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Abstract: This paper proposes a model for brucellosis transmission. The model takes into account the
age of infection and waning immunity, that is, the progressive loss of immunity after recovery. Three
routes of transmissions are considered: vertical transmission, and both direct and indirect routes of
horizontal transmission. According to the well-posedness results, we provide explicit formulas for
the equilibria. Next, we derive the basic reproduction numberR0 and prove some stability results
depending on the basic reproductive number. Finally, we perform numerical simulations using
model parameters estimated from biological data to confirm our theoretical results. The results of
these simulations suggest that for certain values of parameters, there will be periodic outbreaks of
epidemics, and the disease will not be eradicated from the population. Our results also highlight the
fact that the birth rate of cattle significantly influences the dynamics of the disease. The proposed
model can be of a good use in studying the effects of vaccination on the cattle population.

Keywords: population dynamics; brucellosis; basic reproduction number; stability; waning immunity
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1. Introduction

Brucellosis is a zoonotic disease, mainly caused by Brucella abortus. It is transmitted
to people from animal species such as cattle, swine, goats, and sheep [1,2]. In developing
countries, the disease is of great concern due to its economic and public health impacts [3].
There are various transmission modes of brucellosis, but it is mainly transmitted through
direct contact with infected animalsor indirect contact via environmental contamination
with infected feces [4]. Moreover, brucellosis has also been reported to spread from mothers
to offspring (vertical transmission) [5]. It has been showed that various domestic animals
develop an immune response against Brucella infection [3]. The immune system of mam-
malian species is categorized into two parts: the innate immune system, which is the
forefront of the host defense, and the specific immune system, which provides immediate
and permanent protection against a wide variety of pathogens [6,7]. A key feature of
the adaptive immune system is immunological memory. Vaccination against infection is
possible due to this immune memory. The first adaptive response against an infection,
called the primary response, often takes days to mature. In contrast, B. Bang [8] observed
that infected pregnant females usually abort only once, and concluded that infected cows
acquire immunity after a brucellosis infection.
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Mathematical Model

Several mathematical models of brucellosis have been developed by researchers. Their
authors have used various mathematical approaches: ordinary differential equations with
waning of immunity [9–16], culling [17–19], treatment and vaccination [18,20], seasonal-
ity [21], and partial differential equations with age of infection [22] and seasonality [23].
Ainseba et al. [24] proposed an unstructured model to study the transmission of brucellosis.
Their model incorporated vertical transmission, as well as direct and indirect contamination
of individuals. This model was later modified by Mwanga et al. [25] to incorporate culling
of the infected individuals. Hou et al. [17] proposed a model for sheep brucellosis trans-
mission in young and adult sheep populations. They determined the basic reproductive
number and then discussed the dynamic properties of the model.

This paper proposes a mathematical model of brucellosis with age of infection and
time since recovery to describe the dynamics of brucellosis in a given population under
the assumption that immune protection may wane over time. The model includes many
features, expressing vertical transmission, as well as direct and indirect horizontal trans-
missions. We denote by S(t) the density of susceptible animals at time t, by i(a, t) the
density of infected animals at time t with respect to age of infection a, and by r(τ, t) the
density of recovered animals at time t with respect to the time since recovery τ. The indirect
transmission through the environment is considered by the compartment V(t), measuring
the bacterial concentration in the environment at time t. Susceptible animals contract
the infection either via direct contact with an infected animal or through contact with
polluted products in the environment. Let b be the birth rate in the population and β(a) the
shedding rate of bacteria by an infected animal with respect to its time since infection a.
Animals acquire the infection from the environment at a rate of σind. During an infection,
an animal can recover at a time since infection a at a rate of δ(a). A recovered animal
loses its immunity at a rate of γ(τ). All offspring from an infected animal are infected at
birth [26]. Hence, the vertical transmission probability is assumed to be constant and is

set to be 1. Then, the term b
∫ ∞

0
i(a, t)da denotes the flux of infected new-borns at time

t. Moreover, we assume that any offspring from the recovered class are born susceptible.
A fraction p ∈ [0, 1] of the quantity of bacteria excreted by an infected animal at time
t is directly ingested by animals with a rate σdir and the remaining 1− p is excreted in
environment. The bacterial clearance rate is denoted by µV . At any time t, the total num-
ber of infected individuals is I(t) =

∫ ∞
0 i(a, t)da, whereas the total number of recovered

individual is R(t) =
∫ ∞

0 r(τ, t)dτ. Then, the total size of population at time t is given by
N(t) = S(t) + I(t) + R(t). Figure 1 depicts the flow diagram of our model governed by
the system

dS(t)
dt

= (b− J(t)− (µ0 + µ1N(t)))S(t) + bR(t) +
∫ ∞

0
γ(τ)r(τ, t)dτ,

∂i(a, t)
∂t

+
∂i(a, t)

∂a
= −(δ(a) + µ0 + µ1N(t))i(a, t),

∂r(τ, t)
∂t

+
∂r(τ, t)

