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Abstract: This paper focuses on the distributed fusion estimation problem in which a signal transmit-
ted over wireless sensor networks is subject to deception attacks and random delays. We assume that
each sensor can suffer attacks that may corrupt and/or modify the output measurements. In addition,
communication failures between sensors and their local processors can delay the receipt of processed
measurements. The randomness of attacks and transmission delays is modelled by different Bernoulli
random variables with known probabilities of success. According to these characteristics of the
sensor networks and assuming that the measurement noises are cross-correlated at the same time
step between sensors and are also correlated with the signal at the same and subsequent time steps,
we derive a fusion estimation algorithm, including prediction and filtering, using the distributed
fusion method. First, for each sensor, the local least-squares linear prediction and filtering algorithm
are derived, using a covariance-based approach. Then, the distributed fusion predictor and the
corresponding filter are obtained as the matrix-weighted linear combination of corresponding local
estimators, checking that the mean squared error is minimised. A simulation example is then given
to illustrate the effectiveness of the proposed algorithms.

Keywords: distributed fusion estimation; sensor networks; deception attacks; random delays;
correlated noises

MSC: 60G35; 62M20; 93E10; 93E11

1. Introduction

Wireless sensor networks (WSNs) are a growing focus of research, with applications in
a wide variety of fields including industrial processes, signal processing, communications
and navigation systems. In general, each WSN is composed of a large number of sensors
that can be interconnected by wireless channels and also linked to the processing centre.
While they are widely used, the structure of WSNs makes them vulnerable to external
attacks and/or unreliability in data transmission. In this context, a topic that has attracted
considerable attention is that of signal fusion estimation. This problem can be addressed by
centralised or distributed fusion methods. Both are commonly used to tackle the question
of fusion estimation; however, the distributed method is usually more suitable, since
the structure of the sensors means that less online communication is required, because
each local estimator is obtained using only its corresponding local data, and therefore
manufacturing costs are reduced. Consequently, this method usually has stronger fault
tolerance and lower calculation burdens than the centralised approach. Accordingly, the
distributed fusion estimation problem has been of particular interest to researchers, and
a large number of distributed fusion estimation algorithms have been developed, using
different techniques, in the context of WSNs (see [1–7] and references therein).

As commented above, the characteristics of WSNs make them vulnerable to external
attacks and hence less reliable. In general, three kinds of attack have been considered
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(classified according to the attack mechanisms and mathematical models involved): Denial-
of-service (DoS) attacks, replay attacks and deception attacks. A DoS attack deteriorates
system performance by temporarily or indefinitely interrupting the service, preventing
information from reaching the destination. In a replay attack, the information is intercepted,
captured and forwarded elsewhere, thus altering the system’s behaviour. Deception at-
tacks tamper with the original signal measures by accessing the sensors and introducing
false information. A problem of significant interest in WSNs subject to cyber-attacks is
that of the distributed fusion estimation of the signal. This problem can be addressed
in various ways, depending on the type of attack considered. Chen et al. [8] designed a
distributed resilient filter for power systems exposed to DoS attacks and gain perturba-
tions. Similarly, the distributed robust fusion estimation problem for systems under DoS
attacks and uncertain covariances was studied by [9]. For replay attacks, [10] designed a
recursive distributed Kalman fusion estimator focused on the linear minimum variance,
for bandwidth-constrained cyber-physical systems. Finally, deception attacks are generally
considered the most dangerous and complex types of aggression; for this reason, the sci-
entific community is highly active in researching estimation problems for WSNs subject
to this kind of attack. For instance, [11] developed a novel filter for a class of discrete
time-delayed stochastic systems subject to the effects of both uniform quantisation and
deception attacks. In this field, too, [12] considered a class of time-varying systems subject
to multiplicative noises and deception attacks, with unknown but bounded disturbances,
and designed an appropriate variance-constrained distributed filter. [13] derived a dis-
tributed H∞-consensus filter for a class of discrete time-varying systems subject to both
multiplicative noises and deception attacks. In a related approach, assuming clustering
sensor networks subject to random deception attacks, [14] considered distributed fusion
filtering and fixed-point smoothing problems.

Another significant problem in WSNs is the limitation of network communication
bandwidth, which can produce network congestion and hence delay reception of the
measures at the processing centre, thus impairing the performance of the estimator. Accord-
ingly, new algorithms must be developed to take these effects into account in distributed
fusion estimation. In studies of one-step random delays modelled by Bernoulli random
variables, various types of distributed fusion estimation algorithms have been proposed,
assuming either that these variables are independent (see for example, [15–18]) or that they
are correlated at consecutive sampling times [19,20]. In addition, various distributed fusion
estimation algorithms describing random delays by Markov chains have been derived
(see, for example, [21–23]).

Many early studies of the estimation problem in multi-sensor systems assumed that
the system noises were white and uncorrelated. However, in practice, this assumption is
not always realistic; for example, when all sensors observe a common target within a noisy
environment, there may be cross-correlations between the different sensor noises. Cross-
correlation between process and measurement noises can also arise, for example, when in a
target tracking system both noises are dependent of the state of the system. In this respect,
Li et al. [24] showed that if a discrete-time linear system is obtained from the discretisation
of a continuous-time system, then the measurement noise is correlated with the system
noise of the previous time step. These common situations in multi-sensor systems have led
researchers to address the fusion estimation problem under the assumption of correlated
noises. Thus, assuming that the measurement noises from different sensors are both cross-
correlated and correlated with the system noise at the previous time step, Yan et al. [25]
derived the optimal state estimator, in a sequential form and by means of distributed
fusion. Similarly, ref. [26] developed globally optimal sequential and distributed fusion
estimation algorithms assuming linear minimum variance. The distributed estimation
problem has also been addressed when the noises between sensors are not correlated at
the same instant, but the process and measurement noises are two-step cross-correlated;
under this assumption, distributed filtering algorithms have been obtained assuming that
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the system is subject to stochastic uncertainties or multiplicative noises [27] and in systems
with random matrices over a sensor network with a given topology [28].

Motivated by the above analysis, our aim in this paper is to address the distributed
fusion estimation problem in WSNs subjected to the three situations described above, as
often encountered in real life: Deception attacks, one-step random transmission delays and
measurement noises cross-correlated between sensors and correlated with the signal. To
the best of our knowledge, this problem has not been considered previously, although some
papers have discussed deception attacks and delays or correlated noises. Specifically, for a
single sensor, the estimation problem is studied assuming deception attacks and random
communication delays in [29,30], and in a multi-sensor environment, ref. [31] investigated
the distributed filtering problem in WSNs receiving deception attacks and when sensor
additive noises are both cross-correlated and correlated with the process noise.

In this paper, we assume that each sensor of the WSN can suffer random attacks
that modify the output measurements. The randomness of these attacks is modelled by
independent random Bernoulli variables reflecting whether or not the attack succeeded
in modifying the measure. Furthermore, the measurement noises from different sensors
are cross-correlated at the same time step and are also correlated with the signal process
at the same and subsequent time steps. Due to possible imperfections in communication
channels, the processed measurements can be one-step delayed with different delay rates.
Transmission delays, which occur randomly, are described by different random Bernoulli
variables describing whether the processed measurements arrive on time, or are delayed by
one sampling time. In this context, assuming that no signal evolution equation is available,
a distributed fusion prediction and filtering algorithm is derived using the first and second-
order moments of the signal and the processes involved in the observations. The design
of the proposed distributed prediction and filtering estimators is structured in two stages.
In the first, an innovation approach is used to obtain the local least-squares (LS) linear
prediction and the filtering estimators. In the second stage, the information provided by
the local estimators is combined to derive the fusion estimators; specifically, the distributed
fusion predictor and filter are obtained as a matrix-weighted linear combination of the local
LS linear estimators, using the mean squared error as the optimality criterion.

