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Abstract: In this paper, we consider a predator–prey model, in which the prey’s growth is affected
by the additive predation of its potential predators. Due to the additive predation term in prey, the
model may exhibit the cases of the strong Allee effect, weak Allee effect and no Allee effect. In each
case, the dynamics of global features of the model are investigated. Compared to the well-known
Lotka–Volterra type model, the model proposed in this paper exhibits much richer and more complex
dynamic behaviors, such as the Allee effect, the sensitivity to the initial conditions caused by the
strong Allee effect, the oscillatory behavior and the Hopf and heteroclinic bifurcations. Furthermore,
the stability and Hopf bifurcation of the model with the density dependent feedback time delay in
prey are investigated. By the normal form method and center manifold theory, the explicit formulas
are presented to determine the direction of Hopf bifurcation and the stability and period of Hopf-
bifurcating periodic solutions. Theoretical analysis and numerical simulation indicate that the delay
may destabilize the model, and cause the Hopf bifurcation not only at the interior equilibrium but
also at a boundary equilibrium.

Keywords: predator–prey system; additive predation; Allee effect; delay; stability; Hopf bifurcation
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1. Introduction

Kang and Udiani [1] studied the evolutionary results of the following single population
model involved with an additive predation

du
dt

= ru
(

1− u
K

)
− au

1 + mu
, (1)

where r, K, a and m are positive parameters, r is the intrinsic growth rate, K is the carrying
capacity of species in the absence of additive predation. When a = 0, model (1) implies
that the species u follows the logistic growth and the influence of its predator is not
involved. In nature, there are few populations that do not have natural predators. Therefore,
Equation (1) is an adjustment of logistic model, which models the dynamics of a single
population affected by its predators. The influence of predators is described by the Holling
type II functional response au(t)/(1 + mu(t)), which represents the positive correlation
between the growth of the species u and its predators. In the case of predation satiation, a
denotes the attack rate and m

a is the handling time of predators [1–3].
Due to the additive predation term au(t)/(1 + mu(t)), model (1) can exhibit the Allee

effect (called a component Allee effect or an additive Allee effect [1]). The Allee effect,
first observed in the 1930s by Warder Clyde Allee [4,5], is a wide range of biological
phenomenon of population growth. It presents the positive relationship between the
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mean individual fitness (often measured as per capita growth rate) and the size or density
of the population [6–12]. Any mechanism leading to a positive relationship between a
component of individual fitness and the number or density of conspecifics can be regarded
as a mechanism of the Allee effect [11], such as mating difficulty, deficient feeding to low
densities, environment conditioning and inbreeding depression, reduced defense against
predators and many others [2,6,8,11,12]. The Allee effect can be divided into two main
types: Strong Allee effect and weak Allee effect. See, for example [2,7,13–16]. At low density,
if the per capita growth rate of a species is negative, then it is said that the population
is affected by a strong Allee effect, otherwise it has a weak Allee effect. A strong Allee
effect induces a threshold population, called Allee threshold, below which population
growth decreases and goes to extinction and above which the population is persistent. A
population with a weak Allee effect does not have such a critical threshold. The population
models with different Allee effects have been widely studied. See, for example [2,12,17–23].
The models with a component Allee effect, of a type similar to (1), was first mentioned by
Kostitizin [24] and applied in [2,11,25–32] .

If the species u has multiple predators and we are only interested in the interaction
between the species u and one of its predators, denoted by v, then the relationship between
species u and v can be modeled by the following predator–prey system

du(t)
dt

= ru(t)
(

1− u(t)
K

)
− au(t)

1 + mu(t)
− αu(t)v(t),

dv(t)
dt

= βu(t)v(t)− dv(t),
(2)

where α, β, d are positive constants that stand for the consumption rate, conversion rate
and death rate of the predator v. In model (2), v is one of the many predators of the prey
u that we are concerned about, and Holling type I functional response of the predator
v is assumed, the influences of other predators on the growth of the prey u is described
by au(t)

1+mu(t) .
In this paper, we will determine how the additive predation affects the dynamics of

model (2) and mainly focus on the extinction and coexistence of the predator and prey
species. Due to the additive predation, model (1), and hence (2), may exhibit the cases of
the strong Allee effect, weak Allee effect and no Allee effect. For each case, the dynamics
of the global features of (2) will be investigated. The ratio a

r of the attack rate a of other
potential predators to the intrinsic growth rate r of prey species u, and the ratio d

β of the
death rate d to the conversion rate β of predator species play a key role in the dynamics
of model (2). Our main results reveal the following dynamic features and the biological
implications:

(i) If the ratio d
β exceeds the largest size that the prey u may eventually achieve, then the

predator species goes extinct.
(ii) When model (2) has the weak Allee effect or no Allee effect, if the ratio d

β is below the
largest size that the prey u may eventually achieve, both the predator and prey species
may coexist. In the weak Allee effect case, the coexistence exhibits an oscillatory
mode (when there exists a stable limit cycle) or steady state mode (when the interior
equilibrium is globally asymptotically stable), while in the no Allee effect case, it is
only the steady state mode. In the strong Allee effect, the extinction and coexistence
depend on the initial population sizes of the prey and predator.

(iii) For the strong Allee effect case, model (2) exhibits a more complex bifurcation phe-
nomenon than the other cases, such as the Hopf and heteroclinic bifurcations. Due
to the strong Allee effect caused by the additive predation term au(t)

1+mu(t) , the initial
population sizes play an extremely important role in the dynamics of (2). For a set of
parameter values, the extinction, coexistence, and population oscillations may be the
result of different initial conditions.
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(iv) The main dynamics of model (2) can be described conclusively in a bifurcation diagram
with respect to ( a

r , d
β ).

(v) Compared to the well-known Lotka–Volterra type model (when a = 0), the addi-

tive predation term au(t)
1+mu(t) leads model (2) to have much richer and more complex

dynamical behaviors, such as the Allee effect, oscillatory behavior, a more complex
bifurcation phenomenon and sensitivity to the initial conditions. The Lotka–Volterra
type model only has the similar dynamic structure of model (2) in the case of no
Allee effect.

The growth of an organism depends not only on its current state, but also on its past
population density at a certain time; that is, a real system should be modeled by differential
equations with time delays [33–35]. Time delay is one of the main factors in the ecological
systems and has important influences on the stability of population dynamics [33–38].
When the effects of population density of species u on its birth rate at later times are
considered, (2) becomes the following delayed predator–prey model

du(t)
dt

= ru(t)
(

1− u(t− τ)

K

)
− au(t)

1 + mu(t)
− αu(t)v(t),

dv(t)
dt

= βu(t)v(t)− dv(t),
(3)

where τ > 0 is the density dependent feedback time delay of the prey to the growth of
the species itself. For model (3), we mainly investigate the stability and Hopf bifurcation
induced by the delay τ. The normal form method and the center manifold theory are
applied to analyze the direction of Hopf bifurcation, and the stability and period of the
Hopf-bifurcating periodic solutions.

The initial conditions of (3) are taken as follows:

u(s) = φ1(s) ≥ 0, v(s) = φ2(s) ≥ 0, s ∈ [−τ, 0],

φ1(0) > 0, φ2(0) > 0,
(4)

where (φ1(s), φ2(s)) ∈ C([−τ, 0],R2
+), C([−τ, 0],R2

+) is the Banach space of continuous
functions mapping the interval [−τ, 0] into R2

+, R2
+ = {(x1, x2) ∈ R2 : xi ≥ 0, i = 1, 2}.

The rest of the paper is organized as follows. In Section 2, we present a brief sketch of
the dynamics of the single population model (1) and show the parameter regions of the
strong Allee effect, weak Allee effect and no Allee effect. Then in Section 3, for each case we
discuss the dynamics of model (2), and analyze the influence of the additive predation term

au(t)
1+mu(t) . In Section 4, we consider the delay model (3) and present the occurrence of Hopf
bifurcation induced by the delay τ. Furthermore, we use the normal form method and
the center manifold theory to analyze the direction of Hopf bifurcation, and the stability
and period of the Hopf-bifurcating periodic solutions. Some numerical simulations are
presented to illustrate the theoretical analysis on the dynamics of the delayed predator–
prey system (3). In Section 5, we briefly provide a summary of our results and compare
the dynamics of model (2) with the dynamics of the well-known Lotka–Volterra type
model (when a = 0).

2. Dynamics of the Single Population Model

In order to have a complete understanding of the influence of the additive predation
term au(t)

1+mu(t) on the dynamics of model (2), in this section we consider the dynamics of the
single population model (1). Let

H(u) = r
(

1− u
K

)
− a

1 + mu
. (5)
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It is easy to see that H(u) has its local maximum at

u0 =
1
m

(√
amK

r
− 1

)
> 0, (6)

and H′(u) = − r
K + am

(1+mu)2 < 0 for u > u0 while H′(u) > 0 for u < u0. Since H′(0) =

− r
K + am, we know that if the ratio of the attack rate a to the intrinsic growth rate r is large

such that a
r > 1

mK holds, then model (1) may admit an Allee effect (see [1]).
Clearly, u = 0 is a trivial equilibrium of (1). The positive equilibria are the positive

roots of H(u) = 1
1+mu H̃(u) = 0, where

H̃(u) := − rm
K

u2 +
r
K
(mK− 1)u + r− a = 0. (7)

Let ∆ = r2

K2 (mK− 1)2 + 4(r− a) rm
K . If ∆ ≥ 0, i.e., a

r ≤
(mK+1)2

4mK , Equation (7) has two
real roots u∗1 and u∗2 (u∗1 ≤ u∗2):

u∗i =
r(mK− 1)± K

√
∆

2rm
=

(mK− 1)±
√
(mK− 1)2 + 4mK(1− a

r )

2m
, i = 1, 2. (8)

By (7) and (8), it is easy to get the existence and stability of positive equilibria of
model (1) (see [1]). However, to better understand the influences of the additive predation
term au(t)

1+mu(t) on the dynamics of (1), we prefer the following analysis.
First, we show the following two cases in which the species tend to extinction.

(i) If a
r ≥ 1 and 1

mK ≥ 1, then for all u > 0, H(u) < 0, (1) has no positive equilibrium and
u = 0 is globally asymptotically stable, which implies that the species u will be extinct.
For model (2), both species become extinct since the survival of the predator v only
depends on the prey u.

(ii) If ∆ < 0, i.e., a
r > (mK+1)2

4mK , then the species u and hence v will be extinct since H(u) < 0
for all u > 0.

So, in what follows, the above two cases will not be discussed.
Now we consider the other cases as follows.

(a) Assume a
r > 1

mK .