∂τ
= −(γ(τ) + µ0 + µ1N(t))r(τ, t),

dV(t)
dt

= (1− p)
∫ ∞

0
β(a)i(a, t)da− µVV(t),

(1)

where
J(t) = σindV(t) + pσdir

∫ ∞

0
β(a)i(a, t)da, (2)

with boundary conditions
i(0, t) = J(t)S(t) + bI(t),

r(0, t) =
∫ ∞

0
δ(a)i(a, t)da,

(3)
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and initial conditions

S(0) = S0, i(a, 0) = i0(a), r(τ, 0) = r0(τ) and V(0) = V0. (4)

r(τ, t)

S(t) i(a, t)

V(t)

b(S(t) + R(t))

b
∫ ∞

0
i(a, t)da(

σdir p
∫ ∞

0
β(a)i(a, t)da + σindV(t)

)
S(t)

∫ ∞

0
γ(τ)i(τ, t)dτ

∫ ∞

0
δ(a)i(a, t)da

(µ0 + µ1N(t))S(t)

µVV(t)

(µ0 + µ1N(t))r(τ, t)

(µ0 + µ1N(t))i(a, t)

(1− p)
∫ ∞

0
β(a)i(a, t)da

Figure 1. Flowchart of the model (1)–(3).

R. Djidjou-Demasse et al. [27] considered a model describing the interaction between
humans and vectors in malaria. Their model incorporated age, time since infection, and
waning immunity. After obtaining a well-posedness result, they proved the existence
of equilibria and obtained a necessary and sufficient condition of bifurcation. They also
proved that by neglecting the age dependence of the human population, there may be a
backward or a forward bifurcation, depending on the sign of some constant.

In the present work, we develop a new age-structured model for brucellosis with
waning immunity. As far as we know, this is the first model of brucellosis with these
features. Using the integrated semi-group theory [28,29], we provide some well-posedness
results. We derive the explicit formula of the basic reproductive numberR0 and we show
the existence of a unique disease-free equilibrium and obtain its global stability by means
of Fatou’s Lemma. We also prove that there exists a locally stable endemic equilibrium and
we develop some numerical simulations.

The rest of the paper is organized as follows. In Section 2, we establish the well-
posedness results for systems (1)–(4). In Section 3, we derive an explicit formula of the basic
reproduction number and prove the stability of the disease-free equilibrium. We prove
the existence and the local stability of the endemic equilibrium in Section 4. In Section 5,
numerical simulations are performed to confirm our theoretical results. Finally, a discussion
is presented in Section 6.

Assumption 1. We make the following assumptions:

1. b, µ0, µ1, µV , σdir, σind > 0 with b > µ0 ([30]);
2. The functions δ(·), γ(·) belong to L∞

+(0, ∞) and γ(τ) > γ0 for almost every τ ∈ (0, ∞) and
for some γ0 > 0;

3. The function β(.) is positive, bounded, and uniformly continuous on (0, ∞).
4. The initial conditions are such that S0, V0 > 0, i0(·), r0(·) ∈ L1

+(0, ∞).
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2. Well-Posedness Results

In this section, we establish the well-posedness results for systems (1)–(4) using an
integrated semi-group approach as in [29,31]. In order to take the boundary conditions into
account, we introduce the space X1 defined by

X1 = R× L1(0, ∞).

Let Ai : D(Ai) ⊂ X1 → X1 and Ar : D(Ar) ⊂ X1 → X1 be two linear operators on X1
defined by

Ai

(
0
ϕ

)
=

(
−ϕ(0)

−
(

∂
∂a + δ(a) + µ0

)
ϕ

)
, Ar

(
0
ϕ

)
=

(
−φ(0)

−
(

∂
∂τ + γ(τ) + µ0

)
φ

)
,

with
D(Ai) = D(Ar) = {0} ×W1,1(0, ∞).

Next, we consider the space X defined by

X = R× X1 × X1 ×R.

Then, endowed with the norm

‖ϕ‖X = |ϕ1|+ |ϕ2|+
∫ ∞

0
|ϕ3(a)|da + |ϕ4|+

∫ ∞

0
|ϕ5(τ)|dτ + |ϕ6|,

for ϕ = (ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, ϕ6)
T ∈ X, X is a Banach space. We denote by X+ the positive

cone of X, that is
X+ = R+ × X1,+ × X1,+ ×R+.

Let also X0 = R× {0} × L1(0, ∞)× {0} × L1(0, ∞)×R and consider the linear opera-
tor A : D(A) ⊂ X→ X defined by

A =


b− µ0 0 0 0

0 Ai 0 0
0 0 Ar 0
0 0 0 −µV


where

D(A) = R× D(Ai)× D(Ar)×R.

Then, D(A) = X0 is not dense in X. For v(t) = (S(t), 0, i(·, t), 0, r(·, t), V(t))T , let

F1(v(t)) = −(J(t) + µ1N(t))S(t) + bR(t) +
∫ ∞

0
γ(τ)r(τ, t)dτ,

F2(v(t)) = J(t)S(t) + bI(t),

F3(v(t)) = µ1N(t)i(., t),

F4(v(t)) =
∫ ∞

0
δ(a)i(a, t)da,

F5(v(t)) = µ1N(t)r(., t),

and
F6(v(t)) = (1− p)

∫ ∞

0
β(a)i(a, t)da.

We consider F : D(A)→ X the nonlinear map defined by
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F(v(t)) =



F1(v(t))
F2(v(t))
F3(v(t))
F4(v(t))
F5(v(t))
F6(v(t))

.

