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Abstract: In this article, the formulation of first-order approximate Mei symmetries and Mei invariants
of the corresponding Lagrangian is presented. Theorems and determining equations are given to
evaluate approximate Mei symmetries, as well as approximate first integrals corresponding to each
symmetry of the associated Lagrangian. The formulated procedure is explained with the help of the
linear equation of motion of a damped harmonic oscillator (DHO). The Mei symmetries corresponding
to the Lagrangian and Hamiltonian of DHO are compared.
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1. Introduction

The symmetry methods and conserved quantities are highly significant in the different
fields of studies, such as, mathematics, social sciences, natural sciences, engineering, etc.
Noether showed a connection between symmetries and the conservation laws in her famous
Noether theory [1] in 1918. Furthermore, an action integral of a functional (Lagrangian)
is invariant under the infinitesimal transformation of a group. This transformation, gen-
erated by a differential operator, referred as the Noether symmetry in this case. In 2000,
Feng-Xiang [2] introduced an invariance of the equations of motion under infinitesimal
transformation of a group, called the form invariance, also known as Mei symmetries. In
Mei symmetries, the dynamical functions including Lagrangian, Hamiltonian, etc., are
replaced by the transformed dynamical functions. Moreover, the equations of motion are
satisfied, after doing some infinitesimal transformation of a group. More specifically, the
form of equations of motion is preserved in Mei symmetries.

The form invariance of the Appell equations are discussed under infinitesimal trans-
formation of a groups [3]. The Noether symmetries are calculated from the Lagrangian
of Appell equations. After that, Noether symmetries are compared with the form in-
variance and different conserved quantities are obtained. Shu-Yong and Feng-Xiang [4]
presented form invariance and the Lie symmetries of the non-holonomic system. In this
paper, structure equations and form invariance are deduced, which have similarity with
the Lie symmetries. Mei symmetries of the rotational relativistic mass variable system are
discussed in [5], with a focus on the relationship between Lie and Mei symmetries. Jiang
et al. [6] constructed the Mei symmetries for non-material volumes. A single-degree-of-
freedom non-material volume is taken as an example to determine the conserved quantities.
In [7,8], the Mei symmetries of the Lagrangian and Birkhoffian system on time scale are
calculated. Its relation to the Noether symmetries is thoroughly discussed here. In the for-
mulation of Mei symmetries of the Birkhoffian system, the Hamiltonian canonical equations
are considered as a special case.

The perturbed part in differential equations arises in a variety of applications. The
standard Lie and Noether theorems are not applied on these equations. Therefore, Baikov et
al. in [9,10] introduced the approximate symmetry methods. It is the most efficient method
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for obtaining approximate solutions to the perturbed partial differential equations (PDEs).
Feroze and Kara [11] made use of a group theoretic approach to construct the approximate
Lie point symmetries and invariants of the ordinary differential equations (ODEs). In
addition, the theory presented in [9,10] is used to calculate approximate Lie symmetries
of PDEs. Ali and Feroze in [12] investigated the Noether symmetries of time conformal
plane symmetric spacetimes corresponding to geodetic Lagrangian. In this paper, the time
conformal factor is used to calculate approximate Noether symmetries. The general time
conformal factor generates a perturbation of first order in the general plane symmetric
static spacetimes.

Paliathanasis [13] developed an association between Noether symmetries related
to the class of perturbed Lagrangian and elements of Homothetic algebra of the metric.
Furthermore, a relation between approximate Noether symmetries and collineations of the
underlying manifolds is also discussed here. The authors of [14] discussed the formulation
of approximate Mei symmetries and invariants relative to a Hamiltonian. The determining
equations, criterion and theorems to construct Mei symmetries of the Hamiltonian is
presented here. The approximate Noether and Mei symmetries are compared. Through
comparison, different approximate symmetries are obtained which lead to conserved
quantities. Recently, Gorgane and Oliveri [15] presented an approximate Noether theorem
that leads to the approximate conservation laws.

In this paper, first-order approximate Mei symmetries and invariants of a Lagrangian
are formulated. A comparison of approximate Mei symmetries corresponding to a La-
grangian and Hamiltonian is given. The paper is ordered as follows. Section 2 comprises
the review of method for determining the exact Mei symmetries corresponding to the
Lagrangian, definition and criterion of constructing these symmetries. Some new devel-
opment, i.e., approximate Mei symmetries and invariants corresponding to a Lagrangian
are given in Section 3. This section is based upon the theorems to obtain the determining
equation of the approximate Mei symmetries and first integrals. An example to illustrate
the method is given in Section 4. The comparison between Mei symmetries of a Lagrangian
and Hamiltonian is presented in Section 4.4. The conclusion of paper is given in Section 5.