1. If 1 < a
r < (mK+1)2

4mK , which implies that mK > 1, then H(0) = r − a < 0, H(u)
has two positive roots u = u∗1 and u = u∗2 , which are given by (8) and satisfy
that H′(u∗1) > 0 and H′(u∗2) < 0 since u∗1 < u0 < u∗2 (see Figure 1). Thus,
u = 0 is locally asymptotically stable, u = u∗1 is unstable and u = u∗2 is locally
asymptotically stable. So, in this case, the strong Allee effect appears in population
growth of (1) and u = u∗1 is the Allee threshold. The species u will be extinct
when the initial population size is below u∗1 , i.e., u(0) < u∗1 , and persistent when
u(0) > u∗1 .

2. If a
r < 1, then H(0) > 0, H(u) has one positive root u = u∗2 , satisfies that

H′(u∗2) < 0 and 0 < u0 < u∗2 < K (see Figure 1). Thus, u = 0 is unstable and
u = u∗2 is globally asymptotically stable. So, in this case, model (1) admits a weak
Allee effect and the population is persistent.

(b) Assume a
r ≤

1
mK , which implies that model (1) has no Allee effect, then H′(u) < 0

for all u > 0. If a
r < 1, H(0) = r− a > 0 and H(u) has one positive root u = u∗2 (see

Figure 1). It is clear that 0 < u∗2 < K. In this case, u = 0 is unstable and u = u∗2 is
globally asymptotically stable.

Based on the above arguments, we define the parameter space D = {ν = (a, r, m, K) ∈
R4
+ : armK > 0} and (see Figure 2):
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• Extinct region: D0 = {ν ∈ D : a
r ≥ 1, 1

mK ≥ 1} ∪ { a
r > (mK+1)2

4mK },
• Strong Allee effect region: D1 = {ν ∈ D : 1

mK < 1 < a
r < (mK+1)2

4mK },
• Weak Allee effect region: D2 = {ν ∈ D : 1

mK < a
r < 1},

• No Allee effect region: D3 = {ν ∈ D : a
r < 1, a

r ≤
1

mK}.

0 0.5 1 1.5 2 2.5

u

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

H
(u

)
Growth function H(u), K=3, m=0.8

Strong Allee effect

Weak Allee effect

No Allee effect

Figure 1. The graph of H(u).

0 0.5 1 1.5 2 2.5 3

m

0

0.5

1

1.5

2

2.5

a/
r

Parameter space (K=3)

D
1
: Strong Allee effect region

D
2
: Weak Allee effect region

D
0
: Extinct region

D
3
: No Allee effect region

a/r=1/mk

a/r=(mK+1)2/(4mK)

Figure 2. The parameter space D.

From the above analysis, the ratio a
r of the attack rate a of the additive predation to

the intrinsic growth rate r of the species plays a key role in the dynamics of model (1). The
large ratio a

r goes against the population survival.
Define

b1(u) := r
(

1− u
K

)
− a

(1 + mu)2 , b2(u) :=
ru
K

. (9)

It is easy to see that

b1(u)− b2(u) = (uH(u))′ = H(u) + uH′(u).
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If u is a positive root of H(u), then b1(u) = amu
(1+mu)2 and b1(u)− b2(u) = uH′(u). Thus,

we have the following result, which will be used in the later arguments.

Lemma 1. If u∗1 and u∗2 exist, then b1(u∗1)− b2(u∗1) > 0 and b1(u∗2)− b2(u∗2) < 0.

In the later arguments, we always assume that ν = (a, r, m, K) ∈ Di, i = 1, 2, 3; that is,
model (2) has a strong Allee effect, weak Allee effect or no Allee effect.

3. Dynamics of the Predator–Prey Model

Now we consider the dynamics of model (2). Define the state space of (2) as
X = {(u, v) ∈ R2

+} with its interior X̊ = {(u, v) ∈ R2
+ : uv > 0}.

3.1. Positivity and Boundedness

Theorem 1. 1. Both X and X̊ are the positively invariant sets of model (2).
2. Model (2) is uniformly ultimately bounded in X, and lim sup

t→∞
u(t) ≤ u∗2 .

Proof. 1. For u ≥ 0 and v ≥ 0, we have u′|u=0 = 0, v′|v=0 = 0, which implies that both
u = 0 and v = 0 are invariant manifolds. Due to the continuity of model (2), we can
conclude that (2) is positively invariant in X and X̊.

2. From the arguments on the function H(u) in Section 2, for the strong or weak Allee
effect case, or no Allee effect case, H(u) has a positive root u∗2 such that H(u) < 0 for
u > u∗2 . Thus, by the positivity of (2), the first equation of (2) yields u′(t)|u=u∗2

= −αuv ≤ 0
and u′(t)|u>u∗2

= uH(u)− αuv ≤ 0. This implies lim
t→+∞

u(t) ≤ u∗2 . Then, for any ε > 0,

there exists T > 0 such that for t > T, u(t) ≤ u∗2 + ε. Let W(t) = 1
α u + 1

β v, then W ′(t) ≤
−dW(t) + d+r

α (u∗2 + ε), t > T. It follows that lim sup
t→∞

W(t) ≤ d+r
dα u∗2 . Hence, model (2) is

uniformly ultimately bounded in X.

Remark 1. Theorem 1 indicates that the population size of prey u ultimately cannot go beyond u∗2 .
That is to say, u∗2 is the largest size that the prey u may eventually achieve.

3.2. Equilibria

From the arguments on the single model (1) in Section 2, model (2) always has the
trivial boundary equilibrium E0(0, 0), and has at most two semi-trivial equilibria E1(u∗1 , 0)
and E2(u∗2 , 0), where u∗1 and u∗2 are the positive roots of H(u) = 0, defined as (8).

When H( d
β ) > 0, model (2) has the unique positive equilibrium Ein(u∗, v∗), where

u∗ =
d
β

, v∗ =
1
α

H(u∗) =
r(K− u∗)(1 + mu∗)− aK

αK(1 + mu∗)
. (10)

3.3. Dynamics of the Strong Allee Effect Case

In this subsection, we consider the dynamics of model (2) in the strong Allee effect case.
First we show the existence and local stability of equilibria, and that the Hopf bifurcation
occurred at the positive equilibrium Ein(u∗, v∗). Then we prove the non-existence of limit
cycle when u∗1 < d

β < u0, and discuss the extinction of (2). In addition, based on these
arguments and numerical simulations, the dynamics of global features of (2) are presented.

The linearized matrix of (2) with respect to any of its equilibria (u∗, v∗) can be ex-
pressed as

J =

(
r(1− 2u∗

K )− αv∗ − a
(1+mu∗)2 −αu∗

βv∗ βu∗ − d

)
=

(
(uH(u))′|u∗ − αv∗ −αu∗

βv∗ βu∗ − d

)
, (11)
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where

(uH(u))′|u∗ − αv∗ =

{
u∗H′(u∗), at E1(u∗1 , 0), E2(u∗2 , 0), Ein(u∗, v∗),

H(0) = r− a, at E0(0, 0).

(11) gives the characteristic equation

λ2 − TrJλ + DetJ = 0. (12)

Lemma 2. Ein, if it exists, is locally asymptotically stable when H′(u∗) < 0, and unstable when
H′(u∗) > 0.

Proof. At Ein(u∗, v∗) (u∗ = d
β ), the characteristic Equation (12) becomes

λ2 − u∗H′(u∗)λ + αdv∗ = 0. (13)

So the result is clear.

Theorem 2. If model (2) exhibits the strong Allee effect, i.e., 1
mK < 1 < a

r < (mK+1)2

4mK , then the
following statements hold.

1. Model (2) has three boundary equilibria E0(0, 0), E1(u∗1 , 0) and E2(u∗2 , 0). The positive
equilibrium Ein(u∗, v∗) exists if and only if u∗1 < d

β < u∗2 .
2. E0(0, 0) is a stable node.
3. If u∗1 < d

β , E1(u∗1 , 0) is a saddle with its unstable manifold along the u axis and its stable

manifold (denoted by Γs
E1

) entering from the interior of R2
+; if u∗1 > d

β , E1(u∗1 , 0) is an
unstable node.

4. If u∗2 > d
β , E2(u∗2 , 0) is saddle with its stable manifold along the u axis and its unstable

manifold (denoted by Γu
E2

) entering the interior of R2
+; if u∗2 < d

β , E2(u∗2 , 0) is a stable node.

5. The positive equilibrium Ein(u∗, v∗) is locally asymptotically stable when u0 < d
β < u∗2 and

unstable when u∗1 < d
β < u0. When d

β = u0, model (2) undergoes the Hopf bifurcation at
Ein(u∗, v∗).

Proof. From the arguments of the function H(u) in Section 2, in the strong Allee effect case,
model (2) has three boundary equilibria E0(0, 0), E1(u∗1 , 0) and E2(u∗2 , 0). Since H(u) > 0
when u∗1 < u < u∗2 , by (10), we know that the positive equilibrium Ein(u∗, v∗) exists if and
only if u∗1 < d

β < u∗2 .
At E0(0, 0), (12) has the eigenvalues λ1 = H′(0) = r− a and λ2 = −d. Thus, E0(0, 0)

is a stable node since a
r > 1.

At the semi-trivial boundary equilibrium Ei(u∗i , 0), i = 1, 2, the characteristic
Equation (12) becomes

(λ− u∗i H′(u∗i ))(λ− (βu∗i − d)) = 0, (14)

which gives two eigenvalues λ1 = u∗i H′(u∗i ) = b1(u∗i )− b2(u∗i ) and λ2 = βu∗i − d, where
b1(u), b2(u) are defined as (9). At E1(u∗1 , 0), by Lemma 1, λ1 > 0 and hence the third part
of the result holds. At E2(u∗2 , 0), λ1 < 0, so the fourth part also holds.

In the strong Allee effect case, from the arguments on the function H(u) in Section 2,
H′(u) > 0 for u∗1 < u < u0 and H′(u) < 0 for u0 < u < u∗2 . Then, by Lemma 2, the positive
equilibrium Ein(u∗, v∗) (u∗ = d

β ) is locally asymptotically stable when u0 < d
β < u∗2 and

unstable when u∗1 < d
β < u0.

When d
β = u0, the characteristic Equation (13) has a pair of imaginary eigenvalues

λ = ±iω, ω =
√

αdv∗. Then, the Hopf bifurcation occurs at Ein(u∗, v∗). In fact, by
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taking d
β as bifurcation parameter, we have ∂(u∗H′(u∗))

∂( d
β )

= ∂(u∗H′(u∗))
∂u∗ = u∗H′′(u∗) + H′(u∗)

since u∗ = d
β . Notice that H′(u0) = 0 and H′′(u0) < 0 since H(u) is concave. Thus,

∂(u∗H′(u∗))
∂( d

β )
| d

β =u0
= (u∗H′′(u∗) + H′(u∗))|u∗=u0 < 0, which implies from the Poincaré–

Andronov–Hopf Bifurcation Theorem [39] that model (2) undergoes a Hopf bifurcation at

Ein(u∗, v∗) when d
β = u0 = 1

m

(√
amK

r − 1
)

.