The rest of this paper is organised as follows. In the next section, we describe the
model proposed and specify the assumptions under which the distributed fusion estima-
tion problem is addressed. The distributed fusion prediction and filtering algorithm and
the associated error covariance matrices, which provide a measure of the estimator perfor-
mance, are then derived in Section 3. In order to illustrate the feasibility of the proposed
distributed fusion estimators, a simulation example is given in Section 4. Finally, the main
conclusions drawn are summarised in Section 5.

Notation. The notations used in this paper are standard. Rn and Rn×m denote the n-
dimensional Euclidean space and the set of all n×m matrices, respectively. If the dimen-
sions of vectors or matrices are not explicitly stated, they are assumed to be compatible
with algebraic operations. The shorthand (A1| . . . |Am) stands for a matrix partitioned
into submatrices Ai, i = 1, . . . , m. The Kronecker delta function is denoted as δk,s. Finally,
L(i) = L(ii) is written for any function L(ij) depending on sensors i and j; similarly, for any
function Gk,s, depending on the time instants k and s, we simply write Gk when k = s.

2. Problem Formulation

This paper considers the linear estimation problem of a discrete-time signal over WSNs
subject to deception attacks, random delays and correlated noises. More specifically, the
problem is to estimate a signal from the sensor measurements z(i)k , i = 1, . . . , m, which are
described by Equation (1). We assume that deception attacks are launched by potential
adversaries, inserting false information that may perturb the real measurements. Assuming
that the attacks may randomly succeed or not, the sensor-measured outputs subject to these
attacks, z̆(i)k , are modeled by (2). It is also assumed that each sensor transmits its outputs to
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a local processor over a packet-erasure channel, where one-step random delays can occur
during transmission; the measures received by the local processors, y(i)k , are given by (5).
The linear estimation problem is addressed using the distributed fusion method, by which
each local processor produces LS linear predictors and filters, x̂(i)k/s, s = k− 1, k, of the signal,

xk, based on the measures received from the corresponding sensor, y(i)1 , . . . , y(i)s ; afterwards,
these estimators are transmitted, over perfect connections, to the fusion center, where new
prediction and filtering estimators, x̂k/s, s = k − 1, k, are obtained as matrix-weighted
linear combination of the local estimators using the mean squared error as the optimality
criterion (see Figure 1).

Figure 1. Distributed fusion estimation scheme in WNS with attacks and delays.

2.1. Multisensor Measurement

Consider a networked system consisting of m sensors which measure a nx-dimensional
discrete-time signal xk according the following model:

z(i)k = H(i)
k xk + v(i)k , k ≥ 1, i = 1, . . . m, (1)

where z(i)k ∈ Rnz , H(i)
k ∈ Rnz×nx are known matrices and v(i)k are the measurement noises.

The following assumptions on the measurement model (1) are required:

Assumption 1. The nx-dimensional signal {xk, k ≥ 1} is a second-order process with zero mean
and autocovariance function expressed in a separable form as follows:

E
[

xkxT
h

]
= AkBT

h , h ≤ k,

where Ak, Bh ∈ Rnx×M are known matrices.

Assumption 2. The measurement noises
{

v(i)k , k ≥ 1
}

, i = 1, . . . , m, are white second-order
processes with the following statistical properties:

(i) E[v(i)k ] = 0 and their correlation functions are known and given by

E[v(i)k v(j)T
h ] = R(ij)

k δk,h, i, j = 1, . . . , m.

(ii) For i = 1, . . . , m,
{

v(i)k , k ≥ 1
}

, is correlated with the signal process {xk, k ≥ 1} and its
correlation function is expressed in separable form as

E[xkv(i)Th ] =

{
CkD(i)T

h , h ≤ k,
0, h > k,

where Ck ∈ Rnx×M′ and D(i)
h ∈ Rnz×M′ are known matrices.
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Remark 1. The general assumption of uncorrelation for the system noises is not always true and it
can be restrictive in many real-world problems, where both correlation and cross-correlation of the
noises may be present. Assumption 2 weakens this condition of uncorrelated noises. Concretely:

• The sensor noise cross-correlation specified in (i) can be found, for example, when the signal
process is observed by sensors that operate in a common noisy environment, or when the noises
are state dependent; in this case, the cross-correlation between the process noise and the sensor
noises leads to correlation between the different sensor noises. Moreover, after augmenting
a system subject to uncertainties such as random delays or packet-dropouts, the transformed
system presents correlated noises.

• Condition (ii) allows us to consider models in which the sensor noises are correlated with the
process noise at the previous time (see Section 4). One of the most common situations in which
this type of correlation occurs is in the discretisation of continuous-time systems; actually, if a
discrete-time linear system is obtained from the discretisation of a continuous-time system, then
the measurement noise is correlated with the process noise at the previous time.

2.2. Deception Attack Model

As discussed above, the measurement process can be subject to attacks launched by
malicious attackers. Specifically, at each sensor, attackers could inject false information
that would degrade or deteriorate the real measurement. If deception attacks are launched
randomly, the output measure may or may not be modified; therefore, the mathematical
model for current output after a randomly occurring deception attack is modelled as:

z̆(i)k = z(i)k + β
(i)
k ξ

(i)
k , k ≥ 1, i = 1, . . . , m, (2)

where
{

β
(i)
k , k ≥ 1

}
, i = 1, . . . , m, are sequences of Bernoulli random variables, which

model the success, β
(i)
k = 1, or failure, β

(i)
k = 0, of the attack on the ith-sensor and ξ

(i)
k

denotes the deception attack signal sent by adversaries to the ith-sensor, which can be
described as follows:

ξ
(i)
k = −z(i)k + ε

(i)
k , k ≥ 1, i = 1, . . . , m, (3)

where ε
(i)
k represents a random deception signal, which is inaccessible to the defenders.

According to the deception attacks (3), the attacked measurement outputs (2) can be
rewritten as:

z̆(i)k = (1− β
(i)
k )z(i)k + β

(i)
k ε

(i)
k , k ≥ 1, i = 1, . . . , m. (4)

The following assumptions are set on the sequences of random variables that model
the occurrence or otherwise of the attack and the deception signal:

Assumption 3.
{

β
(i)
k , k ≥ 1

}
, i = 1, . . . , m, are independent sequences of independent Bernoulli

random variables with known success probabilities P(β
(i)
k = 1) = β

(i)
k , k ≥ 1.

Assumption 4.
{

ε
(i)
k , k ≥ 1

}
, i = 1, . . . , m, are independent white second-order processes with

zero-mean and known covariance matrices E[ε(i)k ε
(j)T
h ] = T(ij)

k δk,h.

Remark 2. For various reasons, such as the possible presence of safety protection devices, the
attacks launched by adversaries are not always successful. From the defender’s perspective, the
uncertainty about the success or failure of a deception attack should be considered random and
included in the model with the certain-success rates, different for every sensor and every time instant.
The nature of the uncertainty (successful or failed attacks) suggests that the randomness should
be modelled using different sequences of random binary variables,

{
β
(i)
k , k ≥ 1

}
, each taking the

value 0 (β(i)
k = 0, meaning that the attack against the ith-sensor at time k has failed) or the value
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1 (β
(i)
k = 1 representing the success of the ith-sensor attack at time k). Clearly, therefore, the

measurement output of the ith-sensor at time k, z̆(i)k , is modelled by (3); that is, it is only noise,

z̆(i)k = ε
(i)
k , if β

(i)
k = 1 (successful attack) or, alternatively, it is the real measure, z̆(i)k = z(i)k , if

β
(i)
k = 0 (failed attack). Assumption 3 on

{
β
(i)
k , k ≥ 1

}
specifies the independence of the success or

failure of attacks against different sensors or at different times. Consequently, under this assumption,
each measurement output is either the real measure or consists only of noise, regardless of the other.

