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Abstract: Under mild conditions, strong consistency of the Bayes estimator of the density is proved.
Moreover, the Bayes risk (for some common loss functions) of the Bayes estimator of the density
(i.e., the posterior predictive density) goes to zero as the sample size goes to ∞. In passing, a similar
result is obtained for the estimation of the sampling distribution.
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1. Introduction

In a statistical context, since the expression the probability of an event A (usually denoted
Pθ(A)) depends on the unknown parameter, it is really a misuse of language. Before
performing the experiment, this expression can be assigned a natural meaning from a
Bayesian perspective as the prior predictive probability of A since it is the prior mean
of the probabilities Pθ(A). However, in accordance with Bayesian philosophy, once the
experiment has been carried out and the value ω has been observed, a more appropriate
estimate of Pθ(A) is the posterior predictive probability given ω of A. The author has
recently proved ([1]) that not only is this the Bayes estimator of Pθ(A) but that the posterior
predictive distribution (resp. the posterior predictive density) is the Bayes estimator of the
sampling distribution Pθ (resp. the density pθ) for the squared variation total (resp. the
squared L1) loss function in the Bayesian experiment corresponding to an n-sized sample
of the unknown distribution. It should be noted that the loss functions considered derive
in a natural way from the commonly used squared error loss function when estimating a
real function of the parameter.

The posterior predictive distribution is the cornerstone of Predictive Inference, which
seeks to make inferences about a new unknown observation from a preceding random
sample (see [2,3]). With that idea in mind, it has also been used in other areas such as model
selection, testing for discordancy, goodness of fit, perturbation analysis, and classification
(see additional fields of application in [1–5]). Furthermore, in [1], it has been presented as a
solution for the Bayesian density estimation problem, giving several examples to illustrate
the results and, in particular, to calculate a posterior predictive density. [3] provide many
other examples of determining the posterior predictive distribution. But in practice, explicit
evaluation of the posterior predictive distribution may be cumbersome, and its simulation
may become preferable. The aforementioned work of [3] also constitutes a good reference
for such simulation methods, and hence for the computation of the Bayes estimators of the
density and the sampling distribution.

We would refer to the references cited in [1] for other statistical uses of the posterior
predictive distribution and some useful ways to calculate it.

In this communication, we shall explore the asymptotic behaviour of the posterior
predictive density as the Bayes estimator of the density, showing its strong consistency and
that the Bayes risk goes to 0 as n goes to ∞.
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2. The Framework

Let
(Ω,A, {Pθ : θ ∈ (Θ, T , Q)})

be a Bayesian experiment (where Q denotes de prior distribution on the parameter space
(Θ, T )), and consider the infinite product Bayesian experiment

(ΩN,AN, {PN
θ : θ ∈ (Θ, T , Q)})

corresponding to an infinite sample of the unknown distribution Pθ . Let us write

I(ω, θ) := ω, J(ω, θ) := θ, In(ω, θ) := ωn and I(n)(ω) := ω(n) := (ω1, . . . , ωn)

for integer n.
We suppose that PN(θ, A) := PN

θ (A) is a Markov kernel. Let

ΠN := PN ⊗Q

be the joint distribution of the parameter and the observations, i.e.,

ΠN(A× T) =
∫

T
PN

θ (A)dQ(θ), A ∈ AN, T ∈ T .

As Q := ΠJ
N (i.e., the probability distribution of J with respect to ΠN), PN

θ is a version

of the conditional distribution (regular conditional probability) ΠI|J=θ
N . Analogously, Pn

θ is

a version of the conditional distribution Π
I(n) |J=θ

N .
Let β∗Q,N := ΠI

N, the prior predictive distribution in ΩN (so that β∗Q,N(A) is the prior

mean of the probabilities PN
θ (A)). Similarly, write β∗Q,n := Π

I(n)
N for the prior predictive

distribution in Ωn. So, the posterior distribution P∗ω,N := ΠJ|I=ω
N given ω ∈ ΩN satisfies

ΠN(A× T) =
∫

T
PN

θ (A)dQ(θ) =
∫

A
P∗ω,N(T)dβ∗Q,N(ω), A ∈ AN, T ∈ T .