Remark 2. From Theorem 2, we know that in the strong Allee effect case, if u0 < d
β < u∗2 , model (2)

has two attractors E0 ∪ Ein (see Figure 3d–f); if d
β > u∗2 , model (2) has two attractors E0 ∪ E2 (see

Figure 3g).

Theorem 3. If model (2) exhibits the strong Allee effect, then (2) has no limit cycle when
u∗1 < d

β < u0 (see Figure 3b).

Proof. When u∗1 < d
β < u0, according to Theorem 2, E0(0, 0) is a stable node, both E1(u∗1 , 0)

and E2(u∗2 , 0) are saddle, the positive equilibrium Ein(u∗, v∗) (u∗ = d
β ) exists and is unstable.

Assume that model (2) has a periodic orbit (u(t), v(t)) with period T. Then, by integrating
the equations of (2) on [0, T], we have

α
∫ T

0
v(t)dt =

∫ T

0
H(u(t))dt,

∫ T

0
(βu(t)− d)dt = 0. (15)

Denote the right-hand sides of (2) as P1(u, v) and P2(u, v), respectively. By (15), we get
the integral of divergence of (2):∫ T

0

(
∂P1

∂u
+

∂P2

∂v

)
dt =

∫ T
0 u(t)H′(u(t))dt. (16)

Let M0 = (u0, 0) and M1 = (u0, 1
α H(u0)). We consider the positive half-trajectory

γ+(M1) passing the point M1. By examining the direction of the vector field in model (2),
γ+(M1) must pass the v-nullcline u = u∗ = d

β above the u-nullcline v = 1
α H(u) and enter

the region {(u, v) ∈ R2
+ | v > 1

α H(u), u < d
β}.

If γ+(M1) does not enter the region {(u, v) ∈ R2
+ | v < 1

α H(u)}, then γ+(M1) must
intersect the line u = u∗1 at some point M2. Thus, we can construct a region R with the
vertices M0, M1, M2 and E1 as follows: Between M1 and M2, the boundary of R is the
orbit γ+(M1), and all other parts of the boundary ofR are the line segments connecting
M1 → M0 → E1 → M2. It is easy to see that R is negatively invariant. Since Ein is the
unique equilibrium point in the first quadrant, any periodic orbit, if it exists, must encircle
it and lie wholly in the region R. Assume (u(t), v(t)) is a T-periodic orbit in R. Then
u(t) < u0 and hence H′(u(t)) > 0. Thus,

∫ T
0

(
∂P1
∂u + ∂P2

∂v

)
dt > 0 from (16). This implies that

the periodic orbit is unstable. However, it is impossible since Ein is unstable.
Assume that γ+(M1) enters the region {(u, v) ∈ R2

+ | v < 1
α H(u)}. After that, if

γ+(M1) always stays on the left of the line u = u0, then its ω-limit set must be a periodic
orbit. From (16) the periodic orbit is unstable. However, this is also impossible since Ein is
unstable. If γ+(M1) intersects the line u = u0 at some point M2, then we can construct the
regionR as follows: Its boundaries are composed of the segment of orbit γ+(M1) from M1
to M2 and the straight line segment u = u0 between M1 and M2. Clearly,R is negatively
invariant. Similar to the above arguments, model (2) has no periodic orbit.

Remark 3. From Theorems 2 and 3, we can conclude that when d
β = u0, the forward and subcritical

Hopf bifurcation occurs at the positive equilibrium Ein(u0, 1
α H(u0)) (see Figure 3). That is, as d

β
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increases from u0, model (2) has an unstable limit cycle bifurcating from the positive equilibrium
Ein(u0, 1

α H(u0)). When u0 < d
β < u∗2 , both E1(u∗1 , 0) and E2(u∗2 , 0) are saddle, and model (2)

may have a heteroclinic orbit connecting E2 to E1 (see Figure 3e).

Now we show the extinction of model (2).

Theorem 4. If model (2) exhibits the strong Allee effect, then (2) has the following dynamics.

1. If d
β > u∗2 , then the population v goes extinct (see Figure 3g).

2. If d
β < u∗1 , then both species u and v go extinct (see Figure 3a).

3. If u(0) ≤ u∗1 , then both species u and v go extinct.

Proof. Let d
β > u∗2 . By lim sup

t→+∞
u(t) ≤ u∗2 from Theorem 1, we have that for sufficiently small

ε > 0 satisfying d
β > u∗2 + ε, there exists T > 0 such that for all t > T, u(t) ≤ u∗2 + ε. Then

by the second equation of (2), we have that v′ = v(βu− d) ≤ v(β(u∗2 + ε)− d) ≤ 0, ∀t > T.
It follows that lim

t→∞
v(t) = 0.

If d
β < u∗1 , then according to Theorem 2, model (2) only has three boundary equilibria

E0(0, 0), E1(u∗1 , 0) and E2(u∗2 , 0), where E0 is a stable node, E1 is an unstable node and
E2 is a saddle. Theorem 1 implies that (2) has a compact global attractor. Thus, from an
application of the Poincaré–Bendixson theorem [40] we conclude that lim

t→∞
(u(t), v(t)) = 0

for any solution (u(t), v(t)) of (2) initiated from the interior of R2
+; that is, E0 is globally

asymptotically stable.
Assume u(0) ≤ u∗1 . From the first equation of (2), we have u′|u<u∗1

≤ 0 and u′|u=u∗1
≤ 0,

which implies lim
t→∞

u(t) = 0. Thus, the second equation of (2) yields lim
t→∞

v(t) = 0.

Remark 4. Theorem 4 indicates the following biological implications.

i. The first part is about the extinction of predator species due to the large ratio d
β of the death

rate d to the conversion rate β of predator species.
ii. The second part is about the extinction due to the strong Allee effect of the prey population

driven by the additive predation au(t)
1+mu(t) . d

β < u∗1 implies that the invasion or reproduction of
the predator v is excessive while the reproduction of the prey u is not fast enough to sustain
its own population. Thus, the excessive invasion or reproduction of the predator v drives the
population of the prey u to below its Allee threshold and eventually to zero, which consequently
drives the predator population to extinction.

iii. The third statement indicates that when the population density of the prey is below its Allee
threshold u∗1 , all species will be extinct.

Now, let K, m, α and a
r be fixed such that model (2) exhibits the strong Allee effect. By

the previous discussion and numerical simulations, as d
β varies, we show the dynamics of

global features of (2) (see Figure 3).

(i) d
β < u∗1 . E0 is a stable node, E1 is an unstable node, E2 is a saddle. There is no interior

equilibrium. All trajectories in the interior of R2
+ converge to E0; two species will be

extinct (see Figure 3a).
(ii) u∗1 < d

β < u0. E1 becomes a saddle and an unstable interior equilibrium Ein appears.
Around Ein, there is no limit cycle. Except for the stable manifold Γs

E1
of E1, all

trajectories converge to E0 (see Figure 3b).
(iii) d

β = u0. A forward subcritical Hopf bifurcation occurs (see Figure 3c).

(iv) u0 < d
β < u∗2 . Both E1 and E2 are saddle and the interior equilibrium Ein become

locally asymptotically stable. There exists a threshold value d∗β : u0 < d∗β < u∗2
such that
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(a) when u0 < d
β < d∗β, there exists an unstable limit cycle surrounding Ein. Outside

the limit cycle, two species cannot coexist, while inside the limit cycle trajectories
converge towards the stable interior equilibrium Ein (see Figure 3d);

(b) when d
β = d∗β, the limit cycle disappears and a heteroclinic loop connecting E2 to

E1 appears. Outside the heteroclinic loop, trajectories converge to E0, and two
species will be extinct, while inside the heteroclinic loop trajectories converge
towards the heteroclinic loop, and two species coexist (see Figure 3e);

(c) when d∗β < d
β < u∗2 , the heteroclinic orbit is broken. Above the stable manifold

Γs
E1

of E1, trajectories converge to E0, and two species will be extinct, while below
Γs

E1
, trajectories converge towards the stable interior equilibrium Ein, and two

species coexist (see Figure 3f).

(v) d
β > u∗2 . There is a transcritical bifurcation at d

β = u∗2 . When increasing the value of d
β

from u∗2 , E2 becomes a stable node and the interior equilibrium Ein disappears. This
leads to the predator free dynamics with E0 ∪ E2 as attractors (see Figure 3g).

3.4. Dynamics of the Weak Allee Effect Case

In this subsection, we consider the dynamics of model (2) in the weak Allee effect case,
including the existence of equilibria, the local dynamics and the global feature of (2).

First, we show the existence and local stability of equilibria.

Theorem 5. If model (2) exhibits the weak Allee effect, i.e., 1 > a
r > 1

mK , then the following
statements holds.

1. Model (2) has two boundary equilibria E0(0, 0) and E2(u∗2 , 0). The positive equilibrium
Ein(u∗, v∗) exists if and only if 0 < d

β < u∗2 .
2. E0(0, 0) is always an unstable saddle.
3. E2(u∗2 , 0) is a stable node when u∗2 < d

β and an unstable saddle when u∗2 > d
β .

4. The positive equilibrium Ein(u∗, v∗) is locally asymptotically stable when u0 < d
β < u∗2 and

unstable when 0 < d
β < u0. When d

β = u0, system (2) undergoes the Hopf bifurcation at
Ein(u∗, v∗).

Proof. In the weak Allee effect case, by the property of H(u) shown in Section 2, model (2)
has two boundary equilibria E0(0, 0) and E2(u∗2 , 0). The positive equilibrium Ein(u∗, v∗)
exists if and only if u∗1 < d

β < u∗2 .
At E0(0, 0), (12) has the eigenvalues λ1 = H′(0) = r − a > 0 and λ2 = −d. Thus,

E0(0, 0) is a saddle.
At E2(u∗2 , 0), the characteristic Equation (14) has two eigenvalues λ1 = u∗2 H′(u∗2) =

b1(u∗2)− b2(u∗2) and λ2 = βu∗2 − d. By Lemma 1, λ1 < 0. Thus, E2 is a stable node when
u∗2 < d

β and a saddle when u∗2 > d
β .

In the weak Allee effect case, from the property of H(u) shown in Section 2, H′(u) > 0
for 0 < u < u0 and H′(u) < 0 for u0 < u < u∗2 . Then, by Lemma 2, the positive equilibrium
Ein(u∗, v∗) (u∗ = d

β ) is locally asymptotically stable when u0 < d
β < u∗2 and unstable when

0 < d
β < u0.