2.3. Randomly Delayed Observations

It is assumed that the measures arriving from each sensor to its processing centre may
have suffered delays during the transmission process, due to possible imperfections in
the communication channels. For each sensor, the absence or presence of delays in the
transmission is modelled by different sequences of Bernoulli variables describing whether
the measures arrive on time or are delayed by one sampling time; thus, the measure to
be processed at time k is z̆(i)k or z̆(i)k−1. In addition, it is assumed that at the initial instant
the actual outputs are always available. Therefore, our mathematical model of randomly
one-step delayed received measures is described by

y(i)k = (1− γ
(i)
k )z̆(i)k + γ

(i)
k z̆(i)k−1, k ≥ 2; y(i)1 = z̆(i)1 , i = 1, . . . , m, (5)

and the following assumption is made for the random variables γ
(i)
k modelling the delays:

Assumption 5.
{

γ
(i)
k , k ≥ 2

}
, i = 1, . . . , m, are independent sequences of independent Bernoulli

random variables with known success probabilities P(γ(i)
k = 1) = γ

(i)
k , k ≥ 2.

Finally, the following assumption is made about the signal and processes involved in
the measurement model used to derive the LS linear estimators.

Assumption 6. For i = 1, . . . , m, the processes
(
{xk, k ≥ 1},

{
v(i)k , k ≥ 1

})
,
{

ε
(i)
k , k ≥ 1

}
,{

β
(i)
k , k ≥ 1

}
and

{
γ
(i)
k , k ≥ 2

}
are mutually independent.

From the previous assumptions about the measurement, attacked measurement and
observation processes, the expressions of their second order moments are deduced in the
following lemma.

Lemma 1. Under the model assumptions, the following statistical properties are satisfied:

(i) The measurement processes
{

z(i)k , k ≥ 1
}

, i = 1, . . . , m, have zero-mean and their covariance

functions, Σz(ij)
k,h ≡ E

[
z(i)k z(j)T

h
]
, are given by

Σz(ij)
k,h = H(i)

k AkBT
h H(j)T

h + R(ij)
k δk,h + H(i)

k CkD(j)T
h + D(i)

k CT
k H(j)T

h δk,h, 1 ≤ h ≤ k.

(ii) The measurements
{

z̆(i)k , k ≥ 1
}

, i = 1, . . . , m, are zero-mean processes with

Σz̆(i)
k ≡ E

[
z̆(i)k z̆(i)Tk

]
= (1− β

(i)
k )Σz(i)

k + β
(i)
k T(i)

k , k ≥ 1.

Σz̆(i)
k,h ≡ E

[
z̆(i)k z̆(i)Th

]
= (1− β

(i)
k )(1− β

(i)
h )Σz(i)

k,h , k, h ≥ 1; h 6= k.

Σz̆(ij)
k,h ≡ E

[
z̆(i)k z̆(j)T

h
]
= (1− β

(i)
k )(1− β

(j)
h )Σz(ij)

k,h + β
(i)
k β

(j)
h T(ij)

k δk,h, k, h ≥ 1; j 6= i.

(iii) The observation processes
{

y(i)k , k ≥ 1
}

, i = 1, . . . , m, have zero-mean and their covariance

functions, Σy(ij)

k,h ≡ E
[
y(i)k y(j)T

h
]
, satisfy:
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• For i = j

Σy(i)

k = (1− γ
(i)
k )Σz̆(i)

k + γ
(i)
k Σz̆(i)

k−1, k ≥ 2; Σy(i)
1 = Σz̆(i)

1 .

Σy(i)

k,h = (1− γ
(i)
k )(1− γ

(i)
h )Σz̆(i)

k,h + (1− γ
(i)
k )γ

(i)
h Σz̆(i)

k,h−1 + γ
(i)
k (1− γ

(i)
h )Σz̆(i)

k−1,h

+γ
(i)
k γ

(i)
h Σz̆(i)

k−1,h−1, 1 < h < k; Σy(i)

k,1 = (1− γ
(i)
k )Σz̆(i)

k,1 + γ
(i)
k Σz̆(i)

k−1,1 k ≥ 2.
• For i 6= j

Σy(ij)

k,h = (1− γ
(i)
k )(1− γ

(j)
h )Σz̆(ij)

k,h + (1− γ
(i)
k )γ

(j)
h Σz̆(ij)

k,h−1 + γ
(i)
k (1− γ

(j)
h )Σz̆(ij)

k−1,h

+γ
(i)
k γ

(j)
h Σz̆(ij)

k−1,h−1, 1 < h ≤ k;

Σy(ij)

k,1 = (1− γ
(i)
k )Σz̆(ij)

k,1 + γ
(i)
k Σz̆(ij)

k−1,1, k ≥ 2; Σy(ij)
1 = Σz̆(ij)

1 .

Proof. These statistical properties are easily obtained taking into account Equations (1), (4)
and (5), and model Assumptions (1)–(6).

3. Least-Squares Linear Distributed Fusion Estimation Problem

The LS linear estimation problem of the signal from the observations coming from the
m sensors is addressed by the distributed fusion method. This method is structured in two
stages: The first consists of obtaining, for each sensor, LS linear estimators; in the second
one, the distributed fusion estimators are calculated as matrix-weight linear combination of
the local ones, using the LS optimisation criterion. Following this methodology, algorithms
for the prediction and filtering problems are developed below.

3.1. Stage One: LS Local Prediction and Filtering Algorithm

In this stage, our aim is to obtain a recursive algorithm for the local estimators of
the signal xk based on the observations

{
y(i)1 , . . . , y(i)s

}
, for s ≤ k, applying an innovation

approach. Under this approach, the observation process is transformed, by an orthogo-
nalisation procedure, into an equivalent one that provides the same information; this is
termed the innovation process. The innovation at time k is defined as µ

(i)
k = y(i)k − ŷ(i)k/k−1,

where ŷ(i)k/k−1 is the one-stage observation predictor. Due to this equivalence, the local

estimator of a vector uk based on the observations
{

y(i)1 , . . . , y(i)s

}
can be expressed as a

linear combination of the innovations
{

µ
(i)
1 , . . . , µ

(i)
s

}
, as follows:

û(i)
k/s =

s

∑
h=1

E[ukµ
(i)T
h ]Π(i)−1

h µ
(i)
h , (6)

where Π(i)
h ≡ E[µ(i)

h µ
(i)T
h ] denotes the innovation covariance matrix.

Then, our first objective is to find an adequate expression for the innovations
µ
(i)
h = y(i)h − ŷ(i)h/h−1, h ≤ s, or, equivalently, for the one-stage observation predictors

ŷ(i)h/h−1, which simplifies the general expression of the local estimators of the signal,

x̂(i)k/s =
s

∑
h=1

E[xkµ
(i)T
h ]Π(i)−1

h µ
(i)
h , s ≤ k. This expression of the innovations will enable

us to obtain the coefficients E[xkµ
(i)T
h ] and the innovation covariance matrices Π(i)

h that

appear in the above expression of x̂(i)k/s.
One-stage observation predictor.
To facilitate the derivation of the one-stage observation predictor, we rewrite the

observation expression (5) as

y(i)k = (1− γ
(i)
k )(1− β

(i)
k )(H(i)

k xk+ v(i)k )+ (1− γ
(i)
k )β

(i)
k ε

(i)
k +γ

(i)
k (1− β

(i)
k−1)H(i)

k−1xk−1+ w(i)
k−1, k ≥ 2;

y(i)1 = z̆(i)1 ,
(7)
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where

w(i)
k−1 = γ

(i)
k (β

(i)
k−1 − β

(i)
k−1)H(i)

k−1xk−1 + γ
(i)
k (1− β

(i)
k−1)v

(i)
k−1 + γ

(i)
k β

(i)
k−1ε

(i)
k−1, k ≥ 2.

