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Abstract: The modeling different data behaviour like the human development index as a function of
life expectancy, the water capacity of a reservoir with respect to a certain threshold, or the percentage
of death rate of an infant before his or her first birthday, are situations which a researcher can face. It
is noteworthy that these problems may have in common data with excessive zeros and ones. Then, it
is essential to have flexible and accuracy models to fit data with these features. Given the relevance
of data modeling with excessive zeros and ones, in this paper, a mixture of discrete and continuous
distributions is proposed for modeling data with these behaviors. Additionally, the Unit-Birnbaum-
Saunders distribution is considered with the aim to explain the continuous component of the model
and the features of a Bernoulli process. The estimation of the parameters is based on the maximum
likelihood method. Observed and expected information matrices are derived, illustrating interesting
aspects of the likelihood approach. Finally, with practical applications by using real data we can show
the advantage of using our proposal concerning the inflated beta model.

Keywords: Unit-Birnbaum-Saunders distribution; inflated distribution; censoring; maximum likeli-
hood estimation

MSC: 60E05

1. Introduction

One of the most used distributions to fit fatigue and life data is the Birnbaum-Saunders
(BS) distribution, which was introduced in [1]. The BS distribution has a probability density
function (PDF) given by

fT(t) =
t−3/2(t + β)

2α
√

β
φ

(
1
α

[√
t
β
−
√

β

t

])
, t > 0, (1)

where φ(·) is the PDF of the normal distribution, α > 0 is a shape parameter and β > 0
is a scale parameter. If T is a random variable with BS distribution, then it is denoted as
T ∼ BS(α, β).

The BS distribution has been applied in many areas such as biology, medicine, forestry,
environment, among others, and it has been extended to a large number of families of
distributions. Díaz-García and Leiva-Sánchez [2] for example, introduced the extension of
the BS model in the case of the elliptically symmetric distributions, while the elliptically
asymmetric case was studied by Vilca-Labra and Leiva-Sánchez [3]. Another extension was
considered by Martínez-Flórez et al. [4], which proposed the exponentiated (commonly
known as alpha-power model) BS family of distributions. On the other hand, Moreno-
Arenas et al. [5] studied the hazard proportional BS model, and Lemonte [6] proposed the
multivariate Birnbaum-Saunders model.
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Recently, [7] presented a type of BS distribution, which is useful to fit data with
support on the interval (0, 1), becoming a new alternative to the beta and Kumaraswamy [8]
distributions. This new model (named unit-Birnbaum-Saunders (UBS) model) is obtained
by applying the transformation X = exp(−T), where T ∼ BS(α, β). Note that, this type
of transformation has been used by other authors such as Mazucheli et al. [9,10] and
Menezes et al. [11] among others. It follows that T = − log(X) with the Jacobian of the
transformation obtained by calculating the first derivative of T with respect to X, which is
given by dt

dx = 1
x . Then, by the random variable transformation theorem, see Cassella and

Berguer [12] (p. 51), it follows that the PDF of the UBS model is given by

fUBS(x; α, β) =
1

2xαβ
√

2π

[(
− β

log x

)1/2
+

(
− β

log x

)3/2
]

× exp
{

1
2α2

[
log x

β
+

β

log x
+ 2
]}

, x ∈ (0, 1), (2)

where α > 0 is a shape parameter and β > 0 is a scale parameter. The model is denoted as
X ∼ UBS(α, β).

Statistical models to explain variables on the unit interval, such as proportions, rates
or indexes have been studied by different authors, see [13–20]. Extensions of these models
to situations where response variables are on the intervals [0, 1], [0, 1) or (0, 1] have been
considered by [21–24]. Real data applications include the proportion of deaths caused by
smoking, problems related to the estimation of the gross domestic product (GDP) and so
on. Note that this area has been studied by [9–11].