2. The Mei Symmetries

Zhai and Zhang [7] found a method of determining the Mei symmetries of the Euler
Lagrange equation of the Lagrangian system. The method presented in this paper is used
to describe the exact Mei symmetries. Consider the equation of motion corresponding to
the Lagrangian L(t, xk, ẋk)

d
dt

(
∂L
∂ẋk

)
− ∂L

∂xk
= 0, (k = 1, 2, . . . , n). (1)

Writing

Ek =
d
dt

(
∂

∂ẋk

)
− ∂

∂xk
, (k = 1, 2, . . . , n). (2)

Equation (1) takes the form

Ek(L) = 0, (k = 1, 2, . . . , n). (3)

Consider an infinitesimal group of transformations corresponding to one parameter

t∗ = T(t, xi(t), ε) = t + εξ(t, xi(t)), (4)

x∗k = Xk(t, xi(t), ε) = xk(t) + εβk(t, xi(t)), (k, i = 1, 2, . . . , n), (5)

the corresponding generator X is given as

X = ξ
∂

∂t
+ βk

∂

∂xk
. (6)
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Under the transformation, the Lagrangian L is replaced by a new Lagrangian L∗

L∗ = L∗(t∗, x∗k ,
dx∗k
dt∗

) = L∗
(

t + εξ, xk + εβk,
ẋk + εβ̇k

1 + εξ̇

)
. (7)

The Taylor series expansion at ε = 0, yields

L∗ = L(t, xk, ẋk) + εX[1]L+ O(ε2), (8)

where
X[1] = ξ

∂

∂t
+ βk

∂

∂xk
+ (β̇k − ẋk ξ̇)

∂

∂ẋk
, (9)

is first prolongation of the infinitesimal generator.

Definition 1. The Mei symmetries corresponding to a Lagrangian are defined mathematically as

Ek(L∗) = 0, (k = 1, 2, ..., n), (10)

when the Lagrangian L is replaced with a new Lagrangian L∗. If the form of Equation (3) remains
unchanged, then it is called the Mei symmetries of the corresponding Lagrangian [7].

Criterion: If ξ and βk satisfy the given condition

Ek[X
[1]L] = 0, (k = 1, 2, ..., n), (11)

then the corresponding generator is called the Mei symmetry generator and the transfor-
mation is the Mei symmetry transformation.

After applying the Euler operator Ek on X1L, an equation containing different powers
of x′ is obtained. Separating coefficients of different powers of x′, yields a system of PDEs.
The solution of this system gives ξ and βk which satisfy the given criterion in Equation (11)
of the Mei symmetries [7].

3. Approximate Mei Symmetries

The approximate Mei symmetries and the associated first integrals are formulated in
Theorem 1 and Theorem 2, respectively.

Theorem 1. Let X = X0 + εX1 be an approximate symmetry generator and L = L0 + εL1 be the
first-order approximate Lagrangian, where X0 = ξ0

∂
∂t + βk

0
∂

∂xk and X1 = ξ1
∂
∂t + βk

1
∂

∂xk . Then,

Ek(X
[1]
0 L0) = 0, k = 1, 2, . . . , n. (12)

Ek(X
[1]
0 L1 + X[1]

1 L0) = 0, k = 1, 2, . . . , n. (13)

Proof of Theorem 1. With X = X0 + εX1 and L = L0 + εL1, we have

X[1]L = X[1]
0 L0 + ε(X[1]

0 L1 + X[1]
1 L0) + O(ε2), (14)

neglecting higher powers of ε, we get

X[1]L = X[1]
0 L0 + ε(X[1]

0 L1 + X[1]
1 L0). (15)

Comparing powers of ε, and applying the operator given in Equation (2), we get
Equations (12) and (13). This completes the proof.
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Theorem 2. Let the symmetry generator X = ξ ∂
∂t + βk ∂

∂xk satisfying Theorem 1 and L =
L0 + εL1 be the first-order perturbed Lagrangian. Then, the first integrals take the following form

I0 = ξ0(X
[1]
0 L0) + (βk

0 − ẋkξ0)
∂(X[1]

0 L0)

∂ẋk , (16)

I1 = ξ0(X
[1]
0 L1 + X[1]

1 L0) + ξ1(X
[1]
0 L0) + (βk

1 − ẋkξ1)
∂(X[1]

0 L0)

∂ẋk . (17)

+ (βk
0 − ẋkξ0)

∂(X[1]
0 L1 + X[1]

