SVM classifiers.

A digital image processing model uses a hybrid transfer learning method [15]. It is
crucial to perform correct data preparation in leaf disease research. This improves plant
disease pattern recognition, forecasting, and model performance.

A hybrid model based on SVM and RF for Cassava leaf disease detection is presented
in [16]. The proposed model utilizes multiple feature selection processes, including selecting
image type, association in parameters, quality, and uniformity. The proposed classification
model achieved more than 90% accuracy compared to the existing model.

The SVM and Naive Bayes machine-learning-based model is presented in [17] to detect
plant diseases. The researcher suggested that a massive data history and machine-learning
methods play an essential role in plant disease analysis. The machine-learning method [18]
provides a valuable contribution to evaluate a considerable volume of leaf image data.
Another research [19] presented a deep-learning-based model with ImageNet for Cassava
leaf disease detection.

2.2. Leaf Shape, Colour, and Texture Based

Leaf disease detection based on leaf properties is discussed in research [20]. The
proposed model utilized complex geometries and segmentation-based methods for feature
extraction. After feature extraction, the SVM classification method was applied to classify
leaf diseases. A shape- and texture-based classification for Cassava leaf disease identifica-
tion is discussed in research [21]. The proposed model achieved more than 84% accuracy
and 88% detection rate.

A region-based detection method is discussed in research [22]. This work mainly
focused on retrieving Cassava leaf properties using a cluster center method. A bacterial and
viral infection detection algorithm is introduced in research [23]. The proposed method first
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detects leaf image texture and shape features, enhancing disease classification outcomes
and improving overall precision and accuracy.

An innovative procedure for categorizing plant leaf disease is discussed in research [24].
Often, these plants have distinctive leaves that vary by features, such as margin, color,
shape, and texture. A shape-, color-, and texture-based leaf disease classification are dis-
cussed in research [25]. This research classified diseases using combinations of two and
more characteristics, such as shape, size, color, and texture. In the proposed method,
a shape-based technique first extracts the curve receipt using leaf stem and afterward
determines the inconsistencies using a Jeffrey divergence estimate method. Leaf disease
detection based on computer vision and leaf feature analysis method was discussed in
research [26].

2.3. Neural Network Based

A deep-learning-based model to analyze Cassava leaf diseases is presented in re-
search [27]. This proposed model firstly performs a subdivision method and later applies a
classification approach to diagnose Cassava leaf disease. GoogleNet- and AlexNet-based
convolutional neural network structures were discussed in research [28] to analyze and
identify distinct CNN leaf diseases.

A neural-network-based Cassava leaf disease prediction model is described in re-
search [29]. This research utilizes various neural network models on different crops to
analyze diseases and infections. Experimental results show the strength of the proposed
model through higher recognition rates. A deep-learning-based model is described in
research [30] to predict leaf disease. This research utilizes a feature selection method to
recognize thirteen particular crop diseases. Researchers have trained CNN architecture by
utilizing the Caffe deep-learning approach.

An improved deep-learning-based model is described in research [31] to predict leaf
disease classification. This research work also covers the limitation of existing works. A
nine-layer-based convolutional neural network model is presented in [32] to characterize
Cassava diseases in plants.

A NASNet-based fully convolutional architecture is described in research [33]. This
model applied a feature selection model to recognize fungal leaf infection. The proposed
model achieved an accuracy rate of 94.1% compared to an existing model. A superficial
CNN model is presented in research [34] to identify and characterize plant leaf diseases.
In the initial phase, researchers retrieved the leaf features using the feature extraction
method and then categorized them using a feature selection method with random forest
classification methods.

2.4. Comparative Analysis

Table 1 represents the comparative analysis of various existing methods used in plant
leaf disease detection and analysis.

Table 1. A Comparative Analysis of Various Existing Research Works.

Reference Dataset Technique/Model Outcomes

[35] Online Cassava Leaf
disease dataset

DRN (Deep Residual
Neural) Network

Precision 94.24% and
AUC 90.1%

[36] Online Cassava Leaf
disease dataset

Random Forest, SVM and
SCNN (Shallow CNN)

Detection rate 91.7% and
Time 89.6%

[37] Online Cassava Leaf
disease dataset 9-Layered CNN Model Accuracy 90.48%

[38] Online Cassava Leaf
disease dataset

FR-CNN (Faster
Recurrence CNN)

Specificity rate 77.8%,
Precision rate 91.8%, and

Sensitivity rate 73.26%

[39] Online Cassava Leaf
disease dataset

SSD (Single Sot
Multi-box Method) Precision rate 90.8%



Mathematics 2022, 10, 580 5 of 19

Table 1. Cont.