When d
β = u0, similar to the arguments of the strong Allee effect case, the Hopf

bifurcation occurs at Ein(u∗, v∗).
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Figure 3. The dynamic behaviors of model (2) in the strong Allee effect case as d
β varies (β = 1).

Here, parameters K = 3, m = 2.5, α = 1, a
r = 2(a = 2, r = 1). The heteroclinic bifurcation point

d∗β = 1.14915. u∗1 = 0.6, u0 = 1.14915, u∗2 = 2.

Now we state the global dynamic behavior of model (2) (see Figure 4).

Theorem 6. If model (2) exhibits the weak Allee effect, then the following dynamics hold.

1. If d
β > u∗2 , then E2(u∗2 , 0) is globally asymptotically stable (see Figure 4d).

2. If u0 < d
β < u∗2 , then Ein(u∗, v∗) is globally asymptotically stable (see Figure 4c).

3. If 0 < d
β < u0, then model (2) has a stable limit cycle surrounding Ein(u∗, v∗) (see Figure 4a).

Proof. 1. In the weak Allee effect case and d
β > u∗2 , by Theorem 5, model (2) has two

boundary equilibria E0(0, 0) and E2(u∗2 , 0), in which E0(0, 0) is a saddle and E2(u∗2 , 0) is



Mathematics 2022, 10, 655 12 of 30

a stable node, and has no positive equilibrium. Thus, from an application of Poincaré–
Bendixson theorem [40] we conclude that E2(u∗2 , 0) is globally asymptotically stable.

2. When u0 < d
β < u∗2 , both E0(0, 0) and E2(u∗2 , 0) are saddle, and Ein(u∗, v∗) exists

and is locally asymptotically stable by Theorem 5. The stable and unstable manifolds of E0
are along the v-axis and u-axis, respectively. The stable manifold of E2 is along the u-axis
and its unstable manifold enters the interior of R2

+. If (2) has no limit cycle, then from
Poincaré–Bendixson theorem [40] we can conclude that Ein is globally asymptotically stable.
On the contrary, we assume that model (2) has a periodic orbit (u(t), v(t)) with period T.
Then, (16) holds.

Let M0 = (u0, 0) and M1 = (u0, 1
α H(u0)). We consider the negative half-trajectory

γ−(M1) passing the point M1. By examining the direction of vector field in model (2),
γ−(M1) must pass the v-nullcline u = u∗ = d

β above the u-nullcline v = 1
α H(u) and enter

the region {(u, v) ∈ R2
+ | v > 1

α H(u), u > d
β}.

If γ−(M1) does not enter the region {(u, v) ∈ R2
+ | v < 1

α H(u)}, then γ−(M1) must
intersect the line u = u∗2 at some point M2. Thus, we can construct a region R1 with the
vertices M0, M1, M2 and E2 as follows: Between M1 and M2, the boundary of R1 is the
orbit γ−(M1), and all other parts of the boundary ofR1 are the line segments connecting
M1 → M0 → E1 → M2. It is easy to see that R1 is positively invariant. Since Ein is
the unique equilibrium point in the first quadrant, any periodic orbit, if it exists, must
encircle it and lie wholly in the region R1. Assume (u(t), v(t)) is a T-periodic orbit in
R1. Then u(t) > u0 and hence H′(u(t)) < 0. Thus,

∫ T
0

(
∂P1
∂u + ∂P2

∂v

)
dt < 0 from (16).

This implies that the periodic orbit is stable. However, it is impossible since Ein is locally
asymptotically stable.

Assume that γ−(M1) enters the region {(u, v) ∈ R2
+ | v < 1

α H(u)}. After that, if
γ−(M1) always stays on the right of the line u = u0, then its α-limit set must be a periodic
orbit. From (16) the periodic orbit is stable. However, this is also impossible since Ein is
locally asymptotically stable. If γ−(M1) intersects the line u = u0 at some point M2, then
we can construct the region R1 as follows: Its boundaries are composed of the segment
of orbit γ−(M1) from M1 to M2 and the straight line segment u = u0 between M1 and
M2. Clearly,R1 is positively invariant. Similar to the above arguments, model (2) has no
periodic orbit.

3. Let 0 < d
β < u0. By Theorem 5, both E0(0, 0) and E2(u∗2 , 0) are saddle, and

Ein(u∗, v∗) exists and is unstable. Define L ≡ v + β
α u− δ, where δ is a positive constant to

be determined. LetR2 be the region bounded by the lines u = u∗2 , L = 0, u = 0 and v = 0.
When v > 0, since u′(t)|u=u∗2

= −αu∗2v < 0 and u′(t)|u>u∗2
= uH(u)− αuv < 0, we know

that all orbits of model (2) must ultimately pass through the line u = u∗2 from right to left.
Along the line L ≡ v + β

α u− δ = 0, we have

dL
dt

∣∣∣
L=0

= (u′ + v′)|L=0 =
β

α
uH(u) +

dβ

α
u− dδ.

Thus, we can choose δ > 0 sufficiently large such that dL
dt

∣∣
L=0 < 0 for 0 ≤ u ≤ u∗2 .

This implies that the orbit that meets the line L = 0 must pass through it from the upper
right to the lower left. Therefore,R2 is a bounded positive invariant set of (2). By Poincaré–
Bendixson theorem [40], model (2) has a stable limit cycle surrounding Ein(u∗, v∗).

Remark 5. Theorem 6 indicates that the ratio d
β of the death rate d to the conversion rate β of the

predator v plays key roles in the dynamics of model (2) when it exhibits weak Allee effect.

i. If the ratio d
β is large such that d

β > u∗2 , then the predator species u will be extinct (see
Figure 4d).

ii. If 0 < d
β < u∗2 , both species u and v can coexist. The coexistence of two populations may

be a periodic oscillatory mode (since there exists a stable limit cycle when 0 < d
β < u0) (see
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Figure 4a) or a steady state mode (since the interior equilibrium Ein is globally asymptotically
stable when u0 < d

β < u∗2) (see Figure 4c).

For example, choose r = 1, K = 3, m = 1.5, a = 0.8, α = 1, then model (2) exhibits the
weak Allee effect (see Figure 2), and u0 = 0.5982, u∗2 = 2.4937 . As d

β increases (β = 1 is
chosen), the dynamics of model (2) is presented as the following Figure 4.
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Figure 4. The dynamics of model (2) in the case of weak Allee effect as d
β varies (β = 1). Here, K = 3,

m = 1.5, α = 1, a
r = 2(a = 0.8, r = 1). u0 = 0.5982, u∗2 = 2.4937.

3.5. Dynamics of No Allee Effect Case

In this subsection, we consider the dynamics of model (2) in the no Allee effect case.
First, similar to the case of weak Allee effect, we have the following result on the existence
and local stability of equilibria.

Theorem 7. If model (2) has no Allee effect, i.e., a
r ≤

1
mK and a

r < 1, then the following
dynamics hold.

1. Model (2) has two boundary equilibria E0(0, 0) and E2(u∗2 , 0). The positive equilibrium
Ein(u∗, v∗) exists if and only if 0 < d

β < u∗2 .
2. E0(0, 0) is always an unstable saddle.
3. E2(u∗2 , 0) is a stable node when u∗2 < d

β and an unstable saddle when u∗2 > d
β .

4. If the positive equilibrium Ein(u∗, v∗) exists, it is locally asymptotically stable.

Now we state the global dynamics behavior of model (2).

Theorem 8. If model (2) has no Allee effect, then the following dynamics hold.

1. If d
β > u∗2 , then E2(u∗2 , 0) is globally asymptotically stable.

2. If 0 < d
β < u∗2 , then Ein(u∗, v∗) is globally asymptotically stable.

Proof. Similar to the proof of the first part of Theorem 4, one can prove the global stability
of E2(u∗2 , 0).
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Let 0 < d
β < u∗2 , then Ein(u∗, v∗) exist. Assume model (2) has a limit cycle, then,

by lim sup
t→∞

u(t) ≤ u∗2 (see Theorem 1), it must lie on the left of the line u = u∗2 . From

the arguments on the function H(u) in Section 2, H′(u) < 0 for u > 0. Thus, from (16),∫ T
0

(
∂P1
∂u + ∂P2

∂v

)
dt < 0 from (16). This implies that the limit cycle is stable. However, it

is impossible since Ein is locally asymptotically stable. Therefore, Ein(u∗, v∗) is globally
asymptotically stable.

Remark 6. Similar to Theorem 6, Theorem 8 also indicates the following biological implications.

i. If the ratio d
β is large such that d

β > u∗2 , then the predator species u will be extinct.

ii. If 0 < d
β < u∗2 , both species u and v can coexist.

3.6. Summary of the Dynamics of Model

From (8) and (6), we know that with respect to a
r , u0 and u∗1 increase while u∗2 decreases,

and u0 = u∗1 = u∗2 = mK−1
2m when ∆ = 0, i.e., a

r = (mK+1)2

4mK . In the ( a
r , d

β ) plane, the main
dynamics of model (2) can be concluded as in Figure 5, in which K = 3, m = 0.8, the green
curve denotes u∗2 = u∗2(

a
r ), the blue curve denotes u∗2 = u∗2(

a
r ), and the red-star curve

denotes the Hopf bifurcation curve u0 = u0(
a
r ).
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Figure 5. The bifurcation diagram with respect to ( a
r , d

β ), where parameters K = 3, m = 0.8.

(1) When a
r > (mK+1)2

4mK = 1.2042, the parameter ν = (a, r, m, K) lies in the extinct region,
i.e., ν = (a, r, m, K) ∈ D0; model (2) only has the extinction equilibrium E0(0, 0) which
is globally asymptotically stable. In this case, both the predator and prey species will
be extinct.

(2) When 1 < a
r < (mK+1)2

4mK = 1.2042, model (2) admits the strong Allee effect. In this
case, model (2) has three boundary equilibria Ei(i = 0, 1, 2), where E0(0, 0) is a stable
node (see Section 3.3).

(2.1) Above the green curve (i.e., d
β > u∗2), model (2) has no positive equilibrium,

E1 is a saddle, both E0 and E2 are stable nodes. So, the community cannot be
permanent. The prey species may survive but it depends on the initial size of
predator and prey (see Figure 3g).

(2.2) Below the blue curve (i.e., d
β < u∗1), E2(u∗2 , 0) is a saddle, E1(u∗1 , 0) is an unstable

node, and E0(0, 0) is globally asymptotically stable. So, two species will be
extinct (see Figure 3a).
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(2.3) Between the blue and green curves (i.e., u∗1 < d
β < u∗2), the interior equilibrium

Ein(u∗, v∗) exists, and both E1 and E2 are saddle. Between the red and green
curve (i.e., u0 < d

β < u∗2), Ein is locally asymptotically stable; between the

blue and red curve (i.e., u∗1 < d
β < u0), it is unstable; along the red curve (i.e.,

d
β = u0), Hopf bifurcation occurs. The two species may coexist but it depends
on their initial population sizes. In this case, model (2) may have the hetero-
clinic loop connecting E1 and E2 (see Figure 3b–f).

