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Abstract: The variety of electromagnetic impedance boundaries is wide since the impedance bound-
ary condition can have a two-dimensional matrix nature. In this article, a particular class of impedance
boundary conditions is treated: a boundary condition that produces the so-called co-circular polariza-
tion reflector (CCPR). The analysis focuses on the possibilities of manipulating the polarization of
the electromagnetic wave reflected from the CCPR surface as well as the so-called matched waves
associated with it. The characteristics of CCPR and its special cases (perfectly anisotropic boundary
(PAB) and soft-and-hard surface (SHS)) are compared against more classical lossless boundaries:
perfect electric, perfect magnetic, and perfect electromagnetic conductors (PEC, PMC, and PEMC).

Keywords: co-circular polarization reflector; CCPR; general linear boundary conditions; anisotropy;
PAB; SHS; matched waves; polarization transformation

1. Introduction

An electromagnetic plane wave hitting a planar boundary will be reflected, thus giving
rise to another plane wave. The polarization of the reflected wave depends not only on
the polarization state of the incident wave and its incidence angle but also on the nature
of the boundary. For example, in the case of reflection from a planar interface between
two isotropic media, there are two eigenpolarizations that retain their polarization state
in reflection: perpendicular (also called S-polarization or TE-polarization) and parallel
polarization (P-polarization, TM polarization) [1].

In a similar manner, a linearly polarized wave keeps its polarization state when
reflected from a planar perfect electric conductor (PEC) surface. On the other hand, the
reflection of a circularly (or elliptically) polarized wave from a planar PEC surface changes
the handedness of the polarization of the incident wave. Likewise happens for the reflection
from a perfect magnetic conductor (PMC) boundary. The character of the wave reflection is
dual between these two cases: the electric field reflection coefficient from PEC is the same
as the magnetic field reflection coefficient from PMC. The concept of perfect conductors in
electromagnetics has been generalized [2] into the so-called perfect electromagnetic conductor
(PEMC). Such a PEMC medium and surface contains PEC and PMC as special cases,
and magnetoelectric realizations have been proposed in the literature to fabricate such
surfaces [3,4]. For PEMC surface, a very peculiar property exists: the reflection of a
linearly polarized incident field results in a rotated linear polarization, and hence the
linear polarization is no longer an eigenpolarization (except in the extreme cases when
the rotation is 180 degrees (electric reflection coefficient being −1) as in the the PEC case
and when it is 0 degrees for PMC (electric reflection coefficient +1). In other words, the
PEMC boundary is non-reciprocal. For a certain PEMC parameter, the reflection is totally
cross-polarized [2]. On the other hand, such a boundary is isotropic, which means that it
responds to the electromagnetic excitation in a way that does not depend in the vector
direction of the tangential electric and magnetic fields.

The character of the surface is determined by its electromagnetic boundary conditions.
Hence, varying the boundary conditions of the surface one is able to manipulate the
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properties of the reflected wave. Concerning circular polarization (CP), the PEMC boundary
can be termed as a perfect cross-CP reflector. On the other hand, one may ask for a surface
that would display the complementary character: any circularly polarized wave reflects
with full amplitude and retains the handedness of the circular polarization: a perfect co-
circular polarization reflector (CCPR). Such a surface has indeed been recently introduced
in [5]. While PEMC boundary is isotropic and non-reciprocal, the CCPR is anisotropic
and reciprocal. Like PEMC, also CCPR has one structural parameter which changes its
properties. Despite occasional references to this CCPR design [6,7], the idea has not been
followed up in the recent metasurface literature. In the following we analyze the varieties
of CCPR and electromagnetic phenomena associated with it. The approach is based on the
boundary condition point of view [8] which leads to results that expand on the findings
in [5]. In particular, matched waves associated with CCPR will be given attention.

Structures and devices displaying complex electromagnetic response have been re-
cently been treated within the present-century metamaterials paradigm. A recent devel-
opment is that metamaterials have given visibility to the two-dimensional concept of
metasurfaces [9–11] that has become a conspicuous theme in electromagnetics and optics
literature. While the analysis on CCPR surface to follow could be considered to fall within
the broad class of metasurfaces, the approach in the analysis is different: the definition
of the structure is condensed in the perfect boundary condition, and all its properties
can be inferred from the analysis of how this condition dictates the behavior of the wave
interacting with this surface. The resulting knowledge and understanding of the properties
and parametric possibilities of the CCPR surface pave the way for devices with a broad
variety of capabilities to manipulate wave properties, like polarization converters with
wide angular ranges.