Reference Dataset Technique/Model Outcomes

[40] Online Cassava Leaf
disease dataset

MNet (Mobile Net
Detector) Model

Accuracy 89.41% and
Sensitivity rate 76.96%

[41] Online Cassava Leaf
disease dataset

GoogleNet and AlexNet
CNN Model

Precision 87.9, Recall 86.58,
and F-measure 81.47%

[42] Online Cassava Leaf
disease dataset

Machine-learning methods
SVM, Naïve Bayes

Sensitivity rate 0.798,
Specificity rate 0.756, and

AUC rate 0.875

[43] Online Cassava Leaf
disease dataset CNN model Accuracy 93.5, Precision 91.9

3. Materials and Methods

This section covers the proposed model architecture and working steps.

3.1. Proposed ECNN Architecture

This research provides a comprehensive learning method for real-time Cassava leaf
disease detection based on an enhanced CNN model (ECNN). The existing Standard CNN
model is based on extensive features and a massive computational process that increases
the computational overhead. We present an enhanced CNN model (ECNN) for Cassava
leaf disease detection and an analysis for overcoming these issues. The existing Standard
CNN model is improved by adding new features and properties.

In the proposed ECNN model, a depth-wise layer separation feature is introduced,
minimizing the feature count and computational overhead. Additionally, a global aver-
age election polling layer replaces the fully connected layer and decreases the variable
count. Then, a batch normalization layer is applied to adjust computational efficiency.
The proposed ECNN model utilizes a distinct block processing feature to deal with data
imbalance. The next phase utilizes de-correlation stretching with Gamma correction fea-
ture, which improves color segregation with high band-to-band correlation features on the
image dataset.

The architecture of the proposed ECNN model involves three convolutional layers and
four fully integrated layers in the head. The first layer contains 32 (5 × 5) convolutions, in
order to know and understand more significant characteristics of workflow normalization.
This layer also contains batch sizes of (3 × 3) for the max-pooling feature. The subsequent
two and three layers consist of two main pairs of convolution layers. They mainly contain
64 features, with size (3 × 3) batch normalization features. They also contain 128 features of
size (3 × 3) for max pooling, respectively. The layers are arranged in a particular manner to
facilitate the entire learning system to learn broader and deeper characteristics by applying
the stacking of two pairs of convolution layers. Figure 1 shows the architectural features of
the proposed ECNN framework.
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Figure 1. Architecture of Proposed ECNN Model.

3.1.1. Global Average Election Polling Layer (GAEPL)

GAEPL’s objective is to standardize the entire network structure and minimize the
dimensionality from three-dimensional to one-dimensional, which minimizes the over-
fitting issues. The proposed ECNN model utilizes the pattern map feature within the
last CNN layer to aggregate all the outputs into a sequence of one-dimensional form.
After applying a GAEPL, the number of variables is considerably reduced because the
advancement of pattern maps in matrices is not required, as described in Figure 2.
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Figure 2. Global Election Polling Layer.

The advantage of a GAEPL over the convolutional layers is that it can effectively
maintain the multilayer architecture by improving the connection between the pattern
maps and analogies. It also provides more convincing features and well-understood pattern
map classifications [44].

A pooling function includes sliding a two-dimensional filtration system across each
link of its feature space. It also aggregates all the features within the filter’s communication
range. For a convolution layer feature space composed of parameters (Nw: width of feature
space, Nh: height of feature space and Nc: Total number of channels/links in a feature
space, f: filter size, and s: length of stride), the measurement of results acquired straight
after a pooling layer can be defined as

[(Nh − (f + 1)/S) × (Nw − (f + 1)/s) × Nc] (1)
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Each link in the feature space is combined into a single value using the global pooling
layer function. As a result, the (Nh × Nw × Nc) feature space is adjusted to (1 × 1 × Nc).
It is the same as using only a filter with aspects (Nh × Nw), i.e., the feature map’s elements.