Set X+
0 = X0 ∩ X+. Then, the system (1)–(4) is rewritten as the following abstract

Cauchy problem:

dv(t)
dt

= Av(t) + F(v(t)), for t ≥ 0, with v(0) = v0 ∈ X+
0 , (5)

where v0 = (S0, 0, i0, 0, r0, V0)
T . We solve the differential Equation (5) in integrated form:

v(t) = v0 + A
∫ t

0
v(s)ds +

∫ t

0
F(v(s))ds. (6)

A continuous solution to (5) is called an integral solution to (6).

Theorem 1. The problem (1)–(4) admits a unique continuous solution, with values in X+
0 and the

map Ψ : [0, ∞)×X+
0 → X+

0 defined by Ψ(t, x) = v(t) is a continuous semiflow. This means that
the map Ψ is continuous and Ψ(t, Ψ(s, .)) = Ψ(t + s, .) and Ψ(0, .) is the identity map. Moreover,
this solution is bounded and the upper bounds are uniform. More precisely, the following inequalities
hold

N(t) ≤ (b− µ0)N0e(b−µ0)t

b− µ0 + µ1N0(e(b−µ0)t − 1)
, V(t) ≤ max

{
V0,

(1− p)‖β‖L∞(0,∞)

µV

b− µ0

µ1

}
, (7)

and

lim sup
t→∞

[S(t) + ‖i(·, t)‖
LThepr1(0,∞)+‖r(·,t)‖L1(0,∞)

]≤ b−µ0
µ1

, lim sup
t→∞

V(t) ≤
(1− p)‖β‖L∞(0,∞)

µV

b− µ0

µ1
, (8)

where N0 = S0 +
∫ ∞

0 i0(a)da +
∫ ∞

0 r0(τ)dτ.

Proof. We proceed as in [29]. First, we note that the function F is Lipschitz-continuous on
every bounded set. Next, we prove that the operator (A, D(A)) is a Hille–Yosida operator
and (λ − A)−1 maps X+ into itself (A is resolvent positive). Indeed, let λ > −µ̃ :=
−min{b − µ0, γ0, µV}, f = (ϕ, Φ, φ, Ψ, ψ, ω) ∈ X and g = (ϕ̃, (0, φ̃), (0, ψ̃), ω̃) ∈ D(A).
Then

(λ− A)−1



ϕ
Φ
φ
Ψ
ψ
ω

 =



ϕ̃(
0
φ̃

)
(

0
ψ̃

)
ω̃

⇐⇒



(λ− b + µ0)ϕ̃ = ϕ,
φ̃(0) = Φ,
d
da

φ̃ + (λ + δ(a) + µi(a) + µ0)φ̃ = φ,

ψ̃(0) = Ψ,
d

dτ
ψ̃ + (λ + γ(τ))ψ̃ = ψ,

(λ + µV)ω̃ = ω.

Solving this latter system of equation leads us to
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ϕ̃ =
ϕ

λ− b + µ0
,

φ̃ = Φe−(λ+µ0)ae−
∫ a

0 (δ(s)+µi(s))ds +
∫ a

0
φ(s)e−(λ+µ0)(a−s)e−

∫ a
s (δ(σ)+µi(σ))dσda,

ψ̃ = Ψe−λτe−
∫ τ

0 γ(s)ds +
∫ τ

0
ψ(s)e−λ(τ−s)e−

∫ τ
s γ(σ)dσdτ,

ω̃ =
ω

λ + µV
.

(9)

Integrating the equations for φ̃ and for ψ̃ with respect to a and τ, respectively, and
adding all obtained equations yields

|ϕ̃|+ ‖φ̃‖L1(0,∞) + ‖ψ̃‖L1(0,∞) + |ω̃| ≤
1

λ + µ̃
(|ϕ|+ |Φ|+ ‖φ‖L1(0,∞) + |Ψ|+ ‖ψ‖L1(0,∞) + |ω|).

So
‖(λ− A)−1‖ ≤ 1

λ + µ̃
.

Hence, A is a Hille–Yosida operator. Moreover, if we assume that f ∈ X+, then by (9),
we obtain ϕ̃ ≥ 0, φ̃ ≥ 0, ω̃ ≥ 0 and ω̃ ≥ 0. That is, g = (ϕ̃, (0, φ̃), (0, ψ̃), ω̃) ∈ X+. Thus
(λ− A)−1 maps X+ into X+. Next, arguing as in [32], we show that

lim
h→0+

1
h

dist(v + hF(v),X+) = 0. (10)

Furthermore, it is clear that N(t) satisfies the differential inequality

dN(t)
dt

≤ (b− µ0)N(t)− µ1N(t)2.

Hence, it follows that

N(t) ≤ (b− µ0)N0e(b−µ0)t

b− µ0 + µ1N0(e(b−µ0)t − 1)
,

from which we deduce the first inequality of (7). In addition, we obtain

lim sup
t→∞

N(t) ≤ b− µ0

µ1
.

Moreover, using the third equation in (1), it follows that

dV
dt

≤ (1− p)‖β‖L∞(0,∞) I(t)− µVV

≤ (1− p)‖β‖L∞(0,∞)
b− µ0

µ1
− µVV.