1 L0)

∂ẋk

Proof of Theorem 2. To prove the above expression, consider the invariant [7]

I = ξ(X[1]L) + (βk − ẋkξ)
∂(X[1]L)

∂ẋk . (18)

Now, introducing the first-order perturbed invariant by taking I = I0 + εI1, X[1] = X[1]
0 +

εX[1]
1 and L = L0 + εL1 in Equation (18), we obtain

I0 + εI1 = (ξ0 + εξ1)[(X
[1]
0 + εX[1]

1 )(L0 + εL1)] + [(βk
0 + εβk

1)− ẋk(ξ0 + εξ1)]

∂(X[1]
0 + εX[1]

1 )

∂ẋk (L0 + εL1). (19)

After simplifying Equation (19), we get

I0 + εI1 = ξ0(X
[1]
0 L0) + ε[ξ0(X

[1]
0 L1 + X[1]

1 L0) + ξ1(X
[1]
0 L0)] + (βk

0 − ẋkξ0)
∂(X[1]

0 L0)

∂ẋk

+ ε

[
(βk

1 − ẋkξ1)
∂(X[1]

0 L0)

∂ẋk + (βk
0 − ẋkξ0)

∂(X[1]
0 L1 + X[1]

1 L0)

∂ẋk

]
. (20)

Comparing powers of ε up to first order and neglecting higher powers, gives Equations (16)
and (17). This completes the proof.

4. Example

Consider the DHO equation, which is linear in this case.

x′′ + 2εx′ + x = 0. (21)

The Lagrangian of the DHO is L = 1
2 e2εt(x′2 − x2) [16–18], with L = L0 + εL1, then L

takes the following form

L =
1
2
(x′2 − x2) + εt(x′2 − x2). (22)

Now, writing L by separating the powers of ε, we obtain

L0 =
1
2
(x′2 − x2), (23)

L1 = t(x′2 − x2). (24)

4.1. The Mei Symmetries of DHO

First of all, the first-order prolonged infinitesimal generator X[1] defined in Equation (9)
is applied to the first-order Lagrangian given in Equation (23). This yields

X[1]
0 L = −xβ0 + x′β0,t + x′2β0,x − x′2ξ0,t − x′3ξ0,x. (25)
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Then, applying the Euler operator defined in Equation (2) for k = 1, Equation (25) gives

E1(X
[1]
0 L) = 0. (26)

Alternatively,

d
dt

(
∂X[1]

0 L0

∂x′

)
−

(
∂X[1]

0 L0

∂x

)
= 0. (27)

Equation (27) gives the following expression

β0,tt + 2x′β0,tx + 2x′′β0,x − 2x′′ξ0,t + x′2β0,xx − 2x′ξ0,tt − 4x′2ξ0,tx − 6x′′x′ξ0,x (28)

− 2x′3ξ0,xx + β0 + xβ0,x = 0.

Substituting x′′ + x = 0 in Equation (28), we obtain

β0,tt + 2x′β0,tx − xβ0,x + 2xξ0,t + x′2β0,xx − 2x′ξ0,tt − 4x′2ξ0,tx + 6xx′ξ0,x (29)

− 2x′3ξ0,xx + β0 = 0.

Comparing the coefficients of different powers of x′, we obtain a system of PDEs

β0,tt + β0 − xβ0,x + 2xξ0,t = 0, (30)

β0,tx − ξ0,tt + 3xξ0,x = 0, (31)

β0,xx − 4ξ0,tx = 0, (32)

ξ0,xx = 0. (33)

Solving Equations (30)–(33), we obtain

ξ0 = C1 + sin
√

2tC2 + cos
√

2tC3, (34)

β0 = −
√

2x sin
√

2tC3 +
√

2x cos
√

2tC2 + cos tC4 + sin tC5 + C6x,

and the corresponding Mei symmetries are listed below

X1
0 =

∂

∂t
, (35)

X2
0 = sin

√
2t

∂

∂t
+
√

2x cos
√

2t
∂

∂x
, (36)

X3
0 = cos

√
2t

∂

∂t
−
√

2x sin
√

2t
∂

∂x
, (37)

X4
0 = cos t

∂

∂x
, (38)

X5
0 = sin t

∂

∂x
, (39)

X6
0 = x

∂

∂x
. (40)

4.2. Approximate Mei Symmetries of DHO

Now, we calculate the approximate Mei symmetries up to first order of ε by using
the exact symmetries given in Equations (35)–(40). First of all, we use X2

0 = sin
√

2t ∂
∂t +√

2xcos
√

2t ∂
∂x , where X[1]