This paper aims to propose an alternative approach for modeling response variables
with zero and/or one inflation. A Bernoulli model that links excessive zeros and/or
ones with a group of covariates that may influence the probability of their occurrence is
considered. One of the main contributions of our proposed model is that it is useful for
the analysis of material fatigue data on the interval [0, 1] with excess of zeros and/or ones.
In the literature, there are other models for fitting data on [0, 1] ([22–24]), however, these
models are not explicitly applied to fitting material fatigue data. We emphasize that the
Birnbaum-Saunders distribution is widely used in the analysis of this type of data.

The rest of the paper is organized as follows. In Section 2 the doubly-censored random
variable is defined, and the two-part model studied by [25] to analyze this type of variables
is presented. Section 3 extends the UBS model to censored data, and the excessive zeros
and/or ones are considered by using a mixture of Bernoulli and a doubly-censored UBS
model. The parameters estimation is made by using the maximum likelihood approach.
The non-singular observed and expected (Fisher) information matrices are derived. Finally,
Section 4 presents three analysis with real data sets to compare the proposed model with
the modified Beta model.

2. Censoring

A variable is said to be censored when one or more of the observed values are unknown
beyond an upper or lower bound. In several practical situations, censoring occurs for
limitations of the measuring devices or the experimental project. For example, the needle
of a scale that does not provide a reading above 200 kg for all objects that weigh more than
this limit, or the measure of viral load in people with HIV. When the data are censored,
the probability distribution is a mixture between a continuous and a discrete distribution,
and the two-part model by Cragg [25] is a way to analyze situations where data have
a mixture between a discrete and a continuous distribution. The two-part model [25] is
given by

g(yi) = pi(1− Ii) + (1− pi) f (yi)Ii, (3)

where pi is the probability that determines the relative contribution of the point mass.
The random variable Y is left-censored at the value c, if for a random sample y1, . . . , yn

of size n, only the values of Y that are greater than the constant c can be observed; whereas,
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for values of Y less than or equal to constant c, only the value c is observed. Therefore,
the values of the random variable Y can be written as follows:

yi =

{
y∗i , if y∗i > c,
c, if y∗i ≤ c,

where c is said to be the censoring point, and the random variable Y has PDF given by

g(yi) =

{
f (y∗i ), if y∗i > c,
p, if y∗i ≤ c,

For the case f (·) = φ(·) it has the Tobit model.
A model is said to be inflated (excess of zeros and/or ones) if the probability mass

for some of its points exceeds that allowed by the proposed model. In this case, it is usual
to assume that the data distribution is a mixture between a standard distribution and a
degenerate distribution concentrated in a point. Some cases that are studied in the statistical
literature are the zero-inflated binomial (ZIB) model, zero-inflated Poisson (ZIP) model,
and zero-inflated negative binomial (ZINB) model. For more illustration, see [23].

Definition 1. A random variable Y is said to be a doubly-censored random variable if Y is left-
censored and right-censored. For a random sample y∗1 , y∗2 , . . . , y∗n, following certain distribution, it
is defined

yi =


c0, if y∗i ≤ c0,
y∗i , if c0 < y∗i < c1,
c1, if y∗i ≥ c1

An extension of the model (3) for the doubly-censored case is given by

g(yi) = p0i I0i(yi) + p1i I1i(yi)

+ (1− p0i − p1i) f+(yi)(1− I0i(yi)− I1i(yi)), (4)

where I0i(yi) = 1 if yi ≤ c0 and zero otherwise, I1i(yi) = 1 if yi > c1 and zero otherwise. It
has that p0i is the proportion of observations below constant c0 (the lower detection limit)
and p1i the proportion of observations above constant c1 (the upper detection limit).

If y∗i ∼ N(µ, σ2), it follows from Definition 1 that the PDF of a doubly-censored
random variable Y with normal distribution (DCN), which is an extension of the Tobit
model, is given by

f (yi) =



Φ
(

c0−µ
σ

)
, if y∗i ≤ c0,

1
η φ
(

yi−µ
σ

)
, if c0 < y∗i < c1,

1−Φ
(

c1−µ
σ

)
, if y∗i ≥ c1

3. The Bernoulli/Doubly Censored Birnbaum—Saunders Mixture Model

In this section, a new doubly-censored model based on unit-Birnbaum-Saunders
distribution is introduced.