Then, taking into account the independence assumption and the Orthogonal Projection
Lemma (OPL), it is clear that the one-stage observation predictor is given by

ŷ(i)k/k−1 = (1− γ
(i)
k )(1− β

(i)
k )H(i)

k x̂(i)k/k−1 + γ
(i)
k (1− β

(i)
k−1)H(i)

k−1 x̂(i)k−1/k−1 + ŵ(i)
k−1/k−1, k ≥ 2,

where x̂(i)k/k−1 and x̂(i)k−1/k−1 are the predictor and filter of the signal, respectively, and

ŵ(i)
k−1/k−1 is the filter of w(i)

k−1.

From (6) for ŵ(i)
k−1/k−1, and taking into account that w(i)

k−1 is independent of y(i)1 , . . . , y(i)k−2,
it is easy to obtain that

ŵ(i)
k−1/k−1 =W (i)

k−1Π(i)−1
k−1 µ

(i)
k−1, k ≥ 2,

whereW (i)
k−1 = E[w(i)

k−1µ
(i)T
k−1].

Therefore, the one-stage observation predictor is given by

ŷ(i)k/k−1 = (1− γ
(i)
k )(1− β

(i)
k )H(i)

k x̂(i)k/k−1 + γ
(i)
k (1− β

(i)
k−1)H(i)

k−1 x̂(i)k−1/k−1 +W
(i)
k−1Π(i)−1

k−1 µ
(i)
k−1, k ≥ 2;

ŷ(i)1/0 = 0.
(8)

To simplify the expressions of the local estimation algorithm derived in Theorem 1,
the following notations are used for i = 1, . . . , m:

H(i)
Gk

= (1− γ
(i)
k )(1− β

(i)
k )H(i)

k Gk + γ
(i)
k (1− β

(i)
k−1)H(i)

k−1Gk−1, k ≥ 2;

H(i)
G1

= (1− β
(i)
1 )H(i)

1 G1.
(9)

D(i)
k = (1− γ

(i)
k )(1− β

(i)
k )D(i)

k + γ
(i)
k (1− β

(i)
k−1)D(i)

k−1, k ≥ 2;

D(i)
1 = (1− β

(i)
1 )D(i)

1 ,
(10)

where Gk = Ak, Bk and Ck.

Theorem 1. Under the model assumptions set out in Section 2, for i = 1, . . . , m, the local predictor
and filter, x̂(i)k/s, s ≤ k, and the associated error covariances matrices, P(i)

k/s ≡ E[(xk − x̂(i)k/s)(xk −
x̂(i)k/s)

T ], are given by

x̂(i)k/s = (Ak|Ck)O
(i)
s , s ≤ k, (11)

P(i)
k/s = AkBT

s − (Ak|Ck)r
(i)
s (Ak|Ck)

T , s ≤ k, (12)

where the vectors O(i)
s and the matrices r(i)s ≡ E[O(i)

s O(i)T
s ] are recursively obtained from

O(i)
s = O(i)

s−1 + J(i)s Π(i)−1
s µ

(i)
s , s ≥ 1; O(i)

0 = 0, (13)

r(i)s = r(i)s−1 + J(i)s Π(i)−1
s J(i)Ts , s ≥ 1; r(i)0 = 0, (14)

and J(i)s ≡ E[O(i)
s µ

(i)T
s ] satisfies

J(i)s =
(
H(i)

Bs
|D(i)

s

)T
− r(i)s−1

(
H(i)

As
|H(i)

Cs

)T
− J(i)s−1Π(i)−1

s−1 W
(i)T
s−1 , s ≥ 2;

J(i)1 =
(
H(i)

B1
|D(i)

1

)T
.

(15)
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The innovations, µ
(i)
s = y(i)s − ŷ(i)s/s−1, and their covariance matrices, Π(i)

s ≡ E[µ(i)
s µ

(i)T
s ] are

calculated as

µ
(i)
s = y(i)s −

(
H(i)

As
|H(i)

Cs

)
O(i)

s−1 −W
(i)
s−1Π(i)−1

s−1 µ
(i)
s−1, s ≥ 2;

µ
(i)
1 = y(i)1 ,

(16)

Π(i)
s = Σy(i)

s −
(
H(i)

As
|H(i)

Cs

)((
H(i)

Bs
|D(i)

s

)T
− J(i)s

)
−W (i)

s−1Π(i)−1
s−1

((
H(i)

As
|H(i)

Cs

)
J(i)s−1 +W

(i)
s−1

)T
, s ≥ 2;

Π(i)
1 = Σy(i)

1 .
(17)

Finally, the coefficientsW (i)
s−1 ≡ E[w(i)

s−1µ
(i)T
s−1 ], s ≥ 2, are obtained by

W (i)
s−1 = Σy(i)

s,s−1 −
(
H(i)

As
|H(i)

Cs

)(
H(i)

Bs−1
|D(i)

s−1

)T
, s ≥ 2, (18)

and the matrices Σy(i)
s and Σy(i)

s,s−1 are given in Lemma 1.

Proof. See Appendix A.

3.2. Stage Two: Distributed LS Fusion Predictor and Filter

In this stage, the distributed fusion predictor and filter, x̂k/s, s ≤ k, are obtained as the

matrix-weight linear combination of the m corresponding local estimators, x̂(i)k/s, s ≤ k, i =
1, . . . , m, by using the mean squared error as the optimality criterion.

Let X̂k/s =
(

x̂(1)Tk/s , . . . , x̂(m)T
k/s

)T
be the vector constituted by the local estimators calcu-

lated from the algorithm given in Theorem 1; then, the distributed estimators and the error
covariance matrices are obtained by the following algorithm.

Distributed fusion prediction and filtering algorithm. The distributed fusion pre-
dictor and filter are given by

x̂k/s =
(

Σ̂(1)
k/s| . . . |Σ̂(m)

k/s

)
Σ̂−1

k/sX̂k/s, s ≤ k, (19)

and the error covariance matrices Pk/s = E[(xk − x̂k/s)(xk − x̂k/s)
T ] are obtained as

Pk/s = AkBT
s −

(
Σ̂(1)

k/s| . . . |Σ̂(m)
k/s

)
Σ̂−1

k/s

(
Σ̂(1)

k/s| . . . |Σ̂(m)
k/s

)T
, s ≤ k, (20)

where Σ̂k/s ≡
(

Σ̂(ij)
k/s

)
i,j=1,...,m

and Σ̂(ij)
k/s ≡ E

[
x̂(i)k/s x̂(j)T

k/s

]
, the cross-correlation matrices

between any two local estimators, are given in the following theorem.

Expressions (19) and (20) for the estimators and the error covariance matrices can be
easily obtained by applying the LS criterion (see e.g., García-Ligero et al. [21] ).