(3) When 0.425 = 1
mK < a

r < 1, model (2) has weak Allee effect. In this case, model (2)
has two boundary equilibria Ei(i = 0, 2), where E0(0, 0) is a saddle (see Section 3.4).

(3.1) Above the green curve (i.e., d
β > u∗2), model (2) has no positive equilibrium; E2

is globally asymptotically stable; that is, the predator will be extinct while the
prey is permanent (see Figure 4d).

(3.2) Below the green curve (i.e., 0 < d
β < u∗2), the interior equilibrium Ein exists, E2

is a saddle. Between the red and green curve (i.e., u0 < d
β < u∗2), Ein is globally

asymptotically stable; below the red curve (i.e., 0 < d
β < u0), model (2) has

a stable limit cycle surrounding Ein; along the red curve (i.e., d
β = u0), Hopf

bifurcation occurs. So, in this case, two species can coexist (see Figure 4a–c).

(4) When a
r < 1

mK = 0.425, model (2) has no Allee effect. In this case, model (2) has two
boundary equilibria Ei(i = 0, 2), where E0(0, 0) is a saddle (see Section 3.5).

(4.1) Above the green curve (i.e., d
β > u∗2), model (2) has no positive equilibrium; E2

is globally asymptotically stable; that is, the predator will be extinct while the
prey is permanent.

(4.2) Below the blue curve (i.e., 0 < d
β < u∗2), the interior equilibrium Ein exists and

is globally asymptotically stable. So, in this case, two species can coexist.

4. The Influence of Delay

In this section, we consider the delayed model (3) and study the Hopf bifurcations
caused by the delay.

4.1. Stability and Hopf Bifurcation Induced by Delay

The linear system of (3) with respect to any of its equilibria (u∗, v∗) can be expressed
as Ẏ(t) = X1Y(t) + X2Y(t− τ), where Y = (U, V)T ,

X1 =

(
r(1− u∗

K )− αv∗ − a
(1+mu∗)2 −αu∗

βv∗ βu∗ − d

)
=

(
b1(u∗)− αv∗ −αu∗

βv∗ βu∗ − d

)
and

X2 =

(
− ru∗

K 0
0 0

)
=

(
−b2(u∗) 0

0 0

)
.

The characteristic equation is given by |λI − X1 − X2e−λτ | = 0, i.e.,

(λ− (b1(u∗)− αv∗))(λ− (βu∗ − d)) + αβu∗v∗ + b2(u∗)(λ− (βu∗ − d))e−λτ = 0. (17)

At E0(0, 0), (17) becomes (λ− b1(0))(λ + d) = 0, where b1(0) = r− a. Thus, for all
τ > 0, E0(0, 0) is locally asymptotically stable if a

r > 1, and unstable if 0 < a
r < 1.

At the semi-trivial boundary equilibrium Ei(u∗i , 0), i = 1, 2, u∗i is given by (8), (17)
becomes

(λ− (βu∗i − d))(λ− b1(u∗i ) + b2(u∗i )e
−λτ) = 0, (18)
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which gives an eigenvalue λ1 = βu∗i − d. Thus, λ1 < 0 if and only if u∗i < d
β . The other

eigenvalues are determined by

λ = b1(u∗i )− b2(u∗i )e
−λτ . (19)

At E1(u∗1 , 0), since b1(u∗1)− b2(u∗1) = u∗1 H′(u∗1) > 0 by Lemma 1, we know that (19)
has roots with positive real parts for each τ > 0 by Theorem 4.7 from Smith [33], which
implies that E1(u∗1 , 0) is always unstable for all τ > 0.

At E2(u∗2 , 0), b1(u∗2)− b2(u∗2) = u∗1 H′(u∗1) < 0 by Lemma 1, then by Theorem 4.7 from
Smith [33] there exists a τ∗ > 0, which is given by

τ∗ =
1√

[b2(u∗2)]
2 − [b1(u∗2)]

2
arccos

b1(u∗2)
b2(u∗2)

. (20)

such that the real parts of all roots of (19) are negative for τ ∈ (0, τ∗), and (19) has roots
with positive real parts for each τ > τ∗. Therefore, we can conclude that when u∗2 < d

β ,
E2(u∗2 , 0) is locally asymptotically stable for τ ∈ (0, τ∗), and unstable for τ ∈ (τ∗,+∞);
when u∗2 > d

β , E2(u∗2 , 0) is unstable for all τ > 0.

Let u∗2 < d
β . Now we show that when τ = τ∗, model (3) undergoes the Hopf bifur-

cation at E2(u∗2 , 0). As τ varies, if the stability of E2(u∗2 , 0) switches at τ = τ∗, then the
characteristic Equation (18), i.e., the Equation (19), must have a pair of pure conjugate
imaginary roots when τ = τ∗ (see [33,34]). Let λ = iw (w > 0) be a root of (18) (i.e., (19)),
then we have sin(wτ) = w

b2
and cos(wτ) = b1

b2
. Thus, one can get the unique critical delay

τ = τ∗ and the value w =
√
[b2(u∗2)]

2 − [b1(u∗2)]
2. By differentiating (18) with respect to τ,

we have

(λ− b1(u∗2) + b2(u∗2)e
−λτ)

dλ

dτ
+ (λ− (βu∗2 − d))

(
(1− τb2(u∗2)e

−λτ)
dλ

dτ
− b2(u∗2)λe−λτ

)
= 0.

At λ = iw and τ = τ∗, λ − b1(u∗2) + b2(u∗2)e
−λτ = 0 and λ − (βu∗2 − d) 6= 0; thus,

we get

dλ

dτ

∣∣∣
λ=iw

=
ib2(u∗2)w

e−iwτ − b2(u∗2)τ
.

It follows

Sign
(

d(<λ)

dτ

∣∣∣
λ=iw

)
= Sign

{(
d(<λ)

dτ

∣∣∣
λ=iw

)−1
}

= Sign
{

sin(wτ)

b2w

}
= Sign

{
1
b2

2

}
> 0.

This implies that, with increasing τ, all the roots of (19) (and hence (18)) that cross the
imaginary axis at iw cross from left to right whenever τ = τ∗; therefore, the stability of
boundary equilibrium E2(u∗2 , 0) undergoes a switch from stable to unstable, and the Hopf
bifurcation occurs at E2(u∗2 , 0).

Conclusively, we have the following result.

Theorem 9. The stability of the delayed model (3) at the boundary equilibria E0(0, 0), E1(u∗1 , 0)
and E2(u∗2 , 0) is stated as follows.

1. For all τ > 0, E0(0, 0) is locally asymptotically stable if a
r > 1, and unstable if 0 < a

r < 1.
2. If E1(u∗1 , 0) exists, it is unstable for all τ > 0.
3. If E2(u∗2 , 0) exists, then (i) when u∗2 < d

β , there exists a τ∗ > 0 such that E2(u∗2 , 0) is
locally asymptotically stable for τ ∈ (0, τ∗), unstable for τ ∈ (τ∗,+∞), and undergoes Hopf
bifurcation at τ = τ∗; (ii) when u∗2 > d

β , E2(u∗2 , 0) is unstable for all τ > 0.
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At the positive equilibrium Ein(u∗, v∗), where u∗ = d
β , v∗ = 1

α H(u∗), (17) becomes

F(λ, τ) = λ2 − (b1(u∗)− H(u∗))λ + αdv∗ + b2(u∗)λe−λτ = 0. (21)

Denote b̃1(u∗) = b1(u∗)− H(u∗). It is clear that b̃1(u∗) = amu∗
(1+mu∗)2 > 0. For conve-

nience, in what follows we write b̃1(u∗) and b2(u∗) as b̃1 and b2, respectively.
Let λ = iw (w > 0) be a root of F(λ, τ) = 0; then, we have{

−w2 + αdv∗ + b2w sin(wτ) = 0,
−b̃1w + b2w cos(wτ) = 0,

(22)

which follows
w4 − (b2

2 − b̃2
1 + 2αdv∗)w2 + (αdv∗)2 = 0. (23)

It is easy to see that (23) has positive roots if and only if b2
2 − b̃2

1 + 2αdv∗ > 0,

∆1 := (b2
2 − b̃2

1)(b
2
2 − b̃2

1 + 4αdv∗) = (b2 − b̃1)(b2 + b̃1)(b2
2 − b̃2

1 + 4αdv∗) > 0.

Notice that b̃1(u∗)− b2(u∗) = b1(u∗)− b2(u∗)− H(u∗) = u∗H′(u∗). Therefore,

• If b2 < b̃1, i.e., H′(u∗) > 0, (23) has no positive root; that is, F(λ, τ) = 0 has no purely
imaginary root, and hence Ein(u∗, v∗) is unstable for all τ ∈ [0, ∞) since Ein(u∗, v∗) is
unstable when τ = 0 by Lemma 2.

• If b2 > b̃1, i.e., H′(u∗) < 0, (23) has two different positive roots 0 < w− < w+, where

w2
± =

1
2
((b2

2 − b̃2
1 + 2αdv∗)±

√
∆1). (24)

Let b2(u∗) > b̃1(u∗), i.e., H′(u∗) < 0. Substituting w2
± into (22), we get

tan(w±τ) =
w2
± − αdv∗

b̃1w±
.

Let θ± = arctan
(

w2
±−αdv∗

b̃1w±

)
. Since

w2
± − αdv∗ =

1
2
(b2

2 − b̃2
1 ±

√
∆1),

√
∆1 =

√
(b2

2 − b̃2
1)(b

2
2 − b̃2

1 + 4αdv∗) > b2
2 − b̃2

1,

we get w2
−−αdv∗

b̃1w−
< 0 <

w2
+−αdv∗

b̃1w+
; that is, −π

2 < θ− < 0 < θ+ < π
2 . Thus, we obtain the

following two sets of values of τ for which (21) has imaginary roots:

τ+
k =

θ+ + 2kπ

w+
, τ−k =

θ− + 2(k + 1)π
w−

, k = 0, 1, 2, · · · . (25)

We need to determine the sign of the derivative of <λ(τ) at the points where λ(τ) is
purely imaginary. From (21), we have

dλ

dτ
=

b2λ2e−λτ

2λ− b̃1 + b2e−λτ − b2λτe−λτ
.

Then we have

dλ

dτ

∣∣∣
λ=iw

=
−b̃1w2 + iw(w2 − αdv∗)

−τ(w2 − αdv∗) + i(w + αdv∗
w − b̃1wτ)

.
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Thus,

d(<λ)

dτ

∣∣∣
λ=iw

=
(w2 − αdv∗)(w2 + αdv∗)

τ2(w2 − αdv∗)2 + (w + αdv∗
w − b̃1wτ)2

.