2. General Impedance Boundary Condition

Electromagnetic boundary conditions are relations of the tangential and/or normal
components of the electric and magnetic fields (E, H) or flux densities (D, B) at the bound-
ary of the domain of interest. Consider the planar surface (with unit normal n) in Figure 1 on
which electric and magnetic fields are decomposed into tangential and normal components.

n

n
n

E

Et

n× E

H

Ht

n×H

Figure 1. The electric and magnetic fields with their components Et, Ht tangential to the boundary
surface (the unit normal vector is n). The vector n× E has the same magnitude as Et but is rotated by
90◦ on the surface; likewise n×H and Ht.

If both the normal and tangential components of both the electric and magnetic
fields are included, we are led to a rather general class on boundary conditions [8]. In
the following, we will however focus on a particular subclass of boundaries; so-called
impedance boundaries for which the boundary condition involves only tangential electric
and magnetic fields:

Et = Zs · (n×Ht). (1)

This is a dyadic relation on the boundary between the tangential electric and magnetic
fields

Et = −n× (n× E) and Ht = −n× (n×H). (2)
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The characteristics of the boundary are condensed into the surface impedance dyadic
Zs in (1). It is worth noting that despite the apparent simplicity of this impedance equation,
due to the two-dimensionally dyadic nature of Zs, it spans a very rich domain of boundary
conditions.

To classify impedance boundary conditions, take an orthonormal set on real unit
vectors (v, w, n) that form a right-handed base. Vectors v and w are hence tangential to the
boundary. Using these vectors and following ([12] [Sec. 2.9.2]), define the following four
elementary two-dimensional dyadics with which all possible impedance dyadics Zs can be
expanded:

It = vv + ww, (3)

J = n× It = wv− vw, (4)

K = vv−ww, (5)

L = vw + wv. (6)

Here It is a two-dimensionally isotropic unit dyadic with which PEC, PMC, and scalar
impedance surfaces are characterized. The dyadic J is a rotation dyadic (operating on a
tangential vector, it changes the vector direction by 90◦ in the plane). This dyadic is also
isotropic as can be seen from the form n× It which gives preference neither to v nor w. The
dyadic J is needed for the surface impedance of the PEMC boundary.

The two remaining dyadics K and L are anisotropic in the plane of the surface, having
eigenvectors (v, w) and (v + w, v−w), respectively. In the following analysis, it is the
anisotropy of the surface impedance that is exploited to generate particular properties for
the electromagnetic reflection from the boundary.

Using matrix formulation within the (v, w) basis, these dyadics appear as the following
2× 2 matrices:

It =

(
+1 0
0 +1

)
, J =

(
0 −1
+1 0

)
, K =

(
+1 0
0 −1

)
, L =

(
0 +1
+1 0

)
. (7)

3. Co-Circular Polarization Boundary

From the mathematical nature of the surface impedance dyadic Zs, several of the
characteristics of the boundary are straightforwardly visible. For example, a boundary is
lossless (an electromagnetic wave interacting with the boundary neither loses nor gains
energy) as long as the impedance dyadic is anti-Hermitian. This means, mathematically,
that the Zs dyadic in (1) satisfies

Z
T
s = −Z

∗
s , (8)

in other words, its transpose (the superscript T) is the negative of its complex conjugate
(the superscript ∗) ([12] [Sec. 3.6.1]). From this, it follows that for a lossless boundary with
symmetric impedance dyadic, Zs must be purely imaginary, while the antisymmetric part
of the dyadic (like in the case of PEMC) has to be real.

In the following, boundaries with lossless and symmetric impedances will be treated.
Hence the impedance dyadic Zs is purely imaginary. (Obviously, PEC and PMC boundaries
are also lossless, although their impedances are not generally associated with imaginary
values, but as long as the impedance magnitude (or its inverse) vanishes, it does not matter
whether it is real or imaginary). The time-harmonic notation of the analysis is exp(jωt).