Denote by P∗ω(n),n := Π
J|I(n)=ω(n)
N for ω(n) ∈ Ωn the posterior distribution given ω(n) ∈ Ωn.

Write P∗ω(n),n
P for the posterior predictive distribution given ω(n) ∈ Ωn defined for

A ∈ A as
P∗ω(n),n

P (A) =
∫

Θ
Pθ(A)dP∗ω(n),n(θ).

So P∗ω(n),n
P (A) is nothing but the posterior mean given ω(n) ∈ Ωn of the probabilities

Pθ(A).
In the dominated case, we can assume without loss of generality that the dominating

measure µ is a probability measure (because of (1) below). We write pθ = dPθ/dµ. The
likelihood function L(ω, θ) := pθ(ω) is assumed to be A× T -measurable.

We have that, for all n and every event A ∈ A,

P∗ω(n),n
P (A) =

∫
Θ

Pθ(A)dP∗ω(n),n(θ) =
∫

Θ

∫
A

pθ(ω
′)dµ(ω′)dP∗ω(n),n(θ)

=
∫

A

∫
Θ

pθ(ω
′)dP∗ω(n),n(θ)dµ(ω′),

which proves that

p∗ω(n),n
P (ω′) :=

∫
Θ

pθ(ω
′)dP∗ω(n),n(θ)
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is a µ-density of P∗ω(n),n
P that we recognize as the posterior predictive density on Ω given

ω(n).
In the same way,

p∗ω,N
P(ω′) :=

∫
Θ

pθ(ω
′)dP∗ω,N(θ)

is a µ-density of P∗ω,N
P, the posterior predictive density on Ω given ω ∈ ΩN.

In the following, we will assume the following additional regularity conditions:

(i) (Ω,A) is a standard Borel space;
(ii) Θ is a Borel subset of a Polish space and T is its Borel σ-field;
(iii) {Pθ : θ ∈ Θ} is identifiable.

According to [1], the posterior predictive distribution P∗ω(n),n
P (resp. the posterior

predictive density p∗ω(n),n
P ) is the Bayes estimator of the sampling distribution Pθ (resp.

the density pθ) for the squared variation total (resp. the squared L1) loss function in the
product experiment (Ωn,An, {Pn

θ : θ ∈ (Θ, T , Q)}). Analogously, the posterior predictive
distribution P∗ω,N

P (resp. the posterior predictive density p∗ω,N
P) is the Bayes estimator of the

sampling distribution Pθ (resp. the density pθ) for the squared variation total (resp. the
squared L1) loss function in the product experiment (ΩN,AN, {PN

θ : θ ∈ (Θ, T , Q)}).
As a particular case of a well known result about the total variation distance between

two probability measures and the L1-distance between their densities, we have that

sup
A∈A

∣∣∣P∗ω(n),n
P (A)− Pθ(A)

∣∣∣ = 1
2

∫
Ω

∣∣∣p∗ω(n),n
P − pθ

∣∣∣dµ. (1)

3. The Main Result

We ask whether the Bayes risk of the Bayes estimator P∗ω(n),n
P of the sampling distribu-

tion Pθ goes to zero when n→ ∞, i.e., whether

lim
n

∫
ΩN×Θ

sup
A∈A

∣∣∣P∗ω(n),n
P (A)− Pθ(A)

∣∣∣2dΠN(ω, θ) = 0.

In terms of densities, the question is whether the Bayes risk of the Bayes estimator
p∗ω(n),n

P of the density pθ goes to zero when n→ ∞, i.e., whether

lim
n

∫
ΩN×Θ

(∫
Ω

∣∣∣p∗ω(n),n
P (ω′)− pθ(ω

′)
∣∣∣dµ(ω′)

)2
dΠN(ω, θ) = 0.

Let us consider the auxiliary Bayesian experiment

(Ω×ΩN,A×AN, {µ× PN
θ : θ ∈ (Θ, T , Q)}).