3.1. Mixture Model

As an alternative to the doubly-censored on [0, 1] interval models, the doubly-censored
Tobit model, inflated beta distribution and doubly-censored power-normal model; a new
model based on a mixture between a Bernoulli random variable and the asymmetric
UBS(α, β) model is introduced. It is considered that the continuous part ranging in (0, 1) is
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modeled by a random variable following a UBS(α, β) distribution, while the point mass at
zero can be modeled by a Bernoulli random variable with parameter γ, namely Ber(γ).

Definition 2. A random variable X that assumes values on the closed interval [0, 1] is said to
have a zero-and-one-inflated Bernoulli unit-Birnbaum-Saunders distribution (BUBSZOI) with
parameters α, β, γ and p, if X has PDF given by

f (x) =


p(1− γ), if x = 0,
(1− p) fUBS(x; α, β), if 0 < x < 1,
pγ, if x = 1,

with 0 < p, γ < 1 and α, β > 0, where fUBS(xi; α, β) is the UBS distribution (2). We write X ∼
BUBSZOI(α, β, p, γ). We can see that, if X ∼ BUBSZOI(α, β, p, γ), then P(x = 0) = p(1− γ)
and P(x = 1) = pγ.

Let X ∼ BUBSZOI(α, β, p, γ), then the cumulative distribution function (CDF) of X is
given by

FX(x) =


p(1− γ), if x ≤ 0,
p(1− γ) + (1− p)Φ

(
w(x)

)
, if 0 < x < 1

1, if x ≥ 1.

where w(x) = 1
α

[√
− log x

β −
√

β
− log x

]
. After some algebraic manipulation, the k-th mo-

ment of X ∼ BUBSZOI(α, β, p, γ) can be obtained by using

E(Xk) = pγ + (1− p)
2kα2β +

√
2kα2β + 1 + 1

2kα2β + 1
exp

[
−
√

2kα2β + 1− 1
α2

]
,

for k = 1, 2, . . . , it follows that

µ1 = E(X) = pγ + (1− p)
2α2β +

√
2α2β + 1 + 1

2α2β + 1
exp

[
−
√

2α2β + 1− 1
α2

]
,

and

µ2 = E(X2) = pγ + (1− p)
4α2β +

√
4α2β + 1 + 1

4α2β + 1
exp

[
−
√

4α2β + 1− 1
α2

]
,

so

Var(X) = (1− p)σ2
UBS + p(1− p)µ2

1 + pγ
(
1− pγ− 2(1− p)µ1

)
,

where σ2
UBS is the variance of a random variable following a UBS(α, β) distribution.

3.1.1. Maximum Likelihood Estimation

Let X = (x1, . . . , xn)> a random sample of a BUBSZOI distribution. Defining ∑1
as the sums corresponding to 0 < Xi < 1, n0 = ∑n

i=1 I{0}(xi), n1 = ∑n
i=1 I{1}(xi) and

n01 = ∑n
i=1 I{0,1}(xi), where IA(x) is the indicator function for the set A, then, it follows
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that the log-likelihood function for the parameter vector θ = (α, β, p, γ)> given the sample
X can be written as

`(θ; X) = n01 log(p) + (n− n01) log(1− p) + n1 log(γ) + n0 log(1− γ)

+ ∑
1

{
− log(xi)− log(α)− 1

2
log(β) + log(− log xi + β)

− 3
2

log(− log xi) +
1

2α2

(
log xi

β
+

β

log xi
+ 2
)}

.