In order to introduce the main topic of the article, co-circular polarization reflector
(CCPR), it is useful to start with two fundamental lossless boundaries: soft-and-hard
surface (SHS) and perfectly anisotropic boundary (PAB).
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3.1. Soft-and-Hard Surface (SHS)

The so-called soft-and-hard surface is a boundary at which in one tangential direction
(along vector u), both the electric and magnetic fields have to vanish:

u · E = 0, u ·H = 0 (n · u = 0). (9)

Such a surface can be fabricated by a corrugated metal structure [13]. While the conduc-
tor short-circuits the electric field, the corrugations, as quarter-wavelength waveguides, act
as magnetic conductors, thus also forcing the magnetic field along the direction of the cor-
rugations to vanish. Such surfaces have been shown to be useful, for example in the design
of horn antennas with symmetrical radiation patterns and low cross-polarization [14–16].

The SHS conditions (9) can be written in terms of the impedance boundary condition (1)
with the following impedance dyadic:

Zs,SHS = j η0 lim
δ→0

(
δ uu +

1
δ
(n× u)(n× u)

)
, (10)

where the free-space impedance η0 =
√

µ0/ε0 gives units for the surface impedance. [in
fact, the coefficient j in (10) is irrelevant in the limit when δ vanishes; its meaning there is
only to emphasize the lossless character of SHS (cf. Equation (8))].

3.2. Perfectly Anisotropic Boundary (PAB)

The definition of a perfectly anisotropic boundary [17] is that its impedance dyadic is
both symmetric and trace-free ([8] [Sec. 3.7]):

Zs,PAB = Z
T
s,PAB , tr Zs,PAB = 0, (11)

from which it follows that the dyadic cannot have components It (Equation (3)) or J
(Equation (4)). It can be expanded as

Zs,PAB = ZKK+ ZLL. (12)

For the case that both ZK and ZL are non-zero, the eigenvectors of this dyadic are
neither (v, w) nor (v + w, v−w) like they are for K and L. The (unnormalized, mutually
perpendicular) eigenvectors of Zs,PAB in (12) are

p1 =

(
ZK +

√
Z2

K + Z2
L

)
v + ZLw, p2 =

(
ZK −

√
Z2

K + Z2
L

)
v + ZLw, (13)

with eigenvalues

λ1 =
√

Z2
K + Z2

L, λ2 = −
√

Z2
K + Z2

L. (14)

Hence, by rotating the (v, w) axes in the plane of the surface, the dyadic Zs,PAB can be

written as a multiple of a dyadic K
′
= v′v′ −w′w′. And another rotation brings it into a

multiple of an L
′
= v′w′ + w′v′ dyadic, where v′ and w′ are unit vectors along p1 and p2,

respectively. This means that to describe a PAB boundary condition, it is sufficient to use
only one of the anisotropic dyadic types, either K or L.

The PAB surface has been shown to serve as an effective polarization transformer ([8]
[Sec. 3.7]). A linearly polarized incident field becomes elliptically polarized in reflection.
The ellipticity and handedness of the reflected wave depend on the angle that the incident
electric field vector makes with the eigendirections of the PAB dyadic. Thus, rotating a PAB
plate, the polarization state of the reflected wave can be controlled in a continuous manner.
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3.3. Generalization into Co-Circular Polarization Boundary (CCPR)

It turns out that the two fundamental boundaries treated above (SHS and PAB) can
be elegantly taken as special cases of a more general impedance boundary condition, the
perfect co-polarization reflector, presented in [5] with its metamaterial realization. Let us
approach the properties of this CCPR boundary from the impedance dyadic point of view.

The CCPR surface impedance dyadic is the following:

Zs,CCPR = j η0

(
− sinh(u) It + cosh(u) L

)
(15)

which in the matrix form, using the base (v, w), reads

j η0

(
− sinh(u) cosh(u)
cosh(u) − sinh(u)

)
. (16)

The impedance dyadic is a function of a dimensionless parameter u. This parameter is
real-valued, in order to secure the lossless character of the CCPR boundary (which is the
case when a symmetric impedance dyadic is purely imaginary, cf. Equation (8)).

The symmetry of the dyadic means also that the boundary is reciprocal, in contrast
to a non-reciprocal PEMC boundary. Furthermore, while PEMC is isotropic, the CCPR
boundary is anisotropic due to the L component in (15). However, CCPR is not perfectly
anisotropic. This is because its trace does not vanish for non-zero u.