Theorem 2. Under the model assumptions, the cross-correlation matrices Σ̂(ij)
k/s ≡ E[x̂(i)k/s x̂(j)T

k/s ], i, j =
1, . . . , m, are calculated by

Σ̂(ij)
k/s = (Ak|Ck)r

(ij)
s (Ak|Ck)

T , s ≤ k. (21)

The matrices r(ij)s ≡ E[O(i)
s O(j)T

s ] verify the following recursive relation

r(ij)s = r(ij)s−1 + J(ij)s−1,sΠ(j)−1
s J(j)T

s + J(i)s Π(i)−1
s J(ji)T

s , s ≥ 1; r(ij)0 = 0, (22)
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where J(ij)s−1,s ≡ E[O(i)
s−1µ

(j)T
s ] and J(ij)s ≡ E[O(i)

s µ
(j)T
s ] satisfy

J(ij)s−1,s =
(

r(i)s−1 − r(ij)s−1

)(
H(j)

As
|H(j)

Cs

)T
+ J(i)s−1Π(i)−1

s−1 W
(ji)T
s−1 − J(ij)s−1Π(j)−1

s−1 W
(j)T
s−1 , s ≥ 2;

J(ij)0,1 = 0,
(23)

and
J(ij)s = J(ij)s−1,s + J(i)s Π(i)−1

s Π(ij)
s , s ≥ 1. (24)

The innovations cross-covariance matrices Π(ij)
s ≡ E[µ(i)

s µ
(i)T
s ] are obtained as

Π(ij)
s = Σy(ij)

s −
(
H(i)

As
|H(i)

Cs

)((
H(j)

Bs
|D(j)

s

)T
− J(j)

s − J(ij)s−1,s

)
−W (ij)

s−1Π(j)−1
s−1

((
H(j)

As
|H(j)

Cs

)
J(j)
s−1 +W

(j)
s−1

)T

−W (i)
s−1Π(i)−1

s−1 Π(ij)
s−1,s, s ≥ 2;

Π(ij)
1 = Σy(ij)

1 ,

(25)

where Π(ij)
s,s−1 ≡ E[µ(i)

s µ
(i)T
s−1 ] verifies

Π(ij)
s,s−1 =

(
H(i)

As
|H(i)

Cs

)(
J(j)
s−1 − J(ij)s−1

)
+W (ij)

s−1−W
(i)
s−1Π(i)−1

s−1 Π(ij)
s−1, s ≥ 2. (26)

Finally, the coefficientsW (ij)
s−1 ≡ E[w(i)

s−1µ
(j)T
s−1 ] are given by

W (ij)
s−1 = Σy(ij)

s,s−1 −
(
H(i)

As
|H(i)

Cs

)(
H(j)

Bs−1
|D(j)

s−1

)T
, s ≥ 2, (27)

and the matrices Σy(ij)
s and Σy(ij)

s,s−1 are given in Lemma 1.

Proof. See Appendix B.

4. Illustrative Example

In this section, a numerical simulation example is used to illustrate the effectiveness
of the proposed prediction and filtering algorithm in WSNs subject to deception attacks,
correlated noises and random delays. The quality of the estimators is analysed consid-
ering different probability distributions for the random variables modelling the attacks
and delays.

Let us consider a two-dimensional signal with the following evolution equation:

xk+1 = Fxk + Gτk, k ≥ 0,

where F =

(
0.95 0.03
0.01 0.95

)
and G =

(
0.8
0.6

)
. The additive noise {τk, k ≥ 0} is a

standard white Gaussian scalar noise and the initial signal, x0, is a zero-mean vector with
covariance matrix E[x0xT

0 ] = 0.1I. Assuming that the initial signal vector and additive
noise are independent, the autocovariance function of the signal is expressed as:

E[xkxT
h ] = Fk−hE[xhxT

h ], h ≤ k,

which is clearly factorised, according to Assumption 1, taking, for example, Ak = Fk and
BT

h = F−hE[xhxT
h ], where

E[xhxT
h ] = FE[xh−1xT

h−1]F
T + GGT , h ≥ 1.

Consider a WSN with two sensors, in which the measured signal is described by
model (1). As in the theoretical model, we assume that the measurements at each sensor can
experience deception attacks such as those described by (3) and that during the transmission
the measurements can be delayed by one sample period; then, the received measurements in
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the local processing centers are modelled by (5). To analyze the performance of the proposed
estimation algorithm, the following assumptions are made on the involved processes.

Simulation assumptions:

•
{

v(i)k , k ≥ 1
}

, i = 1, 2, are defined as v(i)k = c(i)τk−1, ∀k ≥ 1.

•
{

ε
(i)
k , k ≥ 1

}
, i = 1, 2, are given by ε

(i)
k = e(i)εk, where {εk, k ≥ 1} is a standard

Gaussian white process.

•
{

β
(i)
k , k ≥ 1

}
, i = 1, 2, are independent sequences of independent Bernoulli random

variables with P(β
(i)
k = 1) = β

(i)
, ∀k ≥ 1.

•
{

γ
(i)
k , k ≥ 1

}
, i = 1, 2, are independent sequences of independent Bernoulli random

variables with P(γ(i)
k = 1) = γ(i), ∀k ≥ 1.

The parameter values involved in this observation model are given in Table 1.

Table 1. Model parameter values.

H(i)
k c(i) e(i) β

(i)
k γ

(i)
k

Sensor 1 (0.8, 0.9) 5 0.25 0.7 0.3

Sensor 2 (0.6, 0.7) 10 0.5 0.2 0.6

From the above assumptions it is easy to find out the following properties:

(i) The measurement noises
{

v(i)k , k ≥ 1
}

, i = 1, 2, have zero-mean and are correlated,

with R(ij)
k = c(i)c(j).

(ii) The signal process and measurement noises are correlated, with the correlation func-

tion given by E[xkv(i)h ] = 0, h > k, and E[xkv(i)h ] = c(i)Fk−hG, h ≤ k, which can
be expressed in separable form, as indicated in Assumption 2, taking, for example,
Ck = Fk and D(i)T

h = c(i)F−hG, h ≤ k.

(iii) The noises
{

ε
(i)
k , k ≥ 1

}
, i = 1, 2, have zero-mean and variances T(ij)

k = e(i)e(j).

Performance of the local and distributed estimators. Figure 2 illustrates the local
and distributed prediction and filtering error variances for s = k− 3, k− 1, k, of the first
and second signal components. For each signal component, this figure shows, on the one
hand, that the error variances of the distributed estimators are lower than those of local
ones; hence, the distributed fusion estimators provide better estimations of the signal. On
the other hand, this figure reveals that the performance of the estimators improves as
more observations are used; that is, the error variances of the local and distributed filters
are smaller than those of the predictors, and these predictors became more accurate as
s increases.

Influence of deception attacks. To analyse the effect of deception attacks, let us

assume different values of β
(1)

= 0, 0.1, . . . , 0.9. Figure 3 shows that the distributed filtering
error variances for both signal components decrease in line with the probability of success

β
(1)

. Hence, as expected, better estimations of the signal are obtained for lower values of

successful attack probability and the best ones are obtained when β
(1)

= 0, since in this

case Sensor 1 has not been attacked. A similar analysis for different values of β
(2)

as well
as for the distributed prediction error variances leads us to the same conclusions.
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Distributed predictor, s=k-1
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Figure 2. Local and distributed prediction and filtering error variances.
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Figure 3. Distributed filtering error variances for different values of β
(1).

Influence of transmission delays. As in our to analysis of the impact of the deception
attack, here we consider that only the delay probabilities for the first sensor change, while
the other probabilities remain fixed. Figure 4 shows the distributed filtering error variances
when γ(1) = 0, 0.1, 0.3, 0.5, 0.7; values greater than 0.7 have not been taken into account since
in this case the difference in the results is negligible. From this figure it can be concluded
that, as the values of γ(1) decrease, the distributed filtering error variances become smaller,
which means that smaller probabilities of transmission delays provide better results.
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Figure 4. Distributed filtering error variances for different values of γ(1).