Thus

V(t) ≤ V0e−µV t +
(1− p)‖β‖L∞(0,∞)

µV

b− µ0

µ1
(1− e−µV t).

This latter inequality lead us to the second inequality of (7) and

lim sup
t→∞

V(t) ≤
(1− p)‖β‖L∞(0,∞)

µV

b− µ0

µ1
.

Remark 1. Note that from Theorem 1, the set D defined as
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D =

{
(S, i, r, V); S(t) +

∫ ∞

0
i(a, t)da +

∫ ∞

0
r(τ, t)dτ ≤ b− µ0

µ1
, V(t) ≤

(1− p)‖β‖L∞(0,∞)

µV

b− µ0

µ1

}
(11)

is positively invariant for system (1).

Remark 2. We note that the total population size satisfies the following logistic equation:

dN(t)
dt

= (b− µ0)N(t)
(

1− N(t)
N

)
, (12)

where N = b−µ0
µ1

is the carrying capacity. Thus, we can assume, without loss of generality, that

N(t) = N , ∀t ≥ 0. (13)

Hence, the system (1) becomes

dS(t)
dt

= −J(t)S(t) + bR(t) +
∫ ∞

0
γ(τ)r(τ, t)dτ,

∂i(a, t)
∂t

+
∂i(a, t)

∂a
= −(δ(a) + b)i(a, t),

∂r(τ, t)
∂t

+
∂r(τ, t)

∂τ
= −(γ(τ) + b)r(τ, t),

dV(t)
dt

= (1− p)
∫ ∞

0
β(a)i(a, t)da− µVV(t).

(14)

Before going futher, we consider the following functions:

F (a) = exp
(
−
∫ a

0
η1(s)ds

)
, (15)

and

G(τ) = exp
(
−
∫ τ

0
η2(s)ds

)
, (16)

where η1(a) = δ(a) + b and η2(τ) = γ(τ) + b. Then, it is clear that

F and G are decreasing functions, F (0) = G(0) = 1 and F (a),G(a) ≤ 1. (17)

3. Basic Reproduction Number

In this section, we establish threshold conditions of infection, characterized by the
reproductive numberR0. We derive an explicit formula for the reproductive number by
investigating the local stability of the non trivial disease-free equilibrium of system (14)

given by E0 = (N , 0, 0), where N =
b− µ0

µ1
.

Let S(t) = N + S1(t), i(a, t) = i1(a, t), r(τ, t) = r1(τ, t), V(t) = V1(t), I1(t) =∫ ∞
0 i1(a, t)da, R1(t) =

∫ ∞
0 i1(τ, t)dτ and N1(t) = S1(t) + I1(t) + R1(t). Linearizing the

system (14) about E0, we obtain the following system:

dS1(t)
dt

= −J1(t)N + bR1(t) +
∫ ∞

0
γ(τ)r1(τ, t)dτ,

∂i1(a, t)
∂t

+
∂i1(a, t)

∂a
= −η1(a)i1(a, t),

∂r1(τ, t)
∂t

+
∂r1(τ, t)

∂τ
= −η2(τ)r1(τ, t),

dV1(t)
dt

= (1− p)
∫ ∞

0
β(a)i1(a, t)da− µVV1(t),

(18)
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where
J1(t) = σindV1(t) + pσdir

∫ ∞

0
β(a)i1(a, t)da, (19)

with boundary conditions

i1(0, t) = J1(t)N + bI1(t),

r1(0, t) =
∫ ∞

0
δ(a)i1(a, t)da.

(20)

We insert the following variables in the linearized system: s1(t) = S̃eλt, i1(a, t) = ĩ(a)eλt,
r1(τ, t) = r̃(τ)eλt, and V1(t) = Ṽeλt, with λ being a complex number, and we consider the
following system

λĩ(a) +
dĩ(a)

da
= −η1(a)ĩ(a),

λṼ = (1− p)
∫ ∞

0
β(a)ĩ(a)da− µVṼ,

ĩ(0) =
[

σindṼ + pσdir
∫ ∞

0
β(a)ĩ(a)da

]
N + b

∫ ∞

0
ĩ(a)da.

(21)

The solution of the first equation in (21) is given by

ĩ(a) = ĩ(0)e−
∫ a

0 (λ+η1(s))ds. (22)

Moreover, from the third equation of (21), it follows that

Ṽ =
(1− p)
λ + µV

ĩ(0)
∫ ∞

0
β(a)e−aλF (a)da, (23)

with F (a) given by (15).

By combining (22), (23), and the third equation of (21), we obtain

ĩ(0) = ĩ(0)

[
σdir p +

σind(1− p)
λ + µV

]
N
∫ ∞

0
β(a)e−aλF (a)da + bĩ(0)

∫ ∞

0
e−aλF (a)da.

That is,

1 =

[
σdir p +

σind(1− p)
λ + µV

]
N
∫ ∞

0
β(a)e−aλF (a)da + b

∫ ∞

0
e−aλF (a)da. (24)

Define a function

H(λ) =

[
σdir p +

σind(1− p)
λ + µV

]
N
∫ ∞

0
β(a)e−aλF (a)da + b

∫ ∞

0
e−aλF (a)da. (25)

It is easy to see that the function H is continuously differentiable and satisfies

lim
λ→+∞

H(λ) = 0, lim
λ→−∞

H(λ) = +∞ and H′(λ) < 0.