The eigenvectors of Zs,CCPR can be easily seen to be v ± w, with corresponding
eigenvalues ±jη0 exp(∓u).

The dimensionless parameter u provides variation in the character of the CCPR surface.
With the choice u = 0, the diagonal part of Zs,CCPR vanishes, and the impedance becomes
jη0 L. This returns us the Perfect anisotropic boundary of Section 3.2.

On the other hand, if u−1 = 0, all the components of the dyadic grow to infinity, but
CCPR can be shown to become equal to the soft-and-hard surface (SHS) of Section 3.1. For
this case, the direction of the corrugations that short-circuit both the electric and magnetic
fields, is v + w. Note that despite the extreme-looking anisotropic surface impedance (10),
SHS is not perfectly anisotropic because, again, the trace of the dyadic is non-zero.

As a side note, the single-parameter CCPR impedance in (15) can be generalized into
a two-parameter surface impedance:

Zs,general = j η
(
− sinh(u) It + cosh(u) L

)
(17)

where the scalar impedance η needs no longer be the natural constant η0. To include this
η parameter in the boundary condition is logical in the sense that it would generalize
the full PAB boundary. PAB itself is a one-parameter boundary with the impedance
magnitude multiplying its anisotropic dyadic K or L. However, it turns out that the co-
circular reflection character does not hold for (17) unless η = η0. Hence in the following,
only the one-parameter CCPR (15) is treated.

4. Reflection Dyadic

To analyze the response of the CCPR surface to electromagnetic excitation, consider a
plane wave that hits the surface with angle θ as in Figure 2. The incident wave has a wave
vector which can be split into the tangential and normal components: ki = kt − knn, and
the reflected wave vector reads accordingly kr = kt + knn. The magnitude of both vectors
is the wave number in free space: ki · ki = kr · kr = kt · kt + k2

n = k2
0.
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n

Zs

kn kn

kt kt

ki kr

θ θ η0

Figure 2. Geometry of the wave reflection. The unit normal n points into the domain where the
fields exist.

Given the polarization state and angle of the incident wave, the reflected wave is de-
termined by the boundary conditions through the reflection dyadic. Define the transversal
reflection dyadic Rt as the relation between the reflected and incident tangential electric
fields at the boundary:

Er
t = Rt · Ei

t. (18)

Knowing the surface impedance dyadic Zs, the transversal reflection dyadic can be
computed as follows ([8] [Sec. 3.3]):

Rt = It + 2η0

(
Zs · n× Jt − η0It

)−1
(19)

where the Jt dyadic expresses the relation between the tangential electric and magnetic
fields (Ei

t = Jt · η0Hi
t):

Jt =
1

knk0
n×

(
ktkt + k2

n It
)

. (20)

From this it easily follows that Jt · Jt = −It, and hence the tangential magnetic field
can analogously be computed from the tangential electric field: η0Hi

t = −Jt · Ei
t.

As an example of the use of the reflection dyadic formula, consider a simple isotropic
impedance surface where the dyadic is a multiple of the transversal unit dyadic:

Zs,iso = Z It. (21)

Substituting this into (19) leads to the following known reflection eigenvalues ([18] [Sec. 8.4]):

Zs,iso =
Z− η0 cos θ

Z + η0 cos θ
pp +

Z cos θ − η0

Z cos θ + η0
ss

(
cos θ =

kn

k0

)
(22)

where the unit vectors p and s refer to the eigenpolarizations in reflection (: in optics, the “p”
refers to parallel polarization (transversal magnetic, TM), and “s” to the perpendicular
polarization (“senkrecht”, transversal electric, TE)).

p =
kt

|kt|
, s =

n× kt

|n× kt|
. (23)

5. Reflection Properties of CCPR

The reflection by an arbitrary incident wave from a CCPR surface can be computed
using the reflection dyadic in (19). However, due to the anisotropic nature of the surface,
the reflection is dependent not only on the polarization and the incidence angle θ but also
the azimuthal direction of the incidence ϕ. When the CCPR impedance (15) is substituted
in (19), the four components of the resulting dyadic (co- and cross-polarized reflection
coefficients for the p and s polarizations) are rather lengthy and they depend on three
parameters: the angles θ and ϕ and the scalar CCPR parameter u.
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5.1. Reflection for Normal Incidence

Fortunately, the characteristics of the CCPR surface can be well appreciated from the
special case of normal incidence reflection, in other words kt = 0 and kn = k0, as shown in
Figure 3.

n

z

CCPR surface

ki kr

Figure 3. Reflection geometry for a normally incident wave on a CCPR surface.

