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Abstract: In this paper, we obtain some new natural approaches of Shafer-Fink inequality for arc sine
function and the square of arc sine function by using the power series expansions of certain functions,

which generalize and strengthen those in the existing literature.
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1. Introduction

Fink [1] (or see [2]) shown a upper bound for inverse sine function, and obtained the
following result, which is called Shafer-Fink inequality:

3x .
—— < arcsinx <

X
B S—
24+V1—x2 24+ V1—x?
Some new proof and various improvements of Shafer-Fink inequality can be found
in [3-13]. In [14], Bercu obtained the generalizations and refinements of Shafer-Fink
inequality as follows.

<x<1 1

Proposition 1 ([14] Theorem 1). For every real number 0 < x < 1, the following two-sided
inequality holds:

%0 x7 3x m—3
4 < inx — < 2
180—i-189_a1rcsmx A a s 2 )
Proposition 2 ([14] Theorem 2). For every 0 < x < 1, we have:
> 11x7 /84
x°/60 4+ 11x” /840 < arcsin x — 3x 3)

241 —22 24+ V1 -2

Malesevic, Rasajski and Lutovac [15] gave a lower bound for the function arcsin x
as follows.

Proposition 3 ([15] Theorem 2). If m € N and m > 2, then

3x+ Y, E(n)x?rt1
24+ V1 —x2

< arcsin x 4)

for every x € [0, 1], where

n(2n —1)!
(2n + 1)22"*2(11!)2

C2n 222 (n—1)1)°
(2n+1)!

E(n) =

,mneN, n>2. 5)

At this point, it is necessary for us to recall the results of Zhu [7] :

Proposition 4 ([7] Theorem 6). Let 0 < x < 1. Then,
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(1) when p > 1 or p < 0, the double inequality
p p
L}, < (aresinx)? < (x) 5 (6)
24 (VI—+2) 2+ (0 —20) (VI-22)

holds;
(2) when 0 < p < 4/5, the double inequality (6) is reversed.

Inspired by the above approximation inequalities, we consider the asymptotic ex-
pansions of the functions (2 + m) arcsin x and (3 — x2) (arcsin x)2 to establish some
new bilateral approximation of Shafer-Fink inequality, and give some deeper conclusions
drawn for arcsin x and (arcsin x)2.

Theorem 1. Let |x| < 1, {ay},>0 be defined by

(2n —1)!! 21! 1
- o>, 7
2Tl nn— i) 2m+1 " @

a0—3;an—{

meN,m>2, ay =ayand By, = 17— Zf;ol a,. Then,
(1) when 0 < x < 1, the double inequality

-1, .2n+1 2m+1 -1, .2n+1 2m+1
Yy anx® T 4 g0t < arcsinx < " AnxAT 4 B et ®)
24+vV1—x2 24+v1—x2
holds with the best constants oy, and By,
(ii) when —1 < x < 0, the double inequality
m—1 2n+1 2m+1 m—1 2n+1 2m+1
Yoo AnX + Bmx < arcsinx < Yoo @nX + amx ©)
241 —x2 241 —x2
holds with the best constants B, and ay,.
Theorem 2. Let |x| <1, {b,},>1 be defined by
(n—2)(4n —3)(n —2)12"2
by =3; b, = > >2 1
1= 37 bu wn—Dn—1n = =2 (19
meN, m>3, Ay = by, and py, = T2 /2 — 221:_01 by,. Then, the double inequality
Zmz—l b x2n +A x2m ) ij—l b x2n + U x2m
n=1 g—xz " §(arcsmx)2§ n=1 g—xZ n (11)
holds with the best constants Ay, and py,.
2. Lemmas
This article needs the following two lemmas.
Lemma 1 ([16-20]). For |x| < 1,
arcsinx i (2x)>" 1 12)
Vl_xz n=1 ”(2;) .

Integrating the functions on both sides of the inequality (12) from 0 to x, we have
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Lemma 2 ([18,20]). For |x| <1,

2x
2(3n)

—~

-3L

n=1

(13)

(arcsin x)?