Therefore, H is a decreasing function and we infer that any eigenvalue λ of (24) has
a negative real part if H(0) < 1, and a positive real part if H(0) > 1. Thus, if R0 > 1,
the infection-free equilibrium is unstable. Next, suppose by way of contradiction that
Equation (24) has a complex solution with a non-negative real part λ = x + iy, with x ≥ 0
and y ∈ R. Let

G(a) = (σdir pN β(a) + b)F (a), (26)
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and
H(a) = σind(1− p)N β(a)F (a). (27)

Then,

H(λ) =
∫ ∞

0
G(a)e−aλda +

1
λ + µV

∫ ∞

0
H(a)e−aλda.

Moreover,

|H(λ)| =

∣∣∣∣∫ ∞

0
G(a)e−aλda +

∫ ∞

0
H(a)e−aλda

∣∣∣∣
≤

∫ ∞

0
|e−a(x+iy)|G(a)da +

1√
(x + µV)2 + y2

∫ ∞

0
|e−a(x+iy)|H(a)da

≤
∫ ∞

0
e−axG(a)da +

1
x + µV

∫ ∞

0
e−axH(a)da

= |H(x)| ≤ R0 < 1.

That is, |H(λ)| < 1, which gives a contradiction. Therefore, ifR0 < 1, the disease-free
equilibrium E0 is locally asymptotically stable and is unstable ifR0 > 1. Define H(0) = R0;
then,R0 is the basic reproductive number of system (1)–(4).

In summary, we have the following:

Theorem 2. We define the basic reproduction number of system (1)–(4) by means of the follow-
ing formula:

R0 = RHdir
0 +RHind

0 +RV
0 (28)

where

RHdir
0 = b−µ0

µ1
σdir p

∫ ∞
0 β(a)F (a)da, (29)

RHind
0 = b−µ0

µ1

σind(1−p)
µV

∫ ∞
0 β(a)F (a)da, (30)

RV
0 = b

∫ ∞
0 F (a)da, (31)

where F (a) is given by (15). Then, the non trivial disease-free equilibrium given by E0 = (N , 0, 0),

where N =
b− µ0

µ1
is locally asymptotically stable ifR0 < 1, whereas it is unstable ifR0 > 1.

Remark 3. Theorem 2 states that the disease-free equilibrium is locally asymptotically stable,
suggesting that every population with initial values close to the disease-free equilibrium remains
close to the equilibrium. This means that a susceptible population approaches the carrying capacity
N , whereas the other compartments tend to 0 as time t→ ∞. In that case, the disease will die out
from the population.

Theorem 3. IfR0 < 1, then the disease-free equilibrium E0 is globally asymptotically stable.

Proof. We already showed that E0 is locally asymptotically stable whenR0 < 1 (Theorem 2).
Therefore, it suffices to show that E0 is a global attractor. Integrating the equation i along
the characteristic line, we have

i(a, t) =

{
B(t− a)F (a) if 0 ≤ a < t,
i0(a− t)e−

∫ a
a−t η1(s)ds if a > t ≥ 0.

(32)

with B(t) = i(0, t). Let m = lim sup
t→∞

B(t). An integration of the equation in V gives

V(t) = V0e−µV t + (1− p)
∫ t

0

∫ ∞

0
e−µV(t−s)β(a)i(a, s)dads. (33)
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By combining (3), (32), and (33), we obtain

B(t) = S(t)
[

σdir p
∫ t

0
β(a)B(t− a)F (a)da + σdir p

∫ ∞

t
β(a)i(a, t)da

]
+S(t)

[
σindV0e−µV t + σind(1− p)

∫ t

0

∫ ∞

0
e−µV(t−s)β(a)i(a, s)dads

]
(34)

+b
∫ t

0
π(a)B(t− a)F (a)da + b

∫ ∞

t
π(a)i(a, t)da.

= S(t)
[

σdir p
∫ t

0
β(a)B(t− a)F (a)da + σdir p

∫ ∞

t
β(a)i(a, t)da

]
+S(t)

[
σindV0e−µV t + σind(1− p)

∫ t

0

∫ t

0
e−µV sβ(a)B(t− s− a)F (a)dads

]
+σind(1− p)S(t)

∫ t

0

∫ ∞

t
e−µV(t−s)β(a)i(a, s)dads + b

∫ t

0
π(a)B(t− a)F (a)da

+b
∫ ∞

t
i(a, t)da.

We take the lim sup when t → ∞ on both sides of (34) and use Fatou’s Lemma and
the boundedness (8) to obtain

m ≤ b− µ0

µ1

[
σdir pm

∫ ∞

0
β(a)F (a)da + σind(1− p)m

∫ ∞

0

∫ ∞

0
e−µV sβ(a)F (a)dads

]
+mb

∫ ∞

0
π(a)F (a)da

=
b− µ0

µ1

[
σdir pm

∫ ∞

0
β(a)F (a)da +

σind(1− p)
µV

m
∫ ∞

0
β(a)F (a)da

]

+mb
∫ ∞

0
F (a)da

= mR0.

Hence, m(1−R0) ≤ 0. BecauseR0 < 1, we deduce that m = 0 and then

lim
t→∞

i(a, t) = 0 and lim
t→∞

V(t) = 0.