0 L1 + X[1]
1 L0 is expressed as

X[1]
0 L1 + X[1]

1 L0 = −xβ1 + x′β1,t + x′2β1,x − x′2ξ1,t − x′3ξ1,x + x′2 sin
√

2t− x2 sin
√

2t (41)

− 2
√

2x2t cos
√

2t− 4txx′ sin
√

2t.
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Now, using Equation (41) in Equation (13), we have

d
dt

(
∂(X[1]

0 L1 + X[1]
1 L0)

∂x′

)
−

(
∂(X[1]

0 L1 + X[1]
1 L0)

∂x

)
= 0. (42)

Putting Equations (23) and (24) into Equation (13), we obtain

β1,tt + 2x′β1,tx + 2x′′β1,x − 2x′′ξ1,t + x′2β1,xx − 2x′ξ1,tt − 4x′2ξ1,tx − 6x′′x′ξ1,x (43)

− 2x′3ξ1,xx + β1 + xβ1,x + 2x′′ sin
√

2t + 2
√

2 cos
√

2tx′ − 2x sin
√

2t = 0.

After plugging x′′ + x = 0, we get

β1,tt + 2x′β1,tx − xβ1,x + 2xξ1,t + x′2β1,xx − 2x′ξ1,tt − 4x′2ξ1,tx + 6xx′ξ1,x (44)

− 2x′3ξ1,xx + β1 + 2
√

2x′ cos
√

2t− 2x sin
√

2t = 0.

Again, using the standard procedure of comparing coefficients of different powers of x′,
the obtained system of PDEs is

β1,tt + β1 − xβ1,x + 2xξ1,t − 4x sin
√

2t = 0, (45)

β1,tx − ξ1,tt + 3xξ0,x +
√

2 cos
√

2t = 0, (46)

β1,xx − 4ξ1,tx = 0, (47)

ξ1,xx = 0. (48)

Solving the above system yields

ξ1 =C1 + sin
√

2tC2 + cos
√

2tC3 −
1

2
√

2
cos
√

2t− 1
2

t sin
√

2t, (49)

β1 =−
√

2x sin
√

2tC3 +
√

2x cos
√

2tC2 + cos tC4 + sin tC5 + xC6 (50)

− 1√
2

tx cos
√

2t− x sin
√

2t.

Substituting any constant equal to one, say, C2 = 1, and all the remaining constants are
equal to zero, gives X3

0, and X3
1 is given below

X3
1 =

(
− 1

2
√

2
cos
√

2t− 1
2

t sin
√

2t
)

∂

∂t
+ ε

(
− 1√

2
tx cos

√
2t− x sin

√
2t
)

∂

∂x
. (51)

The nontrivial approximate Mei symmetry of Equation (13) has the form

X3 = X3
0 + εX3

1 =

(
sin
√

2t
∂

∂t
+
√

2x cos
√

2t
∂

∂x

)
+ ε

[(
− 1

2
√

2
cos
√

2t− 1
2

t sin
√

2t
)

∂

∂t
(52)

+

(
− 1√

2
tx cos

√
2t− x sin

√
2t
)

∂

∂x

]
.

The remaining approximate Mei symmetries are obtained in a similar way as described
above. The list of symmetries is given as
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X1 = X1
0 + εX1

1 =
∂

∂t
− εx

∂

∂t
, (53)

X2 = X2
0 + εX2

1 =

(
cos
√

2t
∂

∂t
−
√

2x sin
√

2t
∂

∂x

)
+ ε

[(
− 1

2
t cos

√
2t +

1√
2

sin
√

2t
)

∂

∂t
(54)

+

(
1√
2

tx sin
√

2t− 1
2

x cos
√

2t
)

∂

∂x

]
,

X4 = X4
0 + εX4

1 = sin t
∂

∂x
− εt sin t

∂

∂x
, (55)

X5 = X5
0 + εX5

1 = cos t
∂

∂x
− εt cos t

∂

∂x
, (56)

X6 = X6
0 + εX6

1 = x
∂

∂x
− ε2tx

∂

∂x
. (57)

4.3. Approximate Mei Invariants of DHO

The approximate invariants I = I0 + εI1 are calculated by using Equations (16) and (17).