After certain algebraic steps, it is possible to express the reflection dyadic Rt for this
case θ = 0 in the form

Rt,CCPR =
j− sinh u

cosh u
L = −ejψ L (24)

where the angle ψ is determined by u in the following manner

ψ =

{
arccot(− sinh u) u ≥ 0,
arccot(− sinh u)− π u ≤ 0.

(25)

Since ψ is real-valued, the reflection dyadic amplitude − exp(jψ) is of unit magnitude,
as illustrated in Figure 4.

-5 -3 -1 1 3 5
u

-π

-
π

2

ψ

-5 -3 -1 1 3 5
u

-1

-0.5

0.5

1

-exp(jψ)

Figure 4. The angle ψ (25) as function of u (left) and the reflection dyadic components in (24): solid
blue line—real part; dashed orange—imaginary part (right).

5.2. Behavior of Polarization in Reflection

The reflection dyadic (24) has an extremely condensed expression. Its properties
dictate the way the polarization of the incident wave is transformed.

5.2.1. Linear Polarization

Consider a linearly polarized normally wave incident on the CCPR boundary:

Ei = (v cos α + w sin α)Ei. (26)

The reflected electric field reads (using the reflection dyadic (24))

Er = Rt,CCPR · Ei = −ejψ(v sin α + w cos α)Ei. (27)

Hence the (linear) polarization of the reflected field is rotated and it experiences a
phase shift (but the amplitude remaining unchanged in this lossless reflection). The rotation
(Figure 5) depends on the angle α between the incident polarization and the eigenvectors
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of the CCPR surface. For α = 0, the reflection is rotated by 90◦, while for α = 45◦, the plane
of polarization remains.

α
Ei

α

v

w

v

w
Er

Figure 5. A linearly incident plane wave is rotated in reflection from the CCPR surface. The rotation
angle depends on the angle between the plane of polarization of the incident wave and the anisotropy
of the surface (with eigenvectors v and w).

While this polarization plane rotation is independent of the CCPR parameter u, the
phase discontinuity −exp(jψ) is not. As illustrated in Figure 4, it can have values between
0 and π. For a PAB surface (u = 0), the phase difference is π/2. For the SHS boundary, it is
either 0 or π, depending on the orientation of the soft and hard axes diagonally within the
(v, w) plane.

5.2.2. Circular Polarization

For a right-handed circularly polarized (RHCP) incident plane wave, the vector reads

Ei =

(
v + jw√

2

)
Ei (RHCP) (28)

(Note that the incident wave propagates in the direction of −n, and the triplet (v, w, n) is
right-handed [19]).

The reflected wave becomes

Er = Rt,CCPR · Ei = −j ejψ
(

v− jw√
2

)
Ei (RHCP) (29)

The reflected wave is also right-handed circularly polarized (because now the triplet
(v,−w,−n) is right-handed).

A similar co-polarization phenomenon happens for a left-handed circularly polarized
(LHCP) wave incident on the boundary: the reflection is LHCP:

Ei =

(
v− jw√

2

)
Ei (LHCP) ⇒ Er = j ejψ

(
v + jw√

2

)
Ei (LHCP) (30)

Hence the label CCPR for this surface is deserved: the handedness of a circular
polarization is retained in reflection. This CCPR property does not depend on the parameter
u. As evident from (29), u only affects the phase (through ψ in (25)) of the reflected wave. It
is worth noting the sign difference between the phases of RHCP and LHCP reflections.

5.2.3. Comparison of Reflection from Various Boundary Conditions

The reflection characteristics of fundamental impedance surfaces (PEC, PMC, PEMC,
CCPR (with special caes PAB and SHS)) are summarized in Table 1.
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Table 1. Properties of the reflected field polarization for a normally incident fields on various
boundaries. The PEMC boundary (with PEMC parameter M) is a generalization of PEC (M−1 = 0)
and PMC (M = 0) boundaries.