Using the first equation in (1), we have lim
t→∞

r(τ, t) = 0 and by means of relation (13), it

follows that lim
t→∞

S(t) =
b− µ0

µ1
. Hence, disease-free equilibrium E0 is a global attractor.

Remark 4. The biological implications of this are: when the basic reproduction number is less than
or equal to one, all populations converge to the disease-free equilibrium, that is, the disease dies
out eventually.

4. Endemic Equilibria and Their Stability

In this section, we describe the existence of an endemic equilibrium and study its
local stability.

Lemma 1. (Existence of an endemic equilibrium) If R0 > 1, then system (14) admits a positive
endemic equilibrium P∗ = (S∗, i∗(a), r∗(τ), V∗), whenRV

0 < 1 and where

S∗ =
(1−RV

0 )µV(
σdir pµV + σind(1− p)

)
K1

, i∗(a) = (R0 − 1)
µVF (a)(

σdir pµV + σind(1− p)
)
K1K3

, (35)
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r∗(τ) = (R0 − 1)
µVG(τ)K2(

σdir pµV + σind(1− p)
)
K1K3

, (36)

and

V∗ = (R0 − 1)
(1− p)(

σdir pµV + σind(1− p)
)
K2

, (37)

with
K1 =

∫ ∞

0
β(a)F (a)da, K2 =

∫ ∞

0
δ(a)F (a)da and K3 =

∫ ∞

0
F (a)da + K2,

whereR0 andRV
0 are given by (28) and (31), respectively.

Proof. Let (S∗, i∗(a), r∗(τ), V∗) represent any steady state of system (14). Then we have
the following system 

−J∗S∗ + bR∗ +
∫ ∞

0
γ(τ)r∗(τ)dτ = 0,

di∗(a)
da

= −(δ(a) + b)i∗(a),
dr∗(τ)

dτ
= −(γ(τ) + b)r∗(τ),

(1− p)
∫ ∞

0
β(a)i∗(a)da− µVV∗ = 0,

i∗(0) = J∗S∗ + b
∫ ∞

0
i∗(a)da,

r∗(0) =
∫ ∞

0
δ(a)i∗(a)da,

J∗ = σindV∗ + pσdir ∫ ∞
0 β(a)i∗(a)da.

(38)

Solving the equations in i∗ and r∗, we have

i∗(a) = i∗(0)F (a), (39)

and
r∗(τ) = r∗(0)G(τ). (40)

From the equation in V∗, we obtain

V∗ =
1− p

µV
i∗(0)K1. (41)

From the fourth equation, we have

i∗(0) = i∗(0)K1

(
σdir p +

σind(1− p)
µV

)
S∗ + i∗(0)RV

0 ,

so

1 = K1

(
σdir p +

σind(1− p)
µV

)
S∗ +RV

0 . (42)

Hence,

S∗ =
(1−RV

0 )µV(
σdir pµV + σind(1− p)

)
K1

. (43)

Combining (43) and the first equation of (38), and thanks to (39) and (41), we obtain

i∗(0) = (R0 − 1)
µV(

σdir pµV + σind(1− p)
)
K1K3

.
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from which we deduce the second relation of (35). Moreover, combining this latter
relation, (40) and (41) and thanks to the boundary conditions, it follows that (36) and
(37) hold.

Before going further, we introduce the following condition, which is needed to ensure
the stability of the endemic equilibrium. Let U(λ) be a function of a complex variable λ
defined by

U(λ) = 1−
(∫ ∞

0
δ(a)e−aλF (a)da

)(∫ ∞

0
(b + γ(τ))e−τλG(τ)dτ

)
− b

∫ ∞

0
e−aλF (a)da. (44)

Suppose that if λ is such that <(λ) ≥ 0, we have

<(U) ≥ 0 and =(U) ≥ 0. (45)

With all these features in mind, we prove the local stability of the endemic equilibrium.

Theorem 4. Let R0 be defined in (28). If we assume that condition (45) holds, then the endemic
equilibrium P∗ is locally asymptotically stable.

Proof. Let S(t) = S∗ + S1(t), i(a, t) = i∗(a) + i1(a, t), r(τ, t) = r∗(τ) + r1(τ, t), V(t) =
V∗ + V1(t), I1(t) =

∫ ∞
0 i1(a, t)da and R1(t) =

∫ ∞
0 i1(τ, t)dτ. We linearize the system (1)–(4)

about P∗, to obtain

dS1(t)
dt

= −J∗S1(t)− J1(t)S∗ + bR1(t) +
∫ ∞

0
γ(τ)r1(τ, t)dτ,

∂i1(a, t)
∂t

+
∂i1(a, t)

∂a
= −η1(a)i1(a, t),

∂r1(τ, t)
∂t

+
∂r1(τ, t)

∂τ
= −η2(τ)r1(τ, t),

dV1(t)
dt

= (1− p)
∫ ∞

0
β(a)i1(a, t)da− µVV1(t),

J∗ = σindV∗ + pσdir ∫ ∞
0 β(a)i∗(a)da.