For ω′ ∈ Ω, ω ∈ Ωn and θ ∈ Θ, we will continue to write I(ω′, ω, θ) = ω and
J(ω′, ω, θ) = θ, and now we write I′(ω′, ω, θ) = ω′.

The new prior predictive distribution is µ× β∗Q,n since

(µ×ΠN)
(I′ ,I(n))(A′ × A(n)) = µ(A′) · β∗Q,n(A(n)) = (µ× β∗Q,n)(A′ × A(n)).

To compute the new posterior distributions, notice that

(µ×ΠN)(A′ × I−1
(n)(A(n))× T) =∫

A′×I−1
(n)(A(n))

(µ×ΠN)
J|(I′ ,I(n))=(ω′ ,ω(n))(T)d(µ×ΠN)

(I′ ,I(n))(ω′, ω(n)).
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On the other hand,

(µ×ΠN)(A′ × I−1
(n)(A(n))× T) = µ(A′) ·ΠN(I−1

(n)(A(n))× T) =

µ(A′) ·
∫

A(n)

P∗ω(n),n(T)dβ∗Q,n(ω(n)) =
∫

A′×A(n)

P∗ω(n),n(T)d(µ× β∗Q,n)(ω
′, ω(n)).

So,
P∗ω(n),n = (µ×ΠN)

J|(I′ ,I(n))=(ω′ ,ω(n)).

It follows that if f ∈ L1(Q) then

EP∗ω(n) ,n( f ) = Eµ×ΠN [ f | (I′, I(n)) = (ω′, ω(n))].

whenA′(n) := (I′, I(n))−1(A×An), we have that (A′(n))n is an increasing sequence of sub-σ-

fields of A×AN such that A×AN = σ(∪nA′(n)). According to the martingale convergence

theorem of Lévy, if Y is (A×AN × T )-measurable and µ×ΠN-integrable then

Eµ×ΠN(Y|A
′
(n))

converges (µ×ΠN)-a.e. and in L1(µ×ΠN) to Y = Eµ×ΠN(Y|A
′ ×AN).

Let us consider the µ×ΠN-integrable function

Y(ω′, ω, θ) := pθ(ω
′).

We shall see that

p∗ω,N
P(ω′) = Eµ×ΠN(Y | (I′, I) = (ω′, ω)). (2)

Indeed, given A′ ∈ A and A ∈ AN, we have that

∫
(I′ ,I)−1(A′×A)

pθ(ω
′)d(µ×ΠN)(ω

′, ω, θ) =
∫

A

∫
Θ

∫
A′

pθ(ω
′)dµ(ω′)dP∗ω,N(θ)dβ∗Q,N(ω)

=
∫

A

∫
Θ

Pθ(A′)dP∗ω,N(θ)dβQ,N(ω) =
∫

A
P∗ω,N

P(A′)dβ∗Q,N(ω)

=
∫

A′

∫
A

p∗ω,N
P(ω′)dµ(ω′)dβ∗Q,N(ω) =

∫
A′×A

p∗ω,N
P(ω′)d(µ×ΠN)

(I′ ,I)(ω′, ω),

which proves (2).
Analogously, it can be shown that

p∗ω(n),n
P (ω′) = Eµ×ΠN(Y | (I′, I(n)) = (ω′, ω(n))). (3)

Hence, it follows from the aforementioned theorem of Lévy that

lim
n

p∗ω(n),n
P (ω′) = p∗ω,N

P(ω′), (µ×ΠN)− a.e. (4)

and
lim

n

∫
Ω×ΩN×Θ

∣∣∣p∗ω(n),n
P (ω′)− p∗ω,N

P(ω′)
∣∣∣d(µ×ΠN)(ω

′, ω, θ) = 0,

i.e.,
lim

n

∫
ΩN×Θ

∫
Ω

∣∣∣p∗ω(n),n
P (ω′)− p∗ω,N

P(ω′)
∣∣∣dµ(ω′)dΠN(ω, θ) = 0. (5)
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On the other hand, as a consequence of a known theorem of Doob (see Theorem 6.9
and Proposition 6.10 of [4], pp. 129, 130, we have that, for every ω′ ∈ Ω,

lim
n

∫
Θ

pθ′(ω
′)dP∗ω(n),n(θ

′) = pθ(ω
′), PN

θ − a.e.

for Q-almost every θ. Hence

lim
n

p∗ω(n),n
P (ω′) = pθ(ω

′), PN
θ − a.e.

for Q-almost every θ, i.e., given ω′ ∈ Ω there exists Tω′ ∈ T such that Q(Tω′) = 0 and,
∀θ /∈ Tω′ ,

lim
n

p∗ω(n),n
P (ω′) = pθ(ω

′), PN
θ − a.e.