3.1.2. Batch Normalization Layer (BNL)

BNL is a training method for complex CNN architecture. It standardizes the number
of parameters at each level in small batches. It also improves the teaching methods and
significantly minimizes the training epochs needed to build deep convolutional networks.
Figure 3 shows the working of BNL [45].
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In CNN, the quantity of neurons in each layer is often expansive. If data transmission
at a specific layer starts shifting from one layer to another, the network size also grows,
enhancing the modeling risks. Consequently, a batch normalization process mainly aims to
relieve the above issues. A batch normalization process splits the population into small
clusters and fixes each cluster’s variables [46]. A record inside one cluster collectively
depends on the direction of the differential and minimizes unpredictability when the
value decreases. A CNN group requires fewer items than a complete dataset during the
process, which dramatically reduces the computation count. An activation function is
used in the batch normalization process. Before applying an activation function, the batch
normalization layer normalizes the input data toward all the levels and overcomes the
problem of addressing the input offset. A batch normalization process transforms the input
n as per the following formula given in Equation (2):

BN(n) = β + γ +
n− µβ

σβ
+ β (2)

where n ∈ B represents an input element toward batch normalization (BN), which is mainly
related to a small batch β, γ represents the scale variable, σβ represents the standard
deviation, and µβ represents the sample mean value.

3.1.3. Distinct Block Processing (DBP)

This research utilized an imbalanced Cassava leaf disease dataset. The data are biased
against CBSD, CBD, and CGM disease classes, and they also include Cassava leaf images
of varying sizes. The imbalanced dataset needs immediate attention, and it should be
converted into a balanced dataset for better outcomes. A distinct block technique is used to
fix this problem. Therefore, when the resolution of the source image is significantly greater
than the neural network’s potential, the block processing method is utilized [47].

On the other hand, the block processing method enables the preservation of visual
information. It has earlier been utilized effectively in numerous computer-vision-based
research works. The input data are filtered from block to block during a distinct block
operating condition. The input image is divided further into a rectangular shape, and
each block is processed independently to evaluate the correlating block image outcome
and define the image pixels. The images are separated into distinct blocks in the top left
corner. A zero-padding value is introduced to boost the series of images in less identified
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classes, and the blocks do not align to a particular object. All Cassava leaf disease class
labels contain similar images for all five classes. Different block processing methods boost
each class’s feature count.

3.2. Working of Proposed ECNN

The Cassava leaf disease detection and analysis using the proposed ECNN model
includes various phases. Each phase has its distinct features. The max-pooling layer’s goal
is to decrease the geographic capacity dimensions of all image pixels. After parameter
selection and improvement with the grid search process, the network’s head comprises four
fully linked layers of 512 neurons. The first, second, and third layers contain 1024 neurons
in this process, and the fourth layer contains 256 neurons. There is a neuron for each
classification in the output-based convolutional layers correlating to five Cassava leaf
disease classes. The dropout feature is utilized in the fully inter-linked layers to overcome
inaccuracy and overfitting issues. In particular, the fully connected layers obtain essential
information from the object through the fully connected components. To utilize these
selected features to identify and classify all the healthy and unhealthy classes from the leaf
images, the convolution layer value can be measured as Equation (3)

xl
k = f

 n

∑
i εMk

xl−1
j

(
n
k

)
∗ xl

jk + al
k

 (3)

where xl−1
j represents the feature map value of the last layer used as an output, xl

k repre-

sents the channel output value, n represents the layer number, al
k represents the offset value

related to channel, Mk represent the subset data for input.

3.2.1. Phase 1

The first phase performs image transformation, including mask segment, deskew,
gray, thresh, rnoise, canny, and sharpen. Then, to remove image imbalance, we apply a
pre-processing data phase based on Contrast Limited Adaptive Histogram Equalization
(CLAHE) method [48]. Figure 4 shows image transformation. Here, one to ten transforma-
tions are performed by various methods. In Figure 4: (1): original, (2): mask, (3): segment,
(4): deskew, (5): gray, (7): thresh, (8): rnoise, (9): canny, and (10): sharpen.
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Figure 5 shows the image pre-processing by using the CLAHE method. The CLAHE
method improves the performance of image processing methods in low-resolution and
low-contrast environments. The initial color image is transferred from RGB to Y.I.Q. and
H.S.I. shared spaces. In the next phase, a CLAHE method is utilized in the Y.I.Q. and H.S.I.
color spaces to produce two improved image datasets. Then, the Y.I.Q. and H.S.I. improved
images are subsequently converted to RGB color space.
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3.2.2. Phase 2