PEC PMC PEMC CCPR

Reflected power 100% 100% 100% 100%

Eigenpolarizations any any RHCP, LHCP LP (v + w, v−w)

Polarization for LP incidence remains remains rotates rotates

Phase shift for LP π 0 0, π ψ + π

Handedness for CP changes changes changes remains

Phase shift for CP π 0 2 arccot(Mη0)− π ψ∓ π

5.3. Matched Waves for CCPR Surface

The concept of matched wave was coined in 2017 [20] as plane waves (homogeneous or
inhomogeneous) that can exist independently when interacting with a surface. In other
words, an incident plane wave does not need a reflected wave to match the boundary
conditions as its electrical and magnetic fields already satisfy those. Likewise, a reflected
wave which satisfies the boundary conditions, can be called a matched wave.

A way of solving matched incident waves for a given boundary is to search for zeros
for reflection dyadic eigenvalues (alternatively, looking for zeros of the inverse of the
reflection dyadic to find matched reflected waves).

The condition for a matched wave for a general impedance surface is ([8] [Sec. 3.4])

k0kn

(
η2

0 + dettZs

)
+ η0

(
Zs : ktkt + k2

n trZs

)
= 0 (31)

where trZs and dettZs denote the trace and two-dimensional determinant of the impedance
dyadic, respectively (the double-dot product in (31) between dyads or dyadics is de-
fined ([12], Sec. 2.1.1) as ab : cd = (a · c)(b · d)). To find matched waves for a CCPR surface,
it is helpful to note that since the boundary is lossless, no wave with kn 6= 0 can be matched.
Consequently, matched waves have to be lateral (the incidence angle is θ = π/2). Therefore
we have kn = 0 and kt = ki. The dispersion condition for matched waves (31) simplifies
into

Zs,CCPR : kiki = 0, ki = (v cos ϕ + w sin ϕ)k0, (32)

where ϕ is the usual azimuth angle in the polar coordinates (Figure 6).

ϕ

ki = kt

v

w

Figure 6. A lateral wave has no normal wave vector component: the wave vector is transversal:
ki = kt.

The CCPR impedance dyadic (15) reads

Zs,CCPR = −j ηo sinh u(vv + ww) + j ηo cosh u(vw + wv) (33)

which by (32) results in the condition

−
(

cos2 ϕ + sin2 ϕ
)

sinh u + 2 sin ϕ cos ϕ cosh u = 0. (34)
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This can be written as
sin(2ϕ) = tanh u, (35)

from which we can observe that the lateral wave conditions for two special cases are

u = 0 (PAB) : ϕ = 0,
π

2
, π,

3π

2
, (36)

u−1 = 0 (SHS) : ϕ =
π

4
,

3π

4
,

5π

4
,

7π

4
. (37)

For an arbitrary CCPR surface with parameter u, the lateral wave directions ϕ are
illustrated in Figure 7, as functions of the parameter γ = arctan u.

-
π

2
-
π

4

π

4

π

2

γ

-
π

4

-
π

8

π

8

π

4

φ

-
π

2

π

2

γ

-π

π
φ

Figure 7. Azimuth angle ϕ of the lateral matched wave for a general CCPR surface, as function of the
CCPR parameter γ = arctan u. The multiple azimuth angles are shown on the right-hand side.

6. Conclusions

The focus in the present article has been on electromagnetic wave interaction with
planar surfaces that are characterized by a given surface impedance dyadic, a relation
between the total tangential electric and magnetic fields on the surface. In particular,
the emphasis was on the so-called co-circular polarization reflector (CCPR) surface. This
anisotropic and reciprocal surface contains a dimensionless real parameter u. As special
cases of the CCPR surface appear (1) the Perfect anisotropic boundary (PAB) for u = 0,
and (2) the Soft-and-hard surface (SHS) for u−1 = 0. For the choice that u is real, the
CCPR surface is lossless. Particularly interesting is the behavior of the polarization of
waves that interact with CCPR surface: in contrast to PEC, PMC, or PEMC boundaries,
the CCPR reflection keeps the handedness of the incident wave in reflection. Linearly and
elliptically polarized incident waves are rotated and experience a phase shift that has an
intricate connection to the u parameter, thus opening up possibilities to design wide-angle
polarization transforming plates and other devices for manipulating properties of waves.
Finally, matched waves (wave states that singly satisfy the CCPR impedance boundary
condition) were analyzed, and they were shown to be lateral waves (their angle of incidence
is 90◦) but their azimuthal propagation direction in the plane of the CCPR surface again
depends on the parameter u.
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