Since w2
+ − αdv∗ > 0, w2

− − αdv∗ < 0, we get

d(<λ)

dτ

∣∣∣
τ=τ+k

> 0,
d(<λ)

dτ

∣∣∣
τ=τ−k

< 0, k = 0, 1, 2, · · · .

This implies that, with increasing τ, all the roots of (21) that cross the imaginary axis
at iw+ cross from left to right whenever τ = τ+

k , and cross at iw− from right to left for
τ = τ−k .

By Lemma 2, as τ = 0, Ein(u∗, v∗) is locally asymptotically stable when H′(u∗) < 0
(i.e., b2(u∗) > b̃1(u∗)). Then it must follow that τ+

0 < τ−0 . Observe that

τ+
k+1 − τ+

k =
2π

w+
<

2π

w−
= τ−k+1 − τ−k .

Then there exists a positive integer p such that

0 < τ+
0 < τ−0 < τ+

1 < τ−1 < · · · < τ+
p−1 < τ−p−1 < τ+

p < τ+
p+1 < τ−p < · · · .

It follows that model (3) is locally asymptotically stable at Ein(u∗, v∗) for τ ∈ (0, τ+
0 )∪

(τ−0 , τ+
1 ) ∪ · · · ∪ (τ−p−1, τ+

p ), unstable for τ ∈ (τ+
0 , τ−0 ) ∪ (τ+

1 , τ−1 ) ∪ · · · ∪ (τ+
p−1, τ−p−1) ∪

(τ+
p ,+∞), and undergoes Hopf-bifurcation at τ = τ±k (k = 0, 1, · · · , p− 1) and τ = τ+

p .
From the above analysis, we have the following result.

Theorem 10. Assume that Ein(u∗, v∗) exists.

1. If H′(u∗) > 0, system (3) is unstable at Ein(u∗, v∗) for all τ ≥ 0.
2. If H′(u∗) < 0, and there exists a positive integer p such that 0 < τ+

0 < τ−0 < τ+
1 <

τ−1 < · · · < τ+
p−1 < τ−p−1 < τ+

p < τ+
p+1 < τ−p < · · · , then system (3) is locally asymp-

totically stable at Ein(u∗, v∗) for τ ∈ [0, τ+
0 ) ∪ (τ−0 , τ+

1 ) ∪ · · · ∪ (τ−p−1, τ+
p ), unstable for

τ ∈ (τ+
0 , τ−0 )∪ (τ+

1 , τ−1 )∪ · · · ∪ (τ+
p−1, τ−p−1)∪ (τ+

p ,+∞), and undergoes Hopf bifurcation
at τ = τ±k (k = 0, 1, · · · , p− 1) and τ = τ+

p .

4.2. Direction and the Stability of Hopf-Bifurcating Periodic Solutions

In this subsection, we use the normal form method and the center manifold theory
introduced by Hassard et al. [36] to analyze the properties of Hopf bifurcation around Ein
and E2(u∗2 , 0), respectively, including the direction of Hopf bifurcation, and the stability
and period of the Hopf-bifurcating periodic solutions. These properties are determined by
the following three quantities:

µ2 = − <{C(0)}<{λ′(τ̄)} , β2 = 2<{C(0)}, T = −={C(0)}+ µ2={λ′(τ̄)}
w0τ̄

, (26)

where τ̄ is the critical time delay such that the characteristic equation has the pure conjugate
imaginary roots, and

C(0) =
i

2w0τ̄

(
g11g20 − 2|g11|2 −

|g02|2

3

)
+

g21

2
. (27)

In the three quantities of (26), µ2 determines the direction of Hopf bifurcation, β2
determines the stability of Hopf-bifurcating periodic solutions, and T determines the
period of Hopf-bifurcating periodic solutions. More precisely (see [35]),
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(1) If µ2 > 0 (resp. µ2 < 0), then the Hopf bifurcation is supercritical (resp. subcritical).
(2) If β2 < 0 (resp. β2 > 0), then the periodic solution is orbitally asymptotically stable

(resp. unstable).
(3) If T > 0 (resp. T < 0), then the period of bifurcating periodic solutions increases

(resp. decreases) as the bifurcation parameter (delay time τ) keeps away from the
critical value.

In order to get the three important quantities of Hopf bifurcation, it is key to compute
the coefficients g11, g02, g20 and g21. In what follows, we present the computation of these
coefficients at the equilibria Ein and E2(u∗2 , 0), respectively. The calculation process is
similar to that in many references (see, e.g., [41–45]).

4.2.1. At the Positive Equilibrium Ein

From Theorem 10, at the positive equilibrium Ein(u∗, v∗), when τ = τ±0 , τ±1 , · · · , τ±p−1, τ+
p ,

the characteristic Equation (21) has a pair of conjugate pure imaginary roots ±iw± given
by (24), and model (3) undergoes the Hopf bifurcation. Let τ̃ be a critical delay value in the
set {τ±0 , τ±1 , · · · , τ±p−1, τ+

p } and ±iw0 be the corresponding conjugate pure imaginary roots
of (21). In what follows, we determine the three quantities given in (26) at Ein.

Let z1(t) = u(τ̃t) − u∗, z2(t) = v(τ̃t) − v∗, τ = τ̃ + µ, µ ∈ R. Denote C =
C([−1, 0],R2

+). Define Lµ : C → R2
+, f : R× C → R2

+ as follows

Lµ(φ) = (τ̃ + µ)B1φ(0) + (τ̃ + µ)B2φ(−1), f (µ, φ) = (τ̃ + µ)M, φ = (φ1, φ2)
T ∈ C,

where

B1 =

(
amu∗

(1+mu∗)2 −αu∗

βv∗ 0

)
, B2 =

(
− ru∗

K 0
0 0

)
,

M =

(
− r

K φ1(0)φ1(−1)− αφ1(0)φ2(0) + 2am
(1+mu∗)3 φ2

1(0)
βφ1(0)φ2(0)

)
.

Then model (3) can be written as the following functional differential equation

ż(t) = Lµ(zt) + f (µ, zt), z(t) = (z1(t), z2(t))T ∈ R2
+. (28)

By the Riesz representation theorem, there is a matrix function η(θ, µ) of bounded
variation for θ ∈ [−1, 0], such that Lµ(φ) =

∫ 0
−1 dη(θ, µ)φ(θ). We choose η(θ, µ) = (τ̃ +

µ)B1δ(θ)− (τ̃ + µ)B2δ(θ + 1), where

δ(θ) =

{
1, θ = 0,

0, θ 6= 0.

For φ ∈ C1([−1, 0],R2
+), define the operators

A(µ)φ(θ) =


dφ(θ)

dθ
, θ ∈ [−1, 0),∫ 0

−1
dη(ξ, µ)φ(ξ), θ = 0,

(29)

and

R(µ)φ(θ) =

{
0, θ ∈ [−1, 0),

f (µ, φ), θ = 0.

Then (28) is equivalent to

żt = A(µ)zt + R(µ)zt, (30)
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where zt(θ) = z(t + θ) for θ ∈ [−1, 0].
For ψ ∈ C1([0, 1], (R2

+)
∗), define the operator

A∗ψ(s) =


−dψ(s)

ds
, s ∈ (0, 1],∫ 0

−1
ψ(−ξ)dηT(ξ, 0), s = 0,

and a bilinear inner product

〈ψ(s), φ(θ)〉 = ψ̄(0)φ(0)−
∫ 0

θ=−1

∫ θ

ξ=0
ψ̄(ξ − θ)dη(θ)φ(ξ)dξ, (31)

where η(θ) = η(θ, 0). Then A(0) and A∗ are adjoint operators. According to the previ-
ous calculation, we know that ±iw0τ̃ are the eigenvalues of A(0), so ±iw0τ̃ are also the
eigenvalues of A∗.

Suppose that q(θ) = (1, p)Teiw0τ̃θ and q∗(s) = k(1, p∗)eiw0τ̃s are the eigenvectors of
A(0) and A∗ corresponding to iw0τ̃ and −iw0τ̃, respectively. Then A(0)q(θ) = iw0τ̃q(θ)
and A∗q∗(s) = −iw0τ̃q∗(s). With the definition (29) of A(0), we get

τ̃

(
− amu∗

(1+mu∗)2 +
ru∗
K e−iw0τ̃ + iw0 αu∗

−βv∗ iw0

)
q(0) =

(
0
0

)
,

and then we have q(0) = (1, βv∗
iw0

)T , i.e., q(θ) = (1, βv∗
iw0

)Teiw0τ̃θ .

Similarly, we can get q∗(s) = k(1,− βv∗
iw0

)eiw0τ̃s. Next, we need to select k so that
〈q∗(s), q(θ)〉 = 1, 〈q∗(s), q̄(θ)〉 = 0. From (31), we have

〈q∗(s), q(θ)〉 = k̄(1, p̄∗)(1, p)T −
∫ 0

θ=−1

∫ θ

ξ=0
k̄(1, p̄∗)e−iw0τ̃(ξ−θ)dη(θ)(1, p)Teiw0τ̃ξdξ

= k̄
[

1 + p̄∗p−
∫ 0

−1
(1, p̄∗)θeiw0τ̃θdη(θ)(1, p)T

]
= k̄

[
1 +

(βv∗)2

w2
0
− ru∗τ̃

K
e−iw0τ̃

]
.

Thus, k =

(
1 + (βv∗)2

w2
0
− ru∗ τ̃

K eiw0τ̃

)−1
.

Now, by the ideas in Hassard et al. [36], we calculate the coordinates to describe the
center manifold C0 at µ = 0. For this purpose, let zt be the solution of Equation (28) when
µ = 0, and define

Z(t) = 〈q∗, zt〉, W(t, θ) = zt(θ)− 2<{Z(t)q(θ)}, (32)

on the center manifold C0, we have

W(t, θ) = W(Z(t), Z̄(t), θ),

where W(Z, Z̄, θ) = W20(θ)
Z2

2 + W11(θ)ZZ̄ + W02(θ)
Z̄2

2 + · · · , Z and Z̄ are the local coor-
dinates of C0 in the direction of q∗ and q̄∗.