Finally, Figure 5 shows the distributed filtering error variances at k = 55, varying

jointly the different values of β
(1)

and γ(1) previously considered (actually, the results from
k = 30 are very similar, with only negligible variation). In this figure it can be clearly seen
that the variances of the filtering error increase with the probability of success of the attacks

on the first sensor (β
(1)

) and also with the probability of delay in the measurements from
the first sensor (γ(1)). Similar results are obtained by varying these probabilities in the
second sensor.
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Figure 5. Distributed filtering error variances for different values at k = 55, of γ(1) and β
(1).

5. Conclusions

In this paper, we investigate the distributed fusion linear estimation problem in WSNs
that are affected by three types of phenomena that are very common in practical situations,
namely deception attacks, correlated noises and delays during transmission. At each
sensor, the adversaries may launch random attacks, falsifying the output measurements;
these deception attacks are modelled by independent sequences of independent Bernoulli
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random variables with different and known success probabilities. The measurement noises
from different sensors are cross-correlated at the same time step and are also correlated
with the signal at the same and subsequent time steps, an assumption that is fulfilled
in many practical situations. During the transmission of the sensor outputs through the
communication channels to their respective processing centres, these signals can suffer
delays, which are modelled by Bernoulli variables describing whether the measures arrive
on time or are delayed by one sampling time. For this model, we have derived a distributed
fusion prediction and filtering algorithm, using only the information provided by the first
and second-order moments of the processes involved in the model; that is, they do not
require knowledge of the signal evolution model, although they are also applicable to the
classical formulation using this model. In addition, we use a simulation example to show
that the estimator accuracy is influenced by the success probabilities of deception attacks
and by transmission delays.

Among further research topics of interest in this field, we investigate the stability
property in the framework of estimation algorithms using covariance information, and
address the problem of the vulnerability or destabilisation of systems subject to sensor
deception attacks, as recently discussed in [32,33] for stealthy attacks.

Finally, it would also be of interest to design distributed fusion estimation algorithms
in energy-efficient wireless sensor networks whilst considering some of the alternatives that
have generated great interest in recent years; for example, event-triggered strategies [34] or
other energy-efficient sensor transmission schemes, such as those described in [35].
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Appendix A. Proof of Theorem 1

The expression for the LS estimators x̂(i)k/s, s ≤ k, of the signal xk, is obtained from gen-

eral expression (6). To do so, the coefficients X (i)
k,h = E[xkµ

(i)T
h ] = E[xky(i)Th ]− E[xk ŷ(i)Th/h−1],

1 ≤ h ≤ k, must be calculated.
Using (5) for the observations and taking into account the independence assumption

and that the covariance function of the signal and the correlation function of the signal and
measurement noises are separable (Assumptions 2 and 3, respectively), it can easily be seen
that the first expectation is given by

E[xky(i)Th ] = (Ak|Ck)(H
(i)
Bh
|D(i)

h )T , 1 ≤ h ≤ k,

withH(i)
Bh

and D(i)
h given by (9) and (10), respectively.

Now, we calculate E[xk ŷ(i)Th/h−1], h ≥ 2; using (8) for the one-stage observation predictor

and general expression (6) for x̂(i)h/h−1 and x̂(i)h−1/h−1, we obtain that

E[xk ŷ(i)Th/h−1] =
h−1

∑
l=1
X (i)

k,l Π(i)−1
l

[
(1−γ

(i)
h )(1−β

(i)
h )X (i)T

h,l H(i)T
h +γ

(i)
h (1−β

(i)
h−1)X

(i)T
h−1,l H

(i)T
h−1

]
−X (i)

k,h−1Π(i)−1
h−1 W

(i)T
h−1 , 2 ≤ h ≤ k.
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Hence, the coefficients are expressed as

X (i)
k,h = (Ak|Ck)(H

(i)
Bh
|D(i)

h )T−
h−1

∑
l=1
X (i)

k,l Π(i)−1
l

[
(1−γ

(i)
h )(1−β

(i)
h )X (i)T

h,l H(i)T
h +γ

(i)
h (1−β

(i)
h−1)X

(i)T
h−1,l H

(i)T
h−1

]
−X (i)

k,h−1Π(i)−1
h−1 W

(i)T
h−1 , 2 ≤ h ≤ k;

X (i)
k,1 = (Ak|Ck)(H

(i)
B1
|D(i)

1 )T ,

or, equivalently,
X (i)

k,h =
(

Ak|Ck
)

J(i)h , 1 ≤ h ≤ k,

where J(i)h is a function satisfying

J(i)h =
(
H(i)

Bh
|D(i)

h

)T
−

h−1

∑
l=1

J(i)l Π(i)−1
l J(i)Tl

(
H(i)

Ah
|H(i)

Ch

)T
− J(i)h−1Π(i)−1

h−1 W
(i)T
h−1 , h ≥ 2;

J(i)1 =
(
H(i)

B1
|D(i)

1

)T
.

(A1)

Therefore, (11) is obtained immediately by defining O(i)
s =

s

∑
h=1

J(i)h Π(i)−1
h µ

(i)
h , s ≥ 1,

and O(i)
0 = 0.

Again using the OPL, the error covariance matrices are expressed as P(i)
k/s = E[xkxT

s ]−
E[x̂(i)k/s x̂(i)Tk/s )], s ≤ k, and from (11), expression (12) is obtained by denoting r(i)s ≡

E[O(i)
s O(i)T

s ] =
s

∑
h=1

J(i)h Π(i)−1
h J(i)Th , s ≥ 1, and r(i)0 = 0.

The recursive relations (13) and (14) are directly deduced from their respective defini-
tions and expression (15) for J(i)s is immediate from (A1), taking into account the definition
of r(i)s .

The following equivalent expression for the one-stage observation predictor (8) is
obtained using (11) for the predictor, x̂s/s−1, and filter, x̂s−1/s−1 :

ŷ(i)s/s−1 =
(
H(i)

As
|H(i)

Cs

)
O(i)

s−1 +W
(i)
s−1Π(i)−1

s−1 µ
(i)
s−1, s ≥ 2, (A2)

and then, expression (16) for innovation is immediate.
Now, applying the OPL, the innovation covariance matrices are expressed as Π(i)

s =

E[y(i)s y(i)Ts ]− E[ŷ(i)s/s−1y(i)Ts ] and, using (A2), we have

Π(i)
s = Σy(i)

s −
(
H(i)

As
|H(i)

Cs

)
E[O(i)

s−1y(i)Ts ]−W (i)
s−1Π(i)−1

s−1 E[µ(i)
s−1y(i)Ts ], s ≥ 2;

Π(i)
1 = Σy(i)

1 .

Next, we calculate the two expectations that appear in the above expression. Taking
into account (13) and that Π(i)

s = E[µ(i)
s y(i)Ts ], we have E[O(i)

s−1y(i)Ts ] = E[O(i)
s y(i)Ts ]− J(i)s .