So, for θ /∈ Tω′ , there exists Nθ,ω′ ∈ AN such that PN
θ (Nθ,ω′) = 0 and

lim
n

p∗ω(n),n
P (ω′) = pθ(ω

′), ∀ω /∈ Nθ,ω′ , ∀θ /∈ Tω′ , ∀ω′ ∈ Ω.

In particular,
lim

n
p∗ω(n),n

P (ω′) = pθ(ω
′), µ× PN

θ − a.e. (6)

From (4) and (6), it follows that pθ(ω
′) = p∗ω,N

P (ω′), µ× PN
θ − a.e.

From this and (5), it follows that

lim
n

∫
ΩN×Θ

∫
Ω

∣∣∣p∗ω(n),n
P (ω′)− pθ(ω

′)
∣∣∣dµ(ω′)dΠN(ω, θ) = 0,

i.e., the risk of the Bayes estimator of the density for the L1 loss function goes to 0 when
n→ ∞.

It follows from this and (1) that

lim
n

∫
ΩN×Θ

sup
A∈A

∣∣∣P∗ω(n),n
P (A)− Pθ(A)

∣∣∣dΠN(ω, θ) = 0,

i.e., the risk of the Bayes estimator of the sampling distribution Pθ for the variation total
loss function goes to 0 when n→ ∞.

We ask whether these results remain true for the squared versions of the loss functions.
The answer is affirmative because of the following general result: Let (Xn) be a sequence of
r.r.v. on a probability space (Ω,A, P) such that limn

∫
|Xn|dP = 0. If there exists a > 0 such

that |Xn| ≤ a, for all n, then limn
∫
|Xn|2dP = 0 because

0 ≤
∫
|Xn|2dP ≤ a

∫
|Xn|dP→n 0.

In our case a = 2, P := ΠN and

Xn :=
∫

Ω

∣∣∣p∗ω(n),n
P (ω′)− p∗ω,N

P(ω′)
∣∣∣dµ(ω′), or Xn := sup

A∈A

∣∣∣P∗ω(n),n
P (A)− Pθ(A)

∣∣∣.
So, we have proved the following result.

Theorem 1. Let (Ω,A, {Pθ : θ ∈ (Θ, T , Q)}) be a Bayesian experiment dominated by a σ-
finite measure µ. Let us assume that (Ω,A) is a standard Borel space, and that Θ is a Borel
subset of a Polish space and T is its Borel σ-field. Assume also that the likelihood function
L(ω, θ) := pθ(ω) = dPθ

dµ (ω) is A× T -measurable and the family {Pθ : θ ∈ Θ} is identifiable.
Then:
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(a) The posterior predictive density p∗ω(n),n
P is the Bayes estimator of the density pθ in the product

experiment (Ωn,An, {Pn
θ : θ ∈ (Θ, T , Q)}) for the squared L1 loss function. Moreover the

risk function converges to 0 for both the L1 loss function and the squared L1 loss function.
(b) The posterior predictive distribution P∗ω(n),n

P is the Bayes estimator of the sampling distribution
Pθ in the product experiment (Ωn,An, {Pn

θ : θ ∈ (Θ, T , Q)}) for the squared variation total
loss function. Moreover the risk function converges to 0 for both the variation total loss
function and the squared variation total loss function.

(c) The posterior predictive density is a strongly consistent estimator of the density pθ , i.e.,

lim
n

p∗ω(n),n
P (ω′) = pθ(ω

′), µ× PN
θ − a.e.

for Q-almost every θ ∈ Θ.
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