(46)

where
J1(t) = σindV1(t) + pσdir

∫ ∞

0
β(a)i1(a, t)da, (47)

with boundary conditions

i1(0, t) = J∗S1(t) + J1(t)S∗ + bI1(t),

r1(0, t) =
∫ ∞

0
δ(a)i1(a, t)da.

(48)

We set s1(t) = S̃eλt, i1(a, t) = ĩ(a)eλt, r1(τ, t) = r̃(τ)eλt, and V1(t) = Ṽeλt, with λ ∈ R
and we consider the system

λS̃ = −J∗S̃−
[

σindṼ + pσdir
∫ ∞

0
β(a)ĩ(a)da

]
S∗ + b

∫ ∞

0
r̃(τ)dτ +

∫ ∞

0
γ(τ)r̃(τ)dτ,

λĩ(a) +
dĩ(a)

da
= −η1(a)ĩ(a),

λr̃(τ) +
dĩ(τ)

dτ
= −η2(τ)r̃(τ),

λṼ = (1− p)
∫ ∞

0
β(a)ĩ(a)da− µVṼ,

ĩ(0) = J∗S̃ +

[
σindṼ + pσdir

∫ ∞

0
β(a)ĩ(a)da

]
S∗ + b

∫ ∞

0
π(a)ĩ(a)da,

r̃(0) =
∫ ∞

0
δ(a)ĩ(a)da.

(49)
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Solving the second and third equations of (49) leads us to

ĩ(a) = ĩ(0)e−
∫ a

0 (λ+η1(s))ds, (50)

and
r̃(τ) = r̃(0)e−

∫ τ
0 (λ+η2(s))ds. (51)

Moreover, the fourth equation of (49) gives

Ṽ =
(1− p)
λ + µV

ĩ(0)
∫ ∞

0
β(a)e−aλF (a)da, (52)

with F (a) given by (15).

Combining (23) and the fifth equation of (21) , we obtain

ĩ(0) = J∗S̃ + ĩ(0)

[
σdir p +

σind(1− p)
λ + µV

]
S∗
∫ ∞

0
β(a)e−aλF (a)da + bĩ(0)

∫ ∞

0
e−aλF (a)da. (53)

Now, by combining the first, fifth, and sixth equations of (49) and thanks to (50) and
(51), it follows that

S̃ = − ĩ(0)
λ

U(λ).

Hence, (53) gives

1 +
J∗

λ
U(λ) =

[
σdir p +

σind(1− p)
λ + µV

]
S∗
∫ ∞

0
β(a)e−aλF (a)da + b

∫ ∞

0
e−aλF (a)da. (54)

Next, suppose by way of contradiction that there exists a solution of (54), λ = x + iy,
with x ≥ 0, y ∈ R. On one hand, we have, using (45),∣∣∣∣1 + J∗

λ
U(λ)

∣∣∣∣ =
√
(x + J∗<(U))2 + (y + J∗=(U))2√

x2 + y2
> 1.

On the other hand,∣∣∣∣∣
[

σdir p +
σind(1− p)

λ + µV

]
S∗
∫ ∞

0
β(a)e−aλF (a)da + b

∫ ∞

0
e−aλF (a)da

∣∣∣∣∣
<

[
σdir p +

σind(1− p)
µV

]
S∗
∫ ∞

0
β(a)F (a)da + b

∫ ∞

0
F (a)da = 1 (using (42)).

The left-hand side remains strictly greater than one, whereas the right-hand side is
strictly smaller than one. This produces a contradiction. Hence, the endemic equilibrium
P∗ is locally asymptotically stable.

5. Numerical Experiments

In this section, we present numerical experiments that validate our theoretical results.
We summarize our parameters in the table below.

5.1. Model Parameters

Value of parameter µ0: Following [17,18], the natural mortality rate in cattle is
µ0 = 0.25 year −1.
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Value of parameter µ1: The value of density-dependent mortality µ1 can vary depend-
ing on the carrying capacity. Here, we set µ1 = 5.8× 10−6 year −1, so that the the carrying
capacity is b−µ0

µ1
= 105 sheep.

Values of β(.): As in [32], we let

β(a) =
{

θ(α1 − a)(a− (α1 + α2)) if a ∈ [α1, α1 + α2],
0 otherwise,

(55)

where α1 (resp. α2) is the mean duration of latency (resp. infection) period and θ is set to
104 CFU.year−3.animal−1. According to [4,33], after an infection, animals have 14–180 days
of incubation, so it is not possible to determine accurately the mean duration of the latency
period. Hence, we assume that α1 = 3.8× 10−2 year. Moreover, according to [34], an
infected animal may transmit the disease for about 2 years. Hence, α2 = 2 years.

Values of γ(.): To choose a suitable form of γ(τ), we assume that the duration of the
immunity loss decays linearly with time since recovery. Furthermore, according to [35],
vaccine B. Suis strain 2 (S2) has been used to control brucellosis and the valid period of S2 is
2–3 years in Inner Mongolia. Hence, we estimate that the mean time to loss of immunity is
T̃ ≈ 2 years, as stated in [10]. Let Γ(τ) = e−

∫ τ
0 γ(s)ds denote the probability that an immune

individual remains immune at time τ after recovery. Then,

T̃ =
∫ ∞

0
Γ(τ)dτ. (56)

Next, we choose γ(τ) as an increasing function of τ in the form:

γ(τ) =


1

ς− ς−1
ς τ

if τ ∈ [0, ς],

1 if τ ∈ [ς,+∞[.
(57)

Furthermore, ς is set to ς = 4 such that the mean time to loss of immunity is
T̃ ≈ 2 years.