Now, substituting y(i)s = µ
(i)
s + ŷ(i)s/s−1, using that J(i)s ≡ E[O(i)

s µ
(i)T
s ] and expression (15)

for J(i)s , together with (A2) for the one-stage observation predictor, it is deduced that
E[O(i)

s y(i)Ts ] =
(
H(i)

Bs
|D(i)

s
)T and, therefore,

E[O(i)
s−1y(i)Ts ] =

(
H(i)

Bs
|D(i)

s
)T − J(i)s . (A3)

Again, using the OPL and (A2) it is clear that

E[µ(i)
s−1y(i)Ts ] = E[µ(i)

s−1ŷ(i)Ts/s−1] =
((
H(i)

As
|H(i)

Cs

)
J(i)s−1 +W

(i)
s−1
)T , s ≥ 2. (A4)

Then, from (A3) and (A4), expression (17) is obtained.
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Finally, we obtain (18) for the coefficients W (i)
s−1. Since w(i)

s−1 is uncorrelated with

y(i)Th , h ≤ s − 2, the coefficients W (i)
s−1 are expressed as W (i)

s−1 = E[w(i)
s−1y(i)Ts−1 ] and the

expression of w(i)
s−1 obtained from (7) leads to

W (i)
s−1 = Σy(i)

s,s−1 − (1− γ
(i)
s )(1− β

(i)
s )H(i)

s E[xsy(i)Ts−1 ]− γ
(i)
s (1− β

(i)
s−1)H(i)

s−1E[xs−1y(i)Ts−1 ].

Now, using (5) for y(i)s−1 and the model assumptions, expression (18) is easily obtained.

Appendix B. Proof of Theorem 2

From (11), using that r(ij)s ≡ E[O(i)
s O(j)T

s ], expression (21) for the cross-correlation
matrices is directly obtained. The recursive relation (22) is immediate using (13) together
with J(ij)s−1,s ≡ E[O(i)

s−1µ
(j)T
s ] and J(ij)s ≡ E[O(i)

s µ
(j)T
s ].

Next, to facilitate obtaining Equations (23)–(27), we determine an expression for the
one-stage observation predictor of y(j)

s based on the observations of sensor i, which will
be denoted by ŷ(j/i)

s/s−1. This expression is easily obtained from (7), taking into account the

model assumptions and (11) for x̂(j)
s/s−1 and x̂(j)

s−1/s−1,

ŷ(j/i)
s/s−1 =

(
H(j)

As
|H(j)

Cs

)
O(j)

s−1 +W
(ji)
s−1Π(j)−1

s−1 µ
(j)
s−1, s ≥ 2, (A5)

whereW (ji)
s−1 ≡ E[w(j)

s−1µ
(i)T
s−1 ].

Now, we obtain (23) and (24). Clearly, by the OPL, E[O(i)
s−1y(j)T

s ] = E[O(i)
s−1ŷ(j/i)T

s/s−1] and

then J(ij)s−1,s = E[O(i)
s−1ŷ(j/i)T

s/s−1]− E[O(i)
s−1ŷ(j)T

s/s−1]. Taking into account (A2) and (A5) for ŷ(j)
s/s−1

and ŷ(j/i)
s/s−1, respectively, it is seen that J(ij)s−1,s satisfies (23). Expression (24) is straightfor-

wardly derived using (13) and Π(ij)
s ≡ E[µ(i)

s µ
(j)T
s ].

In order to calculate the innovation covariance matrices, Π(ij)
s and Π(ij)

s,s−1, i 6= j, we
apply the OPL to express these matrices as:

Π(ij)
s = Σy(ij)

s − E[ŷ(i/j)
s/s−1y(j)T

s ]− E[ŷ(i)s/s−1µ
(j)T
s ], s ≥ 2; Π(ij)

1 = Σy(ij)
1 ,

Π(ij)
s,s−1 = E[ŷ(i/j)

s/s−1µ
(j)T
s−1 ]− E[ŷ(i)s/s−1µ

(j)T
s−1 ], s ≥ 2.

Again, using (A2) and (A5) for the one-stage observation predictors, ŷ(i)s/s−1 and ŷ(i/j)
s/s−1,

and taking into account (A3) and (A4) as well as the definitions of J(ij)s−1,s and Π(ij)
s,s−1, the

expressions (25) and (26) are confirmed.
By reasoning similar to that used to obtain (18) for the coefficientsW (i)

s−1, the expres-

sion (27) is derived for the coefficientsW (ij)
s−1.

References
1. Ding, D.; Wang, Z.; Shen, B. Recent advances on distributed filtering for stochastic systems over sensor networks. Int. J. Gen. Syst.

2014, 43, 372–386. [CrossRef]
2. Dong, H.; Wang, Z.; Ding, S.X.; Gao, H. A Survey on Distributed Diltering and Fault Detection for Sensor Networks. Math. Probl.

Eng. 2014, 2014, 858624. [CrossRef]
3. Li, W.; Wang, Z.; Wei, G.; Ma, L.; Hu, J.; Ding, D. A Survey on Multisensor Fusion and Consensus Filtering for Sensor Networks.

Discrete Dyn. Nat. Soc. 2015, 2015, 683701. [CrossRef]
4. Sun, S.L.; Lin, H.; Ma, J.; Li, X. Multi-sensor distributed fusion estimation with applications in networked systems: A review

paper. Inf. Fusion. 2017, 38, 122–134. [CrossRef]
5. Yang, C.; Yang, Z.; Deng, Z. Robust weighted state fusion Kalman estimators for networked systems with mixed uncertainties.

Inf. Fus. 2019, 45, 246–265. [CrossRef]
6. Xia, J.; Gao, S.; Qi, X.; Zhang, J.; Li, G. Distributed cubature H-infinity information filtering for target tracking against uncertain

noise statistics. Signal Proccess. 2020, 177, 107725. [CrossRef]

http://doi.org/10.1080/03081079.2014.892250
http://dx.doi.org/10.1155/2014/858624
http://dx.doi.org/10.1155/2015/683701
http://dx.doi.org/10.1016/j.inffus.2017.03.006
http://dx.doi.org/10.1016/j.inffus.2018.01.014
http://dx.doi.org/10.1016/j.sigpro.2020.107725


Mathematics 2022, 10, 662 17 of 17

7. Hu, Z.; Hu, J.; Yang, G. A survey on distributed filtering, estimation and fusion for nonlinear systems with communication
constraints: New advances and prospects. Syst. Sci. Control Eng. 2020, 8, 189–205. [CrossRef]

8. Chen, W.; Ding, D.; Dong, H.; Wei, G. Distributed Resilient Filtering for Power Systems Subject to Denial-of-Service Attacks. IEEE
Trans. Syst. Man Cybern. Syst. 2019, 49, 1688–1697. [CrossRef]

9. Xu, M.; Zhang, Y.; Zhang, D.; Chen, B. Distributed Robust Dimensionality Reduction Fusion Estimation under DoS Attacks and
Uncertain Covariances. IEEE Access. 2021, 9, 10328–10337. [CrossRef]

10. Chen, B.; Ho, D.; Hu, G.; Yu, L. Secure Fusion Estimation for Bandwidth Constrained Cyber-Physical Systems under Replay
Attacks. IEEE Trans. Cybern. 2018, 48, 1862–1876. [CrossRef]

11. Ding, D.; Wang, Z.; Ho, D.; Wei, G. Distributed recursive filtering for stochastic systems under uniform quantizations and
deception attacks through sensor networks. Automatica 2017, 78, 231–240. [CrossRef]

12. Ma, L.; Wang, Z.; Han, Q.-L.; Lam, H.-K. Variance Constrained Distributed Filtering for Time-Varying Systems with Multiplicative
Noises and Deception Attacks over Sensor Networks. IEEE Sens. J. 2017, 17, 2279–2288. [CrossRef]

13. Han, F.; Dong, H.; Wang, Z.; Li, G. Local design of distributed H∞-consensus filtering over sensor networks under multiplicative
noises and deception attacks. Int. J. Robust Nonlinear Control. 2019, 29, 2296–2314. [CrossRef]