In this phase, we applied the SMOTE method for resampling purposes [49]. The
first phase mainly removes the skewness from the images. As discussed, the Cassava leaf
disease dataset [50] that we are using for this research is highly imbalanced. The second
phase utilized a perfect combination of existing methods: SMOTE (Synthetic Minority
Oversampling Technique), class-weight, and focal loss techniques, to enhance the volume
of the training dataset, which led to improvements in high precision. SMOTE is a method
for oversampling that generates data samples only for class labels. This method mainly
overcame the overfitting issue caused by arbitrary data.

The SMOTE method creates unique Cassava leaf disease data samples based on actual
results to remove the skewness. The SMOTE approach selects samples in the feature space
closest to them, makes a clear distinction between them in the subspace, and draws a new
sample once at the position along each path.

3.2.3. Phase 3

Phase three is mainly applied to enhance the size of the Cassava leaf image dataset. To
address the issue of a limited dataset, this phase utilizes dataset enhancement techniques,
such as random shearing, image flipping, center zooming, random scaling, height/width
shift, and random cropping. This phase also utilizes an image-flipping method, which
increases the dataset volume. It helps in the testing and training process and provides
better precision, accuracy, and performance.

4. Results and Discussion

This section covers the implementation, dataset description, result comparison, and
discussion. The python programming language implements existing Standard CNN [2]
and proposed ECNN methods. The proposed ECNN model is compared with the existing
Standard CNN architecture-based model. To implement these models, we are using a
similar type of feature. Various performance measuring parameters are calculated, i.e.,
precision, recall, f-measures, and accuracy.

4.1. Dataset

The Cassava leaf dataset is collected from the online Kaggle dataset [50]. The original
data contain 6256 Cassava leaf images with imbalanced occurrences of 316 healthy Cassava
leaves. The dataset also contains the four types of unhealthy infected Cassava leaf classes.
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Figure 6 shows the various disease classes of Cassava leaf (0: CBB, 1: CBSD, 2: CGM,
3: CMD, and 4: Healthy).
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Different parameters are calculated to examine the performance of the proposed
ECNN model, i.e., dropout, batch size, other numbers of epochs and precision, recall,
f-measure, accuracy.

4.2. Data Pre-Processing

In the pre-processing phase, the raw Cassava images are normalized. An imbalance
is also removed from the images. The image set is classified into two main categories:
standard (healthy) and abnormal (unhealthy). These natural-color images are divided into
five binary classes, from 0 to 4. The unhealthy Cassava images are classified into distinct
classes. The complete normalization process in data pre-processing for a data sample is
described in the Equations (4)–(6):

(γ)n =
1
n
∗

n

∑
k=0

Nk (4)

(µ)2 =
1
n
∗

n

∑
k=0

(Nk − γ) (5)

In Equations (4) and (5), Nk shows the data for a pixel, which is stored at position k,
and n shows the pixel samples. γ shows the mean data value, and (µ)2 shows the variance.
Based on Equations (4) and (5), a normalization process can be defined by Equation (6)
as follows:

N| =
Nk − γ

(µ)2 + ε
(6)

In Equation (6), the N| represents the normalization value for an ith pixel, and ε is
some small random value, where ε > 0.

In Cassava leaf image data pre-processing, the images’ R, G, and B components
are decreased from their mean values in the normalization progressive enhancement de-
averaging. Moreover, there are a variety of issues with the Cassava leaf dataset. The first is
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the small dataset size, and the next is the poor contrast and resolution images. Another
challenge is associated with the skewness in the class label. The top class contains 39.4% of
this dataset, and the minor class contains 2.89% magnitude variations [51].

We focused on enhancing Cassava image contrast using the CLAHE method. The
CLAHE method can significantly improve the performance of image processing methods in
low-resolution and low-contrast environments. To increase the size of the database, various
image enhancement methods, i.e., random shearing, image flipping, central zooming,
random cropping, random scaling, shifting of image height and width, are used. An
image flipping method that helps to enhance the size of the database helps in training and
validation for testing results.