The elements of the score function, defined as the first partial derivative of the log-
likelihood function concerning the parameters, are given by

∂`(θ; X)
∂α

= − 1
α ∑

1

[
1 +

1
α2

(
log xi

β
+

β

log xi
+ 2
)]

,

∂`(θ; X)
∂β

= − n
2β

+ ∑
1

1
− log xi + β

+
1

2α2 ∑
1

(
1

log xi
− log xi

β2

)
,

∂`(θ; X)
∂p

=
n01 − np
p(1− p)

,

∂`(θ; X)
∂γ

=
n1 − γn01

γ(1− γ)

The maximum likelihood estimator (MLE) for θ = (α, β, p, γ)>, can be obtained by
solving the system of equations that results by equating previous derivatives to zero. Hence,
we obtain the solutions p̂ = n01/n and γ̂ = n1/n01 for the proportions of zeros and ones,
respectively. It can be shown that the estimator p̂ is unbiased for p. The system of equations
obtained for (α, β)> does not have an analytical solution and it must be solved by numerical
methods like Newton-Raphson or quasi-Newton. The estimator α̂ is obtained as function
of β̂ by

α̂ =

√
s
β̂
+

β̂

r
− 2

where s = (− log x) and r =
((

(− log x)−1
))−1

while β̂ is the solution of the equation

β2 − (2r + K(β)) + r(s + K(β)) = 0.

where K(β) =

((
(− log x + β)−1

))−1
.

3.1.2. Observed Information Matrix

The elements of the observed information matrix are obtained multiplying by mi-
nus the second partial derivative of the log-likelihood function concerning each of the
parameters, i.e.,

κθjθj′
= −∂2`(θ; X)

∂θj∂θj′
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where θj, θj′ ∈ (α, β, p, γ)>. Then, it follows that

καα = ∑
1

[
− 1

α2 +
3
α2 a2

xi

]
,

κβα = ∑
1

1
α3

[
− log xi

β2 − 1
− log xi

]
,

κββ = ∑
1

[
− 1

2β2 +
1

(− log xi + β)2 +
1

α2β3 (− log xi)

]
,

κpp =
n01(1− 2p) + np2

p2(1− p)2 ,

κγγ =
n1(1− 2γ) + n01γ2

γ2(1− γ)2 ,

and

καp = jβp = jαγ = jβγ = jγp = 0,

where

ax =
1
α

[√
− log x

β
−
√

β

− log x

]
.

The elements of the Fisher information matrix can be obtained by multiplying by n−1

the expected values of the elements of the matrix of second derivatives of the log-likelihood
function. Following [22] the Fisher information matrix for θ = (α, β, p, γ)> is given by

I(θ) = (1− p)


1
α2 0 0 0

0
√

2π+αq(α)√
2πα2β2 0 0

0 0 1
p(1−p)2 0

0 0 0 p
γ(1−γ)(1−p)

,

where q(α) = α
√

2/π− π exp
(
2/α2)erf

(
2/α

)
/2, where erf(x) = 2√

π

∫ ∞
x exp(−t2)dt is the

error function, see [26]. We can note that the 2× 2 superior submatrix of I(θ) matches with
the Fisher information matrix of the UBS distribution. This shows that the parameters
vectors (α, β)> and (p, γ)> are orthogonal, so that the information matrix is blocked
orthogonal and can be written as

I(θ) = Diag{Iα,β, Ip,γ},

where

Iα,β = Diag

{
1− p

α2 ,
(1− p)

(√
2π + αq(α)

)
√

2πα2β2

}
,

and

Ip,γ = Diag
{

1
p(1− p)

,
p

γ(1− γ)

}
.

For large samples, the MLE θ̂ of θ follows a distribution asymptotically normal, i.e.,√
(θ̂− θ)

A−→ N4(0, I−1(θ)),
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resulting that the asymptotic variance Σθ̂, of the MLE θ̂ is n−1 times the inverse of I(θ) and
given by

Σθ̂ =


α2

n(1−p) 0 0 0

0 1
n(1−p)

√
2πα2β2

√
2π+αq(α)

0 0

0 0 p(1−p)
n 0

0 0 0 γ(1−γ)
np

.