I1 = I1
0 + εI1

1 = 0, (58)

I2 = I2
0 + εI2

1 = −3
√

2x2 sin
√

2t cos
√

2t + ε (59)(
− 3
√

2tx2 sin
√

2t cos
√

2t− 5
2

x2 cos2
√

2t + 2x2 sin2
√

2t
)

,

I3 = I3
0 + εI3

1 = 3
√

2x2 sin
√

2t cos
√

2t (60)

+ ε

(
3
√

2tx2 sin
√

2t cos
√

2t− 1
2

x2 cos2
√

2t− x2 sin2
√

2t
)

,

I4 = I4
0 + εI4

1 = sin t cos t− ε sin2 t, (61)

I5 = I5
0 + εI5

1 = − sin t cos t− ε cos2 t, (62)

I6 = I6
0 + εI6

1 = 2xx′ − ε(−4txx′ − 2x2). (63)

4.4. Comparison between Mei Symmetries of the Hamiltonian and the Lagrangian

The Mei symmetries corresponding to the Hamiltonian and the Lagrangian of DHO
are compared in Table 1. Both sets of symmetries give rise to different conserved quantities.
The number of Mei symmetries corresponding to both Hamiltonian and the Lagrangian is
the same. In the two sets of symmetries, X1 is common, approximate part of X2 is slightly
different, whereas other Mei symmetries, i.e., X3, X4, X5 and X6 are completely different.

Table 1. Comparison between Mei Symmetries corresponding to the Hamiltonian and the Lagrangian.

Mei Symmetries of the Hamiltonian Mei Symmetries of the Lagrangian

X1 =
∂

∂t
− εx

∂

∂x
X1 =

∂

∂t
− εx

∂

∂x
X2 = x

∂

∂x
− ε4tx

∂

∂x
. X2 = x

∂

∂x
− ε2tx

∂

∂x
.

X3 =

(
e
√

2t ∂

∂t
+ x
√

2e
√

2t ∂

∂x

)
+ ε

(
− 1

2
te
√

2t ∂

∂t

)
+

(
− 3

2
xe
√

2t − 1√
2

xte
√

2t
)

∂

∂x

X3 =

(
cos
√

2t
∂

∂t
−
√

2x sin
√

2t
∂

∂x

)
+ε

[(
− 1

2
t cos

√
2t +

1√
2

sin
√

2t
)

∂

∂t

+

(
1√
2

tx sin
√

2t− 1
2

x cos
√

2t
)

∂

∂x

]
X4 =

(
e−
√

2t ∂

∂t
+ x
√

2e−
√

2t ∂

∂x

)
+ ε

(
− 1

2
te−
√

2t ∂

∂t

)
+

(
− 3

2
xe
√

2t +
1√
2

xte
√

2t
)

∂

∂x

X4 =

(
sin
√

2t
∂

∂t
+
√

2x cos
√

2t
∂

∂x

)
+ε

[(
− 1

2
√

2
cos
√

2t− 1
2

t sin
√

2t
)

∂

∂t

+

(
− 1√

2
tx cos

√
2t− x sin

√
2t
)

∂

∂x

]
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Table 1. Cont.

Mei Symmetries of the Hamiltonian Mei Symmetries of the Lagrangian

X5 = e−t ∂

∂x
− εte−t ∂

∂x
X5 = sin t

∂

∂x
− εt sin t

∂

∂x
X6 = et ∂

∂x
− εtet ∂

∂x
X6 = cos t

∂

∂x
− εt cos t

∂

∂x

5. Conclusions

In this paper, approximate Mei symmetries and invariants corresponding to the
Lagrangian are formulated. First of all, the definition and criterion to develop the Mei
symmetries are explained [2,7]. Then, these exact Mei symmetries are used to construct
approximate Mei symmetries and invariants, which are discussed in Theorems 1 and
2. At the end, approximate Mei symmetries and invariants of Lagrangian of DHO are
obtained as an example. The exact and approximate Mei symmetries and invariants of
DHO corresponding to the Hamiltonian are already calculated in [14], which are different
from the approximate Mei symmetries obtained by using the Lagrangian. A comparison of
approximate Mei symmetries corresponding to the Lagrangian and Hamiltonian are given
in Table 1. From this comparison, it is noticed that

• X1 is common in both, i.e., related to the Hamiltonian and the Lagrangian;
• A minor difference in approximate part of X2 is noted;
• Mei symmetries X3, X4, X5, and X6 of both sets are completely different from each

other. These new Mei symmetries related to the Lagrangian lead to new Mei invariants
of DHO;

• Approximate Mei symmetries and invariants in both formalisms (Lagrangian and
Hamiltonian) are related as

(X0 + εX1)[(H0 + εH1) + (L0 + εL1)] = (X0 + εX1)pk q̇k, (64)

I = −I0 + [ξ0X0 + (βk
0 − ẋkξ0)

∂

∂ẋk
X0]pk q̇k. (65)
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