In the next phase, all the Cassava leaf images are restructured into (224 × 224) by
adjusting the width and length of the images. The images of leaf categories are restructured
further into vertically and horizontally flipped components. The Cassava image dataset
includes CMD: 2808, CGM: 923, CBB: 166, and CBSD: 1593 images. As shown in Figure 7,
these images are completely unbalanced, with a heavy bias toward CBSD and CMD Cassava
disease classes.
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4.3. Visualization of Proposed ECNN Model

The proposed ECNN model generates 239 NN layers. Figure 8 represents the visualiza-
tion outcomes of the first five layers (layer 1 to layer 5) of the proposed ECNN model. Layer
1 represents the input image; layer 2 represents the rescaling process; layer 3 represents
normalization; layer 4 represents the stem_conv_pad; and layer 5 represents the stem_conv.
The proposed ECNN model’s structure consisted of three convolution operations and a
core of four fully linked layers.

Layer 1 contains 32 cores (5× 5) for learning higher batch normalization characteristics,
with max pooling of (3× 3) pool capacity. Layers 2 and 3 contain two fully connected layers
with 64 (3 × 3) and 128 (3 × 3) feature selection, batch normalization, and max pooling.
A batch normalization process enables the creation of the batches for two different sets of
convolution layers. Before completing the max-pooling process, all the layers are structured
to enhance the learning of the entire model. In the ECNN layer architecture, layer 4 shows
the “stem_conv_pad”, which describes the Keras Zero Padding 2D normalization process
outcomes, and similar layer 5 shows the “stem_conv”, which describes the Conv2D in
Keras outcomes [52].
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4.4. Experimental Outcomes

The existing Standard CNN model and Proposed ECNN methods are implemented
using python and Anaconda distribution in this research. The online Kaggle Cassava leaf
dataset is used for analysis. The dataset is divided into training and testing sets.

Following performance measuring, the parameters are calculated to measure the
performance of the proposed ECNN method given in Equations (7)–(11) [53–56]:

Accuracy = (TP + TN)/[(TP + TN + FN + FP)] (7)

Precision = [TP/(FP + TP)] (8)

Recall = [TP/(FN + TP)] (9)

F-Measure = 2 × [(Recall × Precision)/(Recall + Precision)] (10)

Confusion Matrix (CM) = the total of true and false forecasts is summarized with
score values divided by class. It is the main factor here for a CM.

(11)

where TP = True positive rate, FP = False positive rate, FN = False Negative, TN = True
Negative.

In this experiment, we used two scenarios for Cassava leaf disease analysis. In
Scenario 1, experimental analysis is performed on the imbalanced dataset, and in Scenario 2,
experimental analysis was performed on a balanced dataset. Accuracy rate, precision, recall,
and F-measure parameters are calculated to evaluate the training and test competitiveness
of the CNN and proposed ECNN models.

4.4.1. Scenario 1

The first scenario performs experimental analysis on an imbalanced Cassava leaf
disease dataset. The dataset is divided into 60% for training and 40% for testing pur-
poses. K-fold cross-validation is applied with k = 3 for training and testing to achieve a
higher precision.

Figure 9 represents the experimental outcome of the proposed ECNN and CNN model
for training and validation accuracy, and training and validation loss for imbalanced
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datasets. The experimental results demonstrate that the proposed ECNN model achieved
training and validation accuracy of 94.689% and a loss of 24.547%, which is better than
the existing Standard CNN model results, showing training and validation accuracy of
89.754% and a loss of 36.414%.
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Figure 10 represents the confusion matrix of the proposed ECNN model for various
Cassava leaf disease classes. This matrix shows the results of actual vs. predicted data. The
healthy class shows an accuracy of 99.64%, which is better than the other classes. The CMD
disease class is showing poor outcomes, at 94.69%.
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Figure 11 represents the experimental results of the existing Standard CNN model
and the proposed ECNN model. This graph is plotted between accuracy% and epoch
for training and testing. The proposed ECNN method shows better training and testing
accuracy for all the epoch cycles, and at epoch 300, it shows more than 99% accuracy.
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Tables 2 and 3 show the experimental outcomes for various Cassava leaf disease classes
(0 to 4) for the proposed ECNN and CNN for the imbalanced dataset. These experimental
results show that the proposed ECNN model performs better in accuracy, precision, recall,
and f-measure than the existing Standard CNN model.