The approximation N4(θ, Σθ̂) can be used to construct the confidence intervals for θr,
which are given by the formula

θ̂r ∓ z1−ρ/2

√
σ̂(θ̂r),

where σ̂(·) is the r-th diagonal element of the matrix Σθ̂ and z1−ρ/2 is the 100(1− ρ/2)%
quantile of the standard normal distribution.

3.2. Mixture Under Reparameterization

A representation of the Bernoulli/UBS mixture model in the form of the doubly-
censored model given in (4), that is, it could be written based on the probabilities of the
limit points c0 = 0 and c1 = 1, call them δ0 and δ1 > 0 respectively, can be obtained
under the reparameterization used by [23] by letting δ1 = pγ and δ0 = 1− δ1, where
δ0 = P(x = 0) and δ1 = P(x = 1) with 0 < δ0 + δ1 < 1, which leads to the PDF given by

f (x) =


δ0, if x = 0,
(1− δ0 − δ1)gUBS(x; α, β), if 0 < x < 1,
δ1, if x = 1,

which is denoted by BUBSZOIR(α, β, δ0, δ1). If X ∼ BUBSZOIR(α, β, δ0, δ1), then the CDF
of X is given by

FR(x) =


δ0, if x ≤ 0,
δ0 + (1− δ0 − δ1)Φ

(
w(x)

)
, if 0 < x < 1,

1, if x ≥ 1.

where w(x) = 1
α

[√
− log x

β −
√

β
− log x

]
.

Given a random sample of size n of a X ∼ BUBSZOIR(α, β, δ0, δ1), the log-likelihood
function to estimate the parameter vector θ = (α, β, δ0, δ1)

> can be written as

`(θ; X) = n0 log(δ0) + n1 log(δ1) + (n− n01) log(1− δ0 − δ1)

+ ∑
1

{
− log(xi)− log(α)− 1

2
log(β) + log(− log xi + β)

− 3
2

log(− log xi) +
1

2α2

(
log xi

β
+

β

log xi
+ 2
)}

,

Then, the score equations follow by equating to zero the score functions, and leading
to the following equations

− 1
α ∑

1

[
1 +

1
α2

(
log xi

β
+

β

log xi
+ 2
)]

= 0,

− n
2β

+ ∑
1

1
− log xi + β

+
1

2α2 ∑
1

(
1

log xi
− log xi

β2

)
= 0,
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which can be solved numerically by using Newton-Raphson. From equations ∂`(θ;X)
∂δ0

= 0

and ∂`(θ;X)
∂δ1

= 0 it is obtained the estimator δ̂0 = n0/n of the proportion of zeros in the

sample and δ̂1 = n1/n, the proportions of ones in the sample. In this new model, the Fisher
information matrix can be written as I(θ) = Diag{Iδ0,δ1 , Iα,β}, where the elements of Iδ0,δ1

are given by iδ0δ0 = 1−δ1
δ0(1−δ0−δ1)

, iδ1δ0 = 1
1−δ0−δ1

and iδ1δ1 = 1−δ0
δ1(1−δ0−δ1)

, with Iα,β as were
computed for the model BUBSZOI(α, β, p, γ).

For this new parameterization, the parameters of the censored and non-censored parts
of the model are orthogonal, so the corresponding MLEs are asymptotically orthogonal
and the parameters can be estimated separately.

For n large,
√

n(θ̂− θ)
A−→ N4(0, Σθ̂),

meaning that θ̂ is consistent and asymptotically normally distributed with sample variance

Σθ̂ =


α2

n(1−δ0−δ1)
0 0 0

0 1
n(1−δ0−δ1)

√
2πα2β2

√
2π+αq(α)

0 0

0 0 δ0(1−δ0)
n − δ0δ1

n
0 0 − δ0δ1

n
δ1(1−δ1)

n

.