Note that W is real if and only if zt is real. Here we only consider real solutions. For
the solution zt ∈ C0 of Equation (28), when µ = 0, we have
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Ż(t) = iw0τ̃Z + 〈q̄∗(θ), f (0, W(Z, Z̄, θ) + 2<{Zq(θ)})〉
= iw0τ̃Z + q̄∗(0) f (0, W(Z, Z̄, 0) + 2<{Zq(0)})
= iw0τ̃Z + q̄∗(0) f0(Z, Z̄)

= iw0τ̃Z + g(Z, Z̄),

where g(Z, Z̄) = q̄∗(0) f0(Z, Z̄) = g20
Z2

2 + g11ZZ̄ + g02
Z̄2

2 + g21
Z2Z̄

2 + · · · .
From (32), we have zt(θ) = (z1t(θ), z2t(θ))

T = W(t, θ) + Zq(θ) + Z̄q̄(θ). Combined
with the definitions of W and q(θ), the following expressions can be obtained

z1t(0) = Z + Z̄ + W(1)
20 (0)

Z2

2
+ W(1)

11 (0)ZZ̄ + W(1)
02 (0)

Z̄2

2
+ O(|(Z, Z̄)|3),

z2t(0) = Zp + Z̄ p̄ + W(2)
20 (0)

Z2

2
+ W(2)

11 (0)ZZ̄ + W(2)
02 (0)

Z̄2

2
+ O(|(Z, Z̄)|3),

z1t(−1) = Ze−iw0τ̃ + Z̄eiw0τ̃ + W(1)
20 (−1)

Z2

2
+ W(1)

11 (−1)ZZ̄ + W(1)
02 (−1)

Z̄2

2
+ O(|(Z, Z̄)|3),

z2t(−1) = Zpe−iw0τ̃ + Z̄ p̄eiw0τ̃ + W(2)
20 (−1)

Z2

2
+ W(2)

11 (−1)ZZ̄ + W(2)
02 (−1)

Z̄2

2
+ O(|(Z, Z̄)|3).

By the definitions of q∗ and f0(Z, Z̄), g(Z, Z̄) can be rewritten as

g(Z, Z̄) =q̄∗(0) f0(Z, Z̄)

=k̄τ̃(1, p∗)

(
− r

K z1t(0)z1t(−1)− αz1t(0)z2t(0) + 2am
(1+mu∗)3 z2

1t(0)
βz1t(0)z2t(0)

)

=k̄τ̃{Z2[− r
K

e−iw0τ̃ + p(βp∗ − α) +
2am

(1 + mu∗)3 ]

+ Z̄2[− r
K

eiw0τ̃ + p̄(βp∗ − α) +
2am

(1 + mu∗)3 ]

+ ZZ̄[− r
K
(eiw0τ̃ + e−iw0τ̃) +

4am
(1 + mu∗)3 ]

+ Z2Z̄[− r
K
(W(1)

11 (−1) +
W(1)

20 (−1)
2

+
W(1)

20 (0)
2

eiw0τ̃ + W(1)
11 (0)e−iw0τ̃)

+ (βp∗ − α)(W(2)
11 (0) +

W(2)
20 (0)

2
+

W(1)
20 (0)

2
p̄ + W(1)

11 (0)p)

+
2am

(1 + mu∗)3 (2W(1)
11 (0) + W(1)

20 (0))] + · · · }.

So, we get the following coefficients:

g20 =2k̄τ̃[− r
K

e−iw0τ̃ + p(βp∗ − α) +
2am

(1 + mu∗)3 ],

g11 =k̄τ̃[− r
K
(eiw0τ̃ + e−iw0τ̃) +

4am
(1 + mu∗)3 ],

g02 =2k̄τ̃[− r
K

eiw0τ̃ + p̄(βp∗ − α) +
2am

(1 + mu∗)3 ],

g21 =2k̄τ̃[− r
K
(W(1)

11 (−1) +
W(1)

20 (−1)
2

+
W(1)

20 (0)
2

eiw0τ̃ + W(1)
11 (0)e−iw0τ̃)

+ (βp∗ − α)(W(2)
11 (0) +

W(2)
20 (0)

2
+

W(1)
20 (0)

2
p̄ + W(1)

11 (0)p)

+
2am

(1 + mu∗)3 (2W(1)
11 (0) + W(1)

20 (0))].

(33)
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In order to get g21, we still need to compute W11(θ) and W20(θ). From (30) and (32),
we have

Ẇ = żt − Żq− ˙̄Zq̄

=

{
AW − 2<{q̄∗(0) f0q(θ)}, θ ∈ [−1, 0),

AW − 2<{q̄∗(0) f0q(θ)}+ f0, θ = 0,

= AW + G(Z, Z̄, θ),

(34)

where G(Z, Z̄, θ) = G20(θ)
Z2

2 + G11(θ)ZZ̄ + G02(θ)
Z̄2

2 + · · · . Hence, we have

(A− 2iw0τ̃ I)W20(θ) = −G20(θ), AW11(θ) = −G11(θ), · · · . (35)

From (34), we know that for θ ∈ [−1, 0),

G(Z, Z̄, θ) = −q̄∗(0) f0q(θ)− q∗(0) f̄0q̄(θ) = −gq(θ)− ḡq̄(θ).

By comparing the coefficients, we get

G20(θ) = −g20q(θ)− ḡ02q̄(θ), G11(θ) = −g11q(θ)− ḡ11q̄(θ).

Combining the definition of A, we obtain

Ẇ20(θ) = 2iw0τ̃W20(θ) + g20q(θ) + ḡ02q̄(θ), Ẇ11(θ) = g11q(θ) + ḡ11q̄(θ).

Since q(θ) = (1, p)Teiw0τ̃θ , we have

W20(θ) =
ig20

w0τ̃
q(0)eiw0τ̃θ +

iḡ02

3w0τ̃
q̄(0)e−iw0τ̃θ + e1e2iw0τ̃θ ,

W11(θ) = −
ig11

w0τ̃
q(0)eiw0τ̃θ +

iḡ11

w0τ̃
q̄(0)e−iw0τ̃θ + e2,

(36)

where e1 = (e(1)1 , e(2)1 )T , e2 = (e(1)2 , e(2)2 )T ∈ R2
+ are constant vectors to be determined.

From (29) and (35), we have

A(0)W20(0) =
∫ 0

−1
dη(ξ, 0)W20(ξ) = 2iw0τ̃W20(0)− G20(0),

A(0)W11(0) =
∫ 0

−1
dη(ξ, 0)W11(ξ) = −G11(0).

(37)

From (35), we get

G20(0) = −g20q(0)− ḡ02q̄(0) + 2τ̃

(
− r

K e−iw0τ̃ − αp + 2am
(1+mu∗)3

βp

)
,

G11(0) = −g11q(0)− ḡ11q̄(0) + τ̃

(
− r

K (e
−iw0τ̃ + eiw0τ̃) + 4am

(1+mu∗)3

0

)
.

(38)

Since A(0)q(0) =
∫ 0
−1 eiw0τ̃ξdη(ξ, 0)q(0), we have[

iw0τ̃ I −
∫ 0

−1
eiw0τ̃ξdη(ξ, 0)

]
q(0) = 0,

[
−iw0τ̃ I −

∫ 0

−1
e−iw0τ̃ξdη(ξ, 0)

]
q̄(0) = 0.
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Substituting (36) and (38) into (37), we get(
2iw0 − amu∗

(1+mu∗)2 +
ru∗
K e−2iw0τ̃ αu∗

−βv∗ 2iw0

)(
e(1)1

e(2)1

)
= 2

(
− r

K e−iw0τ̃ − αp + 2am
(1+mu∗)3

βp

)
,(

amu∗
(1+mu∗)2 − ru∗

K −αu∗

βv∗ 0

)(
e(1)2

e(2)2

)
=

(
r
K (e

iw0τ̃ + e−iw0τ̃)− 4am
(1+mu∗)3

0

)
.

By these two equations, we get

e(1)1 =
2
|D1|

∣∣∣∣∣− r
K e−iw0τ̃ − αp + 2am

(1+mu∗)3 αu∗

βp 2iw0

∣∣∣∣∣,
e(2)1 =

2
|D1|

∣∣∣∣∣2iw0 − amu∗
(1+mu∗)2 +

ru∗
K e−2iw0τ̃ − r

K e−iw0τ̃ − αp + 2am
(1+mu∗)3

−βv∗ βp

∣∣∣∣∣,
e(1)2 =

1
|D2|

∣∣∣∣∣ r
K (e

iw0τ̃ + e−iw0τ̃)− 4am
(1+mu∗)3 −αu∗

0 0

∣∣∣∣∣ = 0,

e(2)2 =
1
|D2|

∣∣∣∣∣ amu∗
(1+mu∗)2 − ru∗

K
r
K (e

iw0τ̃ + e−iw0τ̃)− 4am
(1+mu∗)3

βv∗ 0

∣∣∣∣∣,

(39)

where

D1 =

(
2iw0 − amu∗

(1+mu∗)2 +
ru∗
K e−2iw0τ̃ αu∗

−βv∗ 2iw0

)
, D2 =

(
amu∗

(1+mu∗)2 − ru∗
K −αu∗

βv∗ 0

)
.

Thus, by (33), (36) and (39), the coefficients g11, g02, g20 and g21 can be computed and
hence the three quantities (26) of Hopf bifurcation at Ein can be determined.

For example, we take the following parameters:

r = 1.2, K = 45, a = 1.25, m = 1.5, α = 0.2, β = 0.04, d = 0.2.

This set of parameters implies that model (3) has a strong Allee effect since

1 < a
r < (mK+1)2

4mK . One can get the positive equilibrium Ein(u∗, v∗) = (5, 4.598), which is
locally asymptotically stable for model (2) without delay since H′(u∗) ≈ −0.00062 < 0
by Lemma 2. For the delayed model (3), by (25), the critical delay values are computed
as follows:

τ+
0 = 0.5222, τ−0 = 14.6232, τ+

1 = 14.6586, τ−1 = 29.8073, τ+
2 = 28.7949, τ−2 = 44.9915, · · · .

So, we have
0 < τ+

0 < τ−0 < τ+
1 < τ+

2 < τ−1 < · · · .

From Theorem 10, we know that as τ is increasing, the stability of Ein(u∗, v∗) =
(5, 4.598) switches twice and Ein is locally asymptotically stable for τ ∈ [0, τ+

0 ) ∪ (τ−0 , τ+
1 )

and unstable for τ ∈ (τ+
0 , τ−0 ) ∪ (τ+

1 , ∞), while model (3) undergoes the Hopf bifurcation
at Ein when τ takes τ+

0 = 0.5222, τ−0 = 14.6232 and τ+
1 = 14.6586, respectively; see

Figures 6–12, in which the dynamics of (3) are presented as τ is increasing.
1. Taking τ = 0.3 ∈ [0, τ+

0 ) = [0, 0.5222), then Ein is locally asymptotically stable (see
Figure 6), which implies that both the predator and prey can coexist.
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Figure 6. τ = 0.3 ∈ [0, τ+
0 ) = [0, 0.5222), Ein is locally asymptotically stable. The initial value:

(φ1, φ2) = (5, 4.2).