14. Caballero-Águila, R.; Hermoso-Carazo, A.; Linares-Pérez, J. Covariance-Based Estimation for Clustered Sensor Networks subject
to Random Deception Attacks. Sensors 2019, 19, 3112. [CrossRef]

15. Feng, J.; Zeng, M. Descriptor recursive estimation for multiple sensors with different delay rates. Int. J. Control. 2011, 84, 584–596.
[CrossRef]

16. Li, N.; Sun, S.; Ma, J. Multi-sensor distributed fusion filtering for networked systems with different delay and loss rates. Digit.
Signal Process. 2014, 34, 29–38. [CrossRef]

17. Chen, B.; Zhang, W.; Yu, L. Distributed Fusion Estimation with Missing Measurements, Random Transmission Delays and Packet
Dropouts. IEEE Trans. Automat. Control. 2014, 59, 1961–1967. [CrossRef]

18. Ma, J.; Sun, S. Distributed fusion filter for networked stochastic uncertain systems with transmission delays and packet dropouts.
Signal Process. 2017, 130, 268–278. [CrossRef]

19. Caballero-Águila, R.; Hermoso-Carazo, A.; Linares-Pérez, J. Networked Fusion Filtering from Outputs with Stochastic Uncertain-
ties and Correlated Random Transmission Delays. Sensors 2016, 16, 847. [CrossRef]

20. Caballero-Águila, R.; Hermoso-Carazo, A.; Linares-Pérez, J. Fusion Estimation from Multisensor Observations with Multiplicative
Noises and Correlated Random Delays in Transmission. Mathematics 2017, 5, 45. [CrossRef]

21. García-Ligero, M.J.; Hermoso-Carazo, A.; Linares-Pérez, J. Distributed and centralized fusion estimation from multiple sensors
with Markovian delays. Appl. Math. Comput. 2012, 219, 2932–2948. [CrossRef]

22. Shang, Y. Consensus seeking over Markovian switching networks with time-varying delays and uncertain topologies. Appl. Math.
Comput. 2016, 273, 1234–1245. [CrossRef]

23. García-Ligero, M.J.; Hermoso-Carazo, A.; Linares-Pérez, J. Distributed Fusion Estimation with Sensor Gain Degradation and
Markovian Delays. Mathematics 2020, 8, 1948. [CrossRef]

24. Li, X.; Zhu, Y.; Wang, J.; Han, C. Optimal Linear Estimation Fusion—Part I: Unified Fusion Rules. IEEE Trans. Inf. Theory 2003, 49,
2192–2208. [CrossRef]

25. Yan, L.; Li, X.; Xia, Y.; Fu, M. Optimal sequential and distributed fusion for state estimation in cross-correlated noise. Automatica
2013, 49, 3607–3612. [CrossRef]

26. Lin, H.; Sun, S. Globally optimal sequential and distributed fusion state estimation for multi-sensor systems with cross-correlated
noises. Automatica 2019, 101, 128–137. [CrossRef]

27. Feng, J.; Wang, Z.; Zeng, M. Distributed weighted robust Kalman filter fusion for uncertain systems with autocorrelated and
cross-correlated noises. Inf. Fus. 2013, 14, 78–86. [CrossRef]

28. Caballero-Águila, R.; Hermoso-Carazo, A.; Linares-Pérez, J.; Wang, Z. A new approach to distributed fusion filtering for networked
systems with random parameter matrices and correlated noises. Inf. Fus. 2019, 45, 324–332. [CrossRef]

29. Wang, D.; Wang, Z.; Shen, B.; Alsaadi, F. Security-guaranteed filtering for discrete-time stochastic delayed systems with randomly
occurring sensor saturations and deception attacks. Int. J. Robust Nonlinear Control 2017, 27, 1194–1208. [CrossRef]

30. Zhang, D.; Xie, J.; Ning, B. Network-based filtering for positive systems with random communication delays and deception
attacks. Neurocomputing 2020, 400, 450–457. [CrossRef]

31. Caballero-Águila, R.; Hermoso-Carazo, A.; Linares-Pérez, J. A Two-Phase Distributed Filtering Algorithm for Networked
Uncertain with Fading Measuremente under Deception Attacks. Sensors 2020, 20, 6445. [CrossRef] [PubMed]

32. Sui, T.; Mo, Y.; Marelli, D.; Sun, X.; Fu, M. The Vulnerability of Cyber-Physical System Under Stealthy Attacks. IEEE Trans.
Automat. Control 2021, 66, 637–650. [CrossRef] [PubMed]

33. Sui, T.; Sun, X. The vulnerability of distributed state estimator under stealthy attacks. Autoatica 2021, 133, 1–12. [CrossRef]
34. Jiang, L.; Yan, L.; Xia, Y.; Guo, Q.; Fu, M.; Li, L. Distributed fusion in wireless sensor networks based on a novel event-triggered

strategy. J. Franklin Inst. 2019, 356, 10315–10334. [CrossRef]
35. Sriranga, N.; Nagananda, K.G.; Blum, R.S.; Saucan, A.; Varshney, P.K. Energy-efficient Decision Fusion for Distributed Detection

in Wireless Sensor Networks. In Proceedings of the 21st International Conference on Information Fusion (FUSION), Cambrige,
UK, 10–13 July 2018; pp. 1541–1547. [CrossRef]

http://dx.doi.org/10.1080/21642583.2020.1737846
http://dx.doi.org/10.1109/TSMC.2019.2905253
http://dx.doi.org/10.1109/ACCESS.2021.3050198
http://dx.doi.org/10.1109/TCYB.2017.2716115
http://dx.doi.org/10.1016/j.automatica.2016.12.026
http://dx.doi.org/10.1109/JSEN.2017.2654325
http://dx.doi.org/10.1002/rnc.4493
http://dx.doi.org/10.3390/s19143112
http://dx.doi.org/10.1080/00207179.2011.563321
http://dx.doi.org/10.1016/j.dsp.2014.07.016
http://dx.doi.org/10.1109/TAC.2013.2297192
http://dx.doi.org/10.1016/j.sigpro.2016.07.004
http://dx.doi.org/10.3390/s16060847
http://dx.doi.org/10.3390/math5030045
http://dx.doi.org/10.1016/j.amc.2012.09.017
http://dx.doi.org/10.1016/j.amc.2015.08.115
http://dx.doi.org/10.3390/math8111948
http://dx.doi.org/10.1109/TIT.2003.815774
http://dx.doi.org/10.1016/j.automatica.2013.09.013
http://dx.doi.org/10.1016/j.automatica.2018.11.043
http://dx.doi.org/10.1016/j.inffus.2011.09.004
http://dx.doi.org/10.1016/j.inffus.2018.02.006
http://dx.doi.org/10.1002/rnc.3623
http://dx.doi.org/10.1016/j.neucom.2019.03.090
http://dx.doi.org/10.3390/s20226445
http://www.ncbi.nlm.nih.gov/pubmed/33187344
http://dx.doi.org/10.3390/s20226445
http://www.ncbi.nlm.nih.gov/pubmed/33187344
http://dx.doi.org/10.1109/TAC.2020.2987307
http://dx.doi.org/10.1016/j.automatica.2021.109869
http://dx.doi.org/10.1016/j.jfranklin.2018.04.021

	Introduction
	Problem Formulation
	Multisensor Measurement
	Deception Attack Model
	Randomly Delayed Observations

	Least-Squares Linear Distributed Fusion Estimation Problem
	Stage One: LS Local Prediction and Filtering Algorithm
	Stage Two: Distributed LS Fusion Predictor and Filter

	Illustrative Example
	Conclusions
	Proof of Theorem 1
	Proof of Theorem 2
	References