3.3. Censored Models for Zero or One Inflation

Particular cases of the previous zero-and-one-inflated model, are the situation of
zero-inflated and one-inflated. In the case of the zero-inflated, the density function is
given by:

f (x) =

{
δ0, if x = 0,
(1− δ0)gUBS(x; α, β), if 0 < x < 1.

where 0 < δ0 = P(x = 0) < 1. This model is denoted BUBSZIR(α, β, δ0). The log-likelihood
function of θ = (α, β, δ0)

> can be written as:

`(θ; X) = n0 log(δ0) + (n− n0) log(1− δ0)

+ ∑
1

{
− log(xi)− log(α)− 1

2
log(β) + log(− log xi + β)

− 3
2

log(− log xi) +
1

2α2

(
log xi

β
+

β

log xi
+ 2
)}

,

The MLEs of the parameters α and β are obtained numerically from the equations
∂`(θ;X)

∂α = 0 and ∂`(θ;X)
∂β = 0, as in the general case of the model BUBSZOIR(α, β, δ0, δ1). For

the case of the parameter δ0, the estimate is obtained from the equation ∂`(θ;X)
∂δ0

= 0 and it is

given by δ̂0 = n0/n, which is the estimated proportion of zeros in the sample.
The variance of the MLE vector θ = (α, β, δ0)

> takes the form

Σθ̂ =


α2

n(1−δ0)
0 0

0 1
n(1−δ0)

√
2πα2β2

√
2π+αq(α)

0

0 0 δ0(1−δ0)
n

.

In the case of the one-inflated, the likelihood function is given by:

f (x) =

{
δ1, if x = 1,
(1− δ1)gUBS(x; α, β), if 0 < x < 1.
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where 0 < δ1 = Pr(x = 1) < 1. This is denoted by BUBSOIR(α, β, δ1). The log-likelihood
function of θ = (α, β, δ1)

> can be written as

`(θ; X) = n1 log(δ1) + (n− n1) log(1− δ1)

+ ∑
1

{
− log(xi)− log(α)− 1

2
log(β) + log(− log xi + β)

− 3
2

log(− log xi) +
1

2α2

(
log xi

β
+

β

log xi
+ 2
)}

,

As in the case of the zero-inflated, the MLEs of the parameters α and β are obtained
numerically from the equations ∂`(θ;X)

∂α = 0 and ∂`(θ;X)
∂β = 0, while δ1 is estimated from

equation ∂`(θ;X)
∂δ1

= 0, thus, it is obtained the estimator δ̂1 = n1/n, which is the proportion
of ones in the sample.

The variance of the MLE of the parameter vector θ = (α, β, δ1)
>, is

Σθ̂ =


α2

n(1−δ1)
0 0

0 1
n(1−δ1)

√
2πα2β2

√
2π+αq(α)

0

0 0 δ1(1−δ1)
n

.

3.4. Testing Nested Models

Let consider Fθ and Gγ with corresponding density functions f (yi | xi, θ) and g(yi |
xi, β), respectively, the likelihood ratio statistic to compare models is given by

LR(θ̂, β̂) ≡ ` f (θ̂)− `g(β̂) =
n

∑
i=1

log
f (yi | xi, θ̂)

g(yi | xi, β̂)
,

This likelihood ratio statistic does not have a chi-square distribution. To overcome
this problem, Vuong [27] proposed an alternative approach based on the Kullback-Liebler
information criterion, [28]. The statistic is given by

TLR,NN =
1√
n

LR(θ̂, β̂)

ω̂2 ,

where

ω̂2 =
1
n

n

∑
i=1

(
log

f (yi | xi, θ̂)

g(yi | xi, β̂)

)2

−
(

1
n

n

∑
i=1

(
log

f (yi | xi, θ̂)

g(yi | xi, β̂)

))2

is an estimator for the variance of 1√
n LR(θ̂, β̂).