In the same way, we adopt the following form of δ(a):

δ(a) =

 0 if a ∈ [0, α1],

1− 1
1 + ε(a− α1)

if a ∈ [α1,+∞[, (58)

where ε is set to ε = 0.1698 such that the mean duration of the infectious period, that is,∫ ∞

0
e−
∫ a

0 δ(s)dsda, is around 2 years [34].

Value of parameter µV : Following [4], Brucella can survive 20–120 days in soil; hence,
we estimate µV = 3.6 year −1, as in [10,17].

Biologically, the fraction (1− p) >> p because the excretion of infectious animals
always tends to occur in the environment and only a small quantity might be directly
ingested by some susceptible animals. We thus choose p = 1

100 .

5.2. Numerical Simulation

Here we present graphical representations of S, i, r, and V.

• In Figure 2, we observe that the disease dies out in the population when,R0 < 1. This
confirms our theoretical results.

• In Figure 3, the initial dose is V0 = 106 and we observe that the peak of infection is
reached about 14 years post-infection. The figure shows that the disease could persist
in the population whenR0 > 1.

• In Figure 4, b = 0.39, we observe that the peak of infection is reached about 10 years
post-infection and there are some oscillations on the curves. This means that the birth
rate of cattle significantly influences the dynamics of the disease.
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Figure 2. Results of simulations achieved with parameters in Table 1. In these cases,R0 = 0.8681 < 1
is obtained with σdir = 3.844× 10−9 and σind = 1.7× 10−10. The initial conditions are S0 = 102,
i(0, .) = 10, r(0, .) = 0, and V0 = 106.
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Figure 3. Results of simulations achieved with parameters in Table 1. In these cases, R0 = 3.2785
is obtained with σdir = 3.844× 10−6 and σind = 1.7× 10−9. The initial conditions are S0 = 5× 104,
i(0, .) = 30, r(0, .) = 0, and V0 = 106.
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Figure 4. Results of simulations achieved with parameters in Table 1. In these cases, R0 = 1.4755
is obtained with σdir = 3.844× 10−6 and σind = 1.7× 10−9, b = 0.39. The initial conditions are
S0 = 104, i(0, .) = 10, r(0, .) = 0, and V0 = 106.

Table 1. Values of the model parameters.

Description Dimension Values Sources

b birth rate year −1 0.83 [24]

θ
Normalization parameter for
shedding rate CFU.year −3.animal−1 104 fitted

α1
Mean duration of the latency
period year 3.8× 10−2 [4,33]

α2
Mean duration of the infectious
period year 2 [34]

µ0
Density non-dependent
mortality rate year −1 0.25 [17,18]

µ1
Density dependent mortality
rate year −1 5.8× 10−6 fitted

µV Mortality rate of virus year −1 3.6 [10,17]

σdir Horizontal direct transmission
rate CFU−1 3.844× 10−6 [17,18]

σind Horizontal indirect
transmission rate CFU−1.year−1 1.7× 10−10 fitted

p
Probability of disease
transmission due to direct
contact

- 0.01 assumed
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6. Conclusions

In this work, we proposed a new model of brucellosis occurring in cattle populations.
Because understanding the role of the adaptive immune response following exposure to
brucellosis is a critical step in the development of a vaccine, our model incorporates the rate
at which recovered individuals lose their immunity. We established the mathematical well-
posedness results by measn of integrated semi-group theory. Furthermore, we computed
the basic reproduction number and obtained an explicit form of endemic equilibrium.
Finally, we performed some numerical simulations to illustrate the persistence of the
disease and the epidemic evolution. The calibration of the parameters was conducted using
real data retrieved from the biology of the disease.

Our study showed the possibility of several outcomes depending on the basic re-
production number R0, which led us to find the existence and stability results of the
disease-free equilibrium whenR0 < 1 (see Figure 2). Then, after obtaining an explicit form
of the endemic equilibrium, we proved its local stability. The results of simulation illustrate
the persistence of the disease in the population whenR0 > 1 (see Figures 3 and 4).

In Figure 4, the birth rate b has changed and we observe that there some oscillations
have appeared. This means that the birth rate of the population has an influence on the
disease dynamics and that by changing the values of some parameters, one could obtain
periodic oscillations, suggesting that there will be periodic outbreaks of epidemics, and the
disease will not be eradicated from the population [36]. Hence, it would be very interesting
in our future work to study the sensitivity analysis of parameters of the model in order to
identify that bifurcation parameter.

The model developed here can be further used to study the effects of vaccination
on the cattle population. Indeed, if we assume that vaccination acts on the susceptible
population and waning duration simultaneously, then as the population is vaccinated,
the contamination rates σdir and σind will decrease, since the waning duration increases.
Furthermore, we note that in reality, the immune systems of individuals may be boosted
through exposure to the disease. This feature is a factor considered in several existing
models through the immunity clock, that is, by resetting the recovery age [37] or through
the inclusion of additional internal states (within-host dynamics); see, for instance, [38,39].
This feature could be included to improve the present work.
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