2. Taking τ as the Hopf bifurcation value τ = τ+
0 = 0.5222, we have the three

quantities (26) of Hopf bifurcation: µ2 = −0.3558, β2 = 0.0054, T = 0.0598. Thus, the
Hopf bifurcation is subcritical since µ2 < 0 and the periodic Hopf orbit is unstable since
β2 > 0 (see Figure 7).
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Figure 7. τ = τ+
0 = 0.5222, the subcritical Hopf bifurcation occurs at Ein. The initial value:

(φ1, φ2) = (5, 4.2).

3. Taking τ = 2.7 ∈ (τ+
0 , τ−0 ) = (0.5222, 14.6232), Ein is unstable (see Figure 8).
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Figure 8. τ = 2.7 ∈ (τ+
0 , τ−0 ) = (0.5222, 14.6232), Ein is unstable. The initial value is

(φ1, φ2) = (5, 4.59).
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4. Choosing τ as the Hopf bifurcation value τ = τ−0 = 14.6232, we have µ2 = −0.2958,
β2 = −0.067, T = −0.0274, which implies that the Hopf bifurcation is subcritical and the
periodic Hopf orbit is asymptotically stable (see Figure 9).
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Figure 9. τ = τ−0 = 14.6232, the subcritical Hopf bifurcation occurs at Ein. Initial value: (φ1, φ2) = (5, 4.586).

5. Taking τ = 14.63 ∈ (τ−0 , τ+
1 ) = (14.6232, 14.6586), Ein is locally asymptotically

stable (see Figure 10).
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Figure 10. τ = 14.63 ∈ (τ−0 , τ+
1 ) = (14.6232, 14.6586), Ein is locally asymptotically stable. Initial value:

(φ1, φ2) = (5, 4.627).

6. Choosing τ = τ+
0 = 14.6586, we have µ2 = 1.0655, β2 = −0.2764, T = −0.0019;

then the Hopf bifurcation is supercritical since µ2 > 0 and the bifurcating periodic solution
is orbitally asymptotically stable since β2 < 0 (see Figure 11).
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Figure 11. τ = τ+
1 = 14.6586, the supercritical Hopf bifurcation occurs at Ein. Initial value: (φ1, φ2) = (5, 4.586).
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7. Taking τ = 16 > τ+
1 = 14.6586, Ein is unstable (see Figure 12).
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Figure 12. τ = 16 ∈ (τ+
1 , ∞) = (14.6586, ∞), Ein is unstable. Initial value: (φ1, φ2) = (5, 4.598).

It can be observed from Figures 6–12 that the delay has a large influence on the
long-term community stability, showing the stability changes for small values of τ, which
represents the density dependent feedback time introduced in the logistic growth. The
occurrence of Hopf bifurcation at Ein(u∗, v∗) implies the emergence of periodic solutions.
From the biological viewpoint, if the periodic solution bifurcating from Ein is stable, then
the predator and prey species may coexist in an oscillatory mode.

4.2.2. At the Semi-Trivial Equilibrium E2

From Theorem 9, when u∗2 < d
β , model (3) undergoes the Hopf bifurcation at the

semi-trivial equilibrium E2(u∗2 , 0) for τ = τ∗, and ±iw = ±i
√
[b2(u∗2)]

2 − [b1(u∗2)]
2 are the

corresponding conjugate pure imaginary roots of the characteristic Equation (18). Similar to
the discussion on Ein, the computation of coefficients g11, g02, g20 and g21 at E2 are presented
as follows.

g20 =2k̄τ∗[− r
K

e−iwτ∗ +
2am

(1 + mu∗2)
3 ],

g11 =k̄τ∗[− r
K
(eiwτ∗ + e−iwτ∗) +

4am
(1 + mu∗2)

3 ],

g02 =2k̄τ∗[− r
K

eiwτ∗ +
2am

(1 + mu∗2)
3 ],

g21 =2k̄τ∗[− r
K
(W(1)

11 (−1) +
W(1)

20 (−1)
2

+
W(1)

20 (0)
2

eiwτ∗ + W(1)
11 (0)e−iwτ∗)

− α(W(2)
11 (0) +

W(2)
20 (0)

2
) +

2am
(1 + mu∗2)

3 (2W(1)
11 (0) + W(1)

20 (0))],

where

q(θ) = (1, 0)Teiwτ∗θ , k = (1− b2(u∗2)τ
∗e−iwτ∗)−1,

W20(θ) =
ig20

wτ∗
q(0)eiwτ∗θ +

iḡ02

3wτ∗
q̄(0)e−iwτ∗θ + e1e2iwτ∗θ ,

W11(θ) = −
ig11

wτ∗
q(0)eiwτ∗θ +

iḡ11

wτ∗
q̄(0)e−iwτ∗θ + e2,
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e1 =

 4iw
[
− r

K e−iwτ∗ + 2am
(1+mu∗2)

3

]
−4w2 + 2iw[−b1(u∗2) + b2(u∗2)e

−2iwτ∗ ]
, 0


T

,

e2 =

 r
K (e

iwτ∗ + e−iwτ∗)− 4am
(1+mu∗2)

3

b1(u∗2)− b2(u∗2)
, 0

T

.

Thus, the three quantities (26) of Hopf bifurcation at E2(u∗2 , 0) also can be determined.
For example, we take

r = 0.3, K = 20, a = 1.25, m = 1.5, α = 0.2, β = 0.04, d = 1.

Then, E2(u∗2 , 0) = (16.8236, 0), d
β = 25 > u∗2 , τ∗ = 5.5939. From Theorem 9, we know

that E2 is locally asymptotically stable when τ ∈ [0, τ∗) and unstable when τ > τ∗, and the
Hopf bifurcation occurs at τ = τ∗, which also can be seen from Figures 13–15.

1. Taking τ = 5 ∈ [0, τ∗) = [0, 5.5939), then E2 is locally asymptotically stable (see
Figure 13), which implies that the prey can survive and the predator will be extinct.
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Figure 13. τ = 5 ∈ [0, τ∗) = [0, 5.5939), E2 is locally asymptotically stable. The initial value:
(φ1, φ2) = (16.9, 0.1).

2. Taking τ as the Hopf bifurcation value τ = τ∗ = 5.5939, we have the values defined
by (26): µ2 = 0.0547, β2 = −0.0027. Then the Hopf bifurcation is supercritical since µ2 > 0
and the periodic solution bifurcating from E2 is orbitally asymptotically stable since β2 < 0
(see Figure 14).
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Figure 14. τ = τ∗ = 5.5939, the supercritical Hopf bifurcation occurs at E2. The initial value:
(φ1, φ2) = (16.9, 0.1).
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3. Taking τ = 6 > τ∗ = 5.5939, E2 is unstable (see Figure 15), and model (3) has a
periodic boundary solution (u(t), 0) bifurcating from the Hopf bifurcation.

0 500 1000 1500

time t

5

10

15

20

25

30

pr
ey

0 50 100 150 200 250 300 350 400 450 500

time t

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

pr
ed

at
or

Figure 15. τ = 6 ∈ (τ∗, ∞) = (5.5939, ∞), E2 is unstable, a periodic boundary solution (u(t), 0) is bifurcated
from E2. Initial value: (φ1, φ2) = (16.9, 0.1).

From Figures 13–15, it was observed that the delay also has a large influence on the
stability of boundary equilibrium (u∗2 , 0). As the delay increases, (u∗2 , 0) goes from stable to
unstable. The occurrence of Hopf bifurcation at (u∗2 , 0) implies the emergence of boundary
periodic solution (u(t), 0). If the boundary periodic solution bifurcating from the steady
state (u∗2 , 0) is stable, then the prey species may survive in an oscillatory mode while the
predator will be extinct.

5. Conclusions

In this paper, we proposed a predator–prey model (2), in which the prey’s growth is
affected by the additive predation of all potential predators. Due to the additive predation
term au(t)

1+mu(t) , model (2) may exhibit the cases of strong Allee effect, weak Allee effect
and no Allee effect (see Section 2 and Figure 2). In each case, the dynamics of (2) are
investigated. From our analysis, the ratio a

r of the attack rate a of other potential predators
to the intrinsic growth rate r of prey species u, and the ratio d

β of the death rate d to the
conversion rate β of predator species, play a key role in the dynamics of model (2). The
main dynamics of model (2) was described conclusively in a bifurcation diagram with
respect to ( a

r , d
β ) (see Figure 5), and the biological explanations of the obtained results were

presented (see Remarks 4–6 and Section 3.6). From Theorems 6 and 8, the coexistence of
predator and prey can be achieved by controlling the ratio a

r such that model (2) has weak
Allee effect or no Allee effect, and the ratio d

β such that it is below the largest size that the
prey u may eventually achieve.

When the additive predation au(t)
1+mu(t) is not involved in model (2), then (2) is the

well-known Lotka–Volterra type model

du(t)
dt

= ru(t)
(

1− u(t)
K

)
− αu(t)v(t),

dv(t)
dt

= βu(t)v(t)− dv(t),
(40)

which has been well studied (see, e.g., [37,38]). If the positive equilibrium of (40) exists,
then it must be globally asymptotically stable, which implies that both the species coexist.

Compared to (40), the proposed model (2) exhibits much richer and more complex
dynamic behaviors:

(i) Due to the additive predation term au(t)
1+mu(t) , model (2) may have the Allee effect;
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(ii) The dynamics of the Lotka–Volterra type model (40) only have the similar dynamic
structure of (2) in the case of no Allee effect (see Section 3.4), but have no dynamics of
the strong and weak Allee effect cases;

(iii) Model (2) may have oscillatory behavior;
(iv) The strong Allee effect increases the extinction risk of the prey and predator species.

The initial populations of the prey and predator play an important role in the persis-
tence of (2). Not only the low initial prey density, but also the high initial predator
density which causes the over-exploitation of the prey, will lead to the extinction of all
species. For a set of parameter values, both community extinction, coexistence, and
population oscillations may be the result of different initial conditions;

(v) Model (2) has more complex bifurcation phenomena than (40), such as the Hopf and
heteroclinic bifurcations.

In Section 4, the stability and Hopf bifurcation of model (3) with the density dependent
feedback time delay τ in prey were considered. By the normal form method and center
manifold theory, the explicit formulas are presented to determine the direction of Hopf
bifurcation and the stability and period of Hopf-bifurcating periodic solutions. In addition,
some numerical simulations are given to illustrate the theoretical results. Theoretical
analysis and numerical simulation indicate that the delay τ may destabilize model (3),
and cause the Hopf bifurcation not only at the interior equilibrium Ein but also at the
boundary equilibrium E2(u∗2 , 0) (see Theorems 9 and 10). Biologically, the occurrence of
Hopf bifurcation at Ein implies that both the predator and prey species may coexist in
a mode of periodic oscillation; at E2 it implies that the prey species may survive in an
oscillatory mode while the predator will be extinct.
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