Hence, it was shown that, as n→ ∞,

TLR,NN
d−→ N(0, 1)

under

H0 : E
[

log
f (yi | xi, θ)

g(yi | xi, β)

]
= 0,

then, the models are equivalent. At the 5% level, being z0.025 the critical value, the model is
rejected if TLR,NN > z0.025, that is, TLR,NN < −z0.025.

4. Real Data Illustrations

In this section, the usefulness of the proposed models is presented. The BUBSZOI and
BUBSZI distributions are fitted to real data sets.
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4.1. Illustration 1 of the BUBSZOI Model

For this illustration, we use the data set available at http:www.datasus.gov.br, (accesed
date: 27 November 2021). This data set corresponds to the proportions of infant deaths in
5561 Brazilian counties. The histogram, that show the behavior of the data, is given in the
following Figure 1 (on left). 

x

F
re

q
u

e
n

c
y

0.0 0.2 0.4 0.6 0.8 1.0

0
1
0
0
0

2
0

0
0

3
0
0
0

(a)

0.0 0.2 0.4 0.6 0.8

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

C
u
m

u
la

ti
v
e
 d

is
tr

ib
u
ti
o
n

(b)

Figure 1. (a) Histogram of the death proportions. (b) Graphs: empiric (solid line), BUBSZOI model
(dotted line).

Table 1 shows some descriptive statistics of the data set. For this data set, the inflated
beta (BEINF) distribution was fitted, Ref. [23]. In addition, the MBLPN model proposed
by [22] is fitted, where is assumed a mixture of a Bernoulli random variable for the discrete
part, and a log-power-normal model for the continuous part (between zero and one).
This is denoted by MBLPN (µ, σ, α, δ0, δ1). The BUBSZOI model is also fitted. The MLEs
(with standard errors in parentheses) of the fitted parameter models are given in Table 2.
Figure 1b is the CDF for the BUBSZOI model, showing that the model presents a good fit
for the studied data set.

Table 1. Statistical summary of the infant deaths data.

Data n Mean SE Bias Kurtosis

Complete 5561 0.137 0.246 2.069 6.647
Non-censored 3541 0.292 0.216 0.811 2.94

Table 2. The MLE of the parameters of the mixtures of the Bernoulli distribution with: Beta, LPN and
UBS models.

Est. BEINF MBLPN BUBSZOI

µ̂ 0.297(0.004) 0.661(0.0066) –
σ̂ 0.456(0.005) 0.022(0.0030) –
α̂ – 0.001(0.001) 0.783(0.012)
β̂ – – 1.198(0.019)
δ̂0 0.606(0.007) 0.606(0.007) 0.606(0.007)
δ̂1 0.031(0.002) 0.031(0.002) 0.031(0.002)

To compare BUBSZOI model against the MBLPN model of [22] and the BEINF model,
a test of non-nested models is used. Let Fθ the BUBSZOI model and Gβ, the MBLPN
model, the Vuong’s approach leads to the observed value TLR,NN = −0.0116 which is not
greater than the critical value z0.025 = 1.96 and hence, the MBLPN distribution is not better
than the BUBSZOI model. Similarly, to compare the BUBSZOI and BEINF models, it has
TLR,NN = 55.3415 which is greater than the critical value z0.025 = 1.96 which favors the
BUBSZOI model, then the best model to fit the data is the BUBSZOI.

http:www.datasus.gov.br
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4.2. Illustration of the BUBSZI Model

A situation in which our model can be useful, occurs when we want to fit a statistical
model to data sets related to percentages of people with some feature of interest (with high
or low frequency of occurrence). For example, this second illustration uses the database
available and explained in detail at http:www.pnud.org.br (accessed date: 14 September
2021), corresponding to the percentage of people whit certain poverty conditions. Here,
the frequency histogram of the data is presented in Figure 2a. Note that their shape is as
an inverted J, a feature that can be modeled by the BEZI model, see [23], it is assumed a
mixture of a Bernoulli random variable for the discrete part and a beta regression for the
continuous (between zero and one), which is denoted by BEZI (µ, σ, δ0). The total number
of zeros in the sample is represented with a vertical bar at zero. Additionally, we consider a
left-censored Tobit model and the BUBSZI distribution. The MLEs (with standard errors in
parentheses) of the parameters of the proposed models are presented in Table 3.
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Figure 2. (a) Histogram of the death proportions. (b) Graphs: empiric (solid line), BEZI (dashed line).
(c) Graphs: empiric (solid line), BUBSZI (dotted line).