Table 2. Experimental Results for CNN Model for Imbalanced Dataset.

Class Type Precision% Accuracy% Recall% F-Measure%

CBB 81.256 83.659 82.224 82.154
CBSD 92.454 90.891 91.265 82.656
CGM 80.147 72.651 72.665 77.841
CMD 95.451 95.654 95.669 96.561

Healthy 70.981 68.961 69.781 69.874

Table 3. Experimental Results for ECNN Model for Imbalanced Dataset.

Class Type Precision% Accuracy% Recall% F-Measure%

CBB 91.021 92.568 84.565 84.998
CBSD 97.989 97.989 93.651 84.665
CGM 94.989 95.648 74.558 78.988
CMD 99.465 99.565 96.336 97.447

Healthy 96.981 97.778 90.145 91.407

4.4.2. Scenario 2

In the second scenario, the balanced dataset of the Cassava leaf is used. This dataset is
divided into 60% for training and 40% for testing purposes.

Table 4 shows that the proposed ECNN procedure outperformed the existing Standard
CNN model in terms of accuracy results for all the classes. The ECNN model shows
99.47% accuracy for CBB class, which is the highest in all the terms. Once we compare the
experimental results of Scenarios 1 and 2, we can see that the proposed ECNN method
shows better results for a balanced dataset than an imbalanced dataset.
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Table 4. Experimental Results for CNN vs. ECNN Model for a Balanced Dataset.

Class Type
Accuracy%

CNN Model Proposed ECNN

CBB 93.214 99.473
CBSD 91.478 98.132
CGM 89.981 99.391
CMD 93.124 98.924

Healthy 90.478 97.692

5. Conclusions and Future Work

Cassava leaf detection is a hot area of research. This research developed an ECNN
model for a high imbalance Cassava leaf dataset to predict the disease class. The existing
Standard CNN models utilize a higher extensive set of features and a massive computa-
tional process that increases the computational overhead. We upgraded the traditional
convolution network model by adding enhanced features to overcome this issue. The
proposed ECNN model utilizes a depth-wise layer separation, minimizing the feature
count and computational overhead. Additionally, to overcome the dataset imbalance factor,
this research applied improved data pre-processing methods. It reduces the error rate and
improves image quality.

The proposed ECNN model is compared with the existing Standard CNN architecture-
based model. To implement these models, we are using a similar type of feature. An
experimental analysis was performed on an online Cassava leaf dataset. This dataset
contained five classes: 0: CBB, 1: CBSD, 2: CGM, 3: CMD, and 4: Healthy. An experimental
analysis clearly shows the strengthening of the proposed ECNN model in terms of better
accuracy, precision, recall, and f-measure than the existing Standard CNN model.

In future work, we will try to improve the current research in various aspects: (a) the
dataset can be improved in terms of data size and more disease classes; (b) the ECNN
model can be improved by adding more CNN models in hybrid form; (c) the experi-
mental analysis can be performed in a real-time environment with more performance
measuring parameters.
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Abbreviations
The following are the abbreviations used in this research:

CNN Convolutional Neural network
ECNN Enhanced Convolutional Neural network
CBB Cassava Bacterial Blight
CBSD Cassava Brown Streak Disease
CGM Cassava Green Mottle
CMD Cassava Mosaic Disease
SVM Support Vector Machines
RF Random Forest
DRN Deep Residual Neural Network
SCNN Shallow CNN
FR-CNN Faster Recurrence CNN
SSD Single Sot Multi-box Method
MNet Mobile Net Detector Model
GAEPL Global Average Election Polling Layer
BNL Batch Normalization Layer
DBP Distinct Block Processing
CLAHE Contrast Limited Adaptive Histogram Equalization
RGB Red Green Blue
YIQ Y (perceived luminance), I, Q (color/luminance information) NTSC color model
SMOTE Synthetic Minority Oversampling Technique
T.P. True positive rate
FP False-positive rate
FN False Negative
TN True Negative
NN Neural Network
stem_conv_pad Zero Padding 2D normalization
stem_conv Conv2D
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