I\)M—‘
3

3. Proof of Theorem 1
Since (8) and (9) hold for x = 0, we assume that 0 < |x| < 1 to discuss problems

below. Let
= (2 + M) arcsin x. (14)

Then, when 0 < |x| < 1, by Lemma 1 we have

Fllx) = 2 Y% arcsin x
V1—x2 V1—x?
= (2n—1)! , 1& (2x)™
= 2|1+ ) Vx| +1-2 )
n=1 2"n! 2 n=1 n(?.;)
> 12(2n—1)11 221}
= 3+ - " 15
L )
Integrating (15) from 0 to x, we have
20— 2] 1 L
- - 1
F(x) / £t = 3x + Z T e | T (16)
_ f VL e S
a 2nnl 2@ | 2 41
- n:
_ i @n-11t 2" lal 1 oun
=1 2n 1n' n(2n—1! | 2n+1

(o)
— Z aannJrl’
n=0

where a,, is defined by (7). Clearly, it is easy to prove a, > 0 for n > 1, among them, a; = 0.
Now, we go into the following even function

(Z—I—\/l—x )arcsmx—z o anx>l

F(x) 2m+1
_ f( ) Z 0 an X2t _ Z;O:m anxszrl
y2m+1 x2m+1
o0 (o)
_ 2 uan(n—m) =ay, + Z anx2(n—m)l
n=m n=m+1

which is decreasing on [—1,0) and increasing on (0, 1]. Since
m—
F(oi) =y =y, F(£1) = 7 — Z an = B,
n=0

we have

(2+ V1—x ) arcsinx — Y7} a1 +1 m—1
<m—Y a, 0<|x| <1,
n=0

am <

x2m+1
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or

m—1 m—1
A2l < (2 +v1- xz) arcsin x — Z a,x? < <7I — Z an> M0 <x <1,
n=0 n=0

m—1 m—1
(n -Y an>x2m+1 < (2+ V1-— xz) arcsinx — ) _ a1 < g 1< x <.
n=0

n=0
So the proof of Theorem 1 is complete.
4. Proof of Theorem 2

Let
g(x) = (3 - xz) (arcsin x)?. (17)

g(x)

Il
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w
|
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=]
=
N—
Il
VS
W
|
=
N
N———
N[ =
gk
N

I
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=
o
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012

where
(n—2)(4n —3)(n —2)12"2
n(n—1)2n—1)!

bl:3/b1’l: 2017’1221

among them, by = 0.

Let
Glx) = (3 — x?)(arcsinx)? — P bux® g(x) — X0 byx?"
- x2m - x2m :
Then,
00 2n o)
G(x) = Tz 5y 2,
X n=m

which is increasing on (0, 1].

Since
G(0T) = by := A,
and
G) = lim (3 — x?) (arcsinx)? — " b, x?"
x—1 x2m
7.[2 m—1
= ? - Z by = Hm,
n=1
we have
b < (3 — x?) (aresin x)% — Y7 b, x2" < m2 ol )
m = om = 5 nr
X 2
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or
m—1 7[2 m—1

by x?™ < (3 - xz)(arcsin x)2 = Y b < > - Y by |,
n=1 n=1

that is,

m m—1 7[2 m—1
Z bux*t < (3 — x2> (arcsin x)? < Z byx? 1l 4 (2 — Z bn> 2,
n=1

which implies (11). The proof of Theorem 2 is complete.

5. Corollaries and Remarks

In this section, we draw some new conclusions from Theorems 1 and 2, and compare
the results of Theorem 1 with the ones in the literature on the same interval [0, 1].

Remark 1. The left-hand side inequality of (8) is just the inequality (4) due to a, = E(n) for
n > 0. Obviously, the expression of a, in (7) is simpler than E(n) in (5). Most importantly,
the method of this paper is simple and direct, and the bilateral sharp inequality is obtained.

From Theorem 1, we can obtain the following results.

Corollary 1. Let0 < x <1,

1
As(x) = @xS,
Bs(x) = (m—3)x%
1 1
A7(x) = @ 5+% 7,
1 181
B7(x) = @xs‘i‘ <7T—6()) 7,
15 11, 67
Aolx) = ¥+ g0t T et
1 11, 509\ o
Bo(x) = 5o * sap* +<” 168>x'
1. 11, 67 o 3461
An(r) = G+ g5Y e Y iz sn”
1 1 67 6809
B _ 1 s 11 5 9 _ 11.
n(x) 60" T8a0" T 6720" +<n 2240>x /

1 5 11 , 67 o 3461 44 29,011

A - s i 2,011 s
13(x) 60" T8a0" Tem0" Ta3,520" T 1612,608"

11, 67 o 3461 ( _1,351,643) 5

60" Tga0” T 0" T aa3,50" 443,520

xj N 11x7  67x°  3461x11  29,011x13  239,711x1°
60 ' 840 ' 6720 ' 443,520 @ 4,612,608 = 46,126,080’
¥ 1% 67x%  3461x! 29,011x13 ( 70,430,491) 15

B = — =
15(x) 60 + 840 = 6720 @ 443,520 4,612,608 & 23,063,040

3x
—— <B x), m=2,7. 18

Agpmy1(x) < arcsinx —
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Corollary 2. Let 0 < x < 1, a,, defined by (7), f(x) showed in (14), and

S(x) = arcsinx — 3x _ S8
24V1-x2 241

m m—1
Agpy1(x) = Z anx2n+l/ Bomy1(x) = Z anx2n+1 + IBmxszrl/ m > 2.
n=2 n=2

Then, for2 < p <q,

Agpi1(x) < Aggi1(x) < s(x) < Bog+1(x) < Bopi1(x) (19)

24vV1—22 T 24V1—22 T24V1 -2 T 24122

The left-hand side inequality of (19) holds for all x € [0,1] due to a4, > 0, and the
light-hand side inequality of (19) holds just due to 0 < x < 1.