Table 3. The MLE of the parameters of the BEZI, Tobit and BUBSZI models.

Est. BEZI Tobit BUBSZI

µ̂ 0.088(0.004) 0.085(0.004) –
σ̂ 6.290(0.404) 0.104(0.003) –
α̂ – – 0.575(0.016)
β̂ – – 2.993(0.066)
δ̂0 0.023(0.006) – 0.023(0.006)

Figure 2 also shows the CDF for the BEZI and BUBSZI model, illustrating the fact that
the models present a good fit for the studied data set.

Now, being Fθ the BUBSZI model and Gβ, the BEZI model, the Vuong’s approach
leads to the observed value TLR,NN = 18.6431. This value is greater than the critical point
z0.025 = 1.96 and hence, the BUBSZI distribution is the best model. Similarly, for comparing
models BUBSZI and Tobit, we have TLR,NN = 11.5110 which favors the BUBSZI model,
then the best model to fit the data is the BUBSZI model.

http:www.pnud.org.br
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4.3. Illustration 2 of the BUBSZOI Model

As was mentioned in the introduction, medicine is an important area of application
of our model. So, this new illustration is made by using the data set which was studied
by [29] and corresponds to a clinical marker of periodontal disease. The histogram of
the response (X) (proportion of diseased tooth sites of the incisors tooth), is presented in
Figure 3a showing the data behavior. Notice that, the data set presents high inflation of
X = 1, but for some units, we have X = 0.

We fit the beta and BUBSZOI models to the data set. The MLEs of the µ and σ of the beta
model are given by µ̂ = 0.6774 (0.0143) and σ̂ = 0.4698 (0.0158), while for the BUBSZOI
model, we obtained the MLEs α̂ = 1.2135 (0.0573) and β̂ = 0.2638 (0.0178). The estimates
of the δ0 and δ1 in both models are δ̂0 = 0.0034 (0.0034) and δ̂1 = 0.2241 (0.0244).

The value of Vuong’s statistic to compare the models under consideration is given by
TLR,NN = 26.99265, which is greater than z0.025 = 1.96 which favors the BUBSZOI model,
so the best model to fit the data is the BUBSZOI model. Figure 3 (on right), presents the
CDF of the BUBSZOI model, illustrating the fact that the model presents a good fit for the
studied data set. 
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Figure 3. (a) Histogram of the the variable X. (b) Graphs: empiric (solid line), BUBSZOI (dotted line).

5. Concluding Remarks

The modeling of data with excessive zeros or ones is a task that is required in areas
like economy, medicine, agriculture, and so on. Possible applications in these areas could
be related to the modeling of the infant mortality rate, the proportion of deaths caused
by smoking, a clinical marker of periodontal disease, the estimation of the gross domestic
product, or the mortality in traffic accidents, among others. As shown in previous sections,
different alternatives could be found in the literature to model this behavior, as the ex-
tensions of the inflated beta model, which were used to compare their performance with
our proposal.

This paper discusses an alternative to the beta regression model in the situation of
excessive zeros and/or ones. The approach is based on an extension of the Tobit model
with excess of zeros considered in [30]. The estimation is based on the likelihood approach
and the Fisher information matrix is derived having orthogonality between the parameters,
which simplifies large sample properties of the maximum likelihood estimators. Three
illustrations with real data show that the proposed models can be even better than the
extensions of the inflated beta model considered in [23].
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