Remark 2. Taking m = 2 in (18) gives

arcsin x — 3x < (7'[—3)x5
24VI—22 T 241 —2%

which is sharper than the light-hand side one of (2) due to

(r—3)x° < m=3 T3

<
24V1—x2 " 24+V1—x2 " 2

So, by (19) we have

3 o Bl 73 o, 20)

24V1—x2 T 241 a2 2

Remark 3. Taking m = 3 in (18) gives (3). We can find that this inequality is sharper than the
left-hand side one of (2):

arcsin x —

5 7 5 7
© , Hx <x+x> (2+ \/1—x2)

60 ' 840 \ 180 ' 189
5
- X 2 . 2 2
— 7560(19x L4 (42+40x )\/1 X ) >0

— 192 442> (42 + 4Ox2) V1 22,
In fact,
(19x2 4 42)2 - (42 4 4Ox2)2 (1 - xz) - x4(1600x2 4 2121) > 0.

From Theorem 2, we can obtain the following results.

Corollary 3. Let0 < x <1,

1 ?
Colx) = 5x6'D6<x):<z‘3>x6;
1 52 g4 1, (M 16\ g
Cg(x) = X +315x,D8(x)—5x +<2 = |

_ le 52 5 68 10 16, 525, (7 212) 4
Cio(¥) = g2+ 3ex+ oox, Dio(x) = g7+ g+ | 5 — o )2
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1 52 68 256
C _ 1.6, 24 8, 0% 10 12
12(%) 57 T35 Tt T oas”
1 52 68 2 5504
D _ 1.6, 2c 8, 0% 10 ™ 2UR) 1n
12(%) 5 T30 Tt T\ 72 T 1555
1 52 68 256 16,000
C _ 1.6, 2c.8 9 10 12 , 14
14(%) 57 T35 T55% Toas® T is9180" ¢
1 52 68 256 w2 62,336
D _ 1.6, 2.8, 9 10 12 T bz, 14
14(x) 57 T315% Tt T st 2 17.35)7 7
Crolr) = x® N 52x8 N 68x10 N 256x12  16,000x!* N 7424x16
16 ~ 5 "315 " 525 2475 189,189 ' 105,105
x®  52x8  68x10  256x1%2  16,000x'4 % 1640,418,688\ 14
Dig(x) = —+ + M i
5 " 315 ' 525 ' 2475 189,189 2 468,242,775
Then,

3 2
Com(x) < (arcsinx)? — 3 f 5

< Doy(x), m =3,8. (21)

Corollary 4. Let 0 < x < 1, by, defined by (9), g(x) showed in (17), and

3x2  g(x) —3x?

T(x) = (arcsin x)* —

3—x2  3—x2 7
m m—1
Com(x) =) bux?", Doy (x) = Y bux®" + px®™, m > 3.
n=3 n=3

Then, for3 < p < g,

CZp(x) C2q<x) DZq(x) DZq(x)
< <T < < .
3—x2 ~ 3—x2 (x)_B—xz_B—x2

(22)

The left-hand side inequality of (22) holds for all x € [0,1] due to b, > 0, and the
light-hand side inequality of (22) holds just due to 0 < x < 1.

Remark 4. Taking m = 3 in (21) gives

2 2
(arcsin x)* — 33_% < (7; - 3> X

So, by (22) we have

3x? Doy (x) 2 6 T
< < (T _3)6<™™ _3 >3 23
3—x2~ 3—x2 —\ 2 Y= "= (23)

(arcsin x)? —

Remark 5. In the process of proving Theorems 1 and 2, we prove that a, by, > 0, which just meet
a condition in a theorem called “Theorem on double-sided TAYLOR's approximations” (see [21]
(Theorem 4), [22] (Theorem 2), [23] (Theorem 22)). Therefore, the proofs of Theorems 1 and 2 can be
completed by “Theorem on double-sided TAYLOR's approximations”.

6. Conclusions

Throughout the history of mathematics, function estimation is widely used in various
fields of mathematics, including engineering mathematics. In this paper, we have given the
power series truncation of the correlation functions of the ones arcsin x and (arcsin x)2 as
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their upper and lower bounds. Based on these basic conclusions, we have drawn a large

. . . . 2
number of practical estimates about arcsin x and (arcsin x)”.
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