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Abstract: In the advanced applications, based on infrared detection systems, the precise detection of
small targets has become a tough work today. This becomes even more difficult when the background
is highly dense in addition to the nature of small targets. The problem raised above is solved in
various ways, including infrared patch image (IPI) based methods which are considered to have the
best performance. In addition, the greater shrinkage of singular values in the methods based on IPI
leads to the problem of nuclear norm minimization (NNM), which leads to the problem of incorrectly
recognizing small targets in a highly complex background. Hence, this paper proposed a new
method for infrared small target detection (ISTD) via total variation and partial sum minimization
(TV-PSMSV). The proposed TV-PSMVS in this work basically replaces the IPI’s NNM with partial
sum minimization (PSM) of singular values and, additionally, the total variance (TV) regularization
term is inducted to the background patch image (BPI) to suppress the complex background and
enhance the target object of interest. The mathematical solution of the proposed TV-PSMSV approach
was performed using alternating direction multiplier (ADMM) to verify the proposed solution. The
experimental evaluation using real and synthetic data set was performed, and the result revealed
that the proposed TV-PSMSV outperformed existing referenced methods in the terms of background
suppression factor (BSF) and the signal to gain ratio (SCRG).

Keywords: infrared search and (IRST) track system; infrared patch (IPI) image; signal to clutter ratio
(SCR) gain (SCRG); robust principal component analysis (RPCA); nuclear norm minimization (NNM);
total variation (TV)

MSC: 65D18

1. Introduction

Early warning systems, video surveillance systems, military services and infrared
search and track systems (IRST) are all examples of applications that use infrared small
target detection (ISTD) technology. The object of interest usually remains in the complex
background and is tough to detect due to the low noise ratio [1,2]. In general, ISTD
approaches can be classified into two categories: sequential detection (SD) methods and
single-frame detection (SFD) methods. To estimate the precise location of small targets, SD
approaches such as 3-D matching filters [3,4] use both spatial and temporal information
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in the image. On the other hand, SFD algorithms are more reliable and efficient. TDMMS
(two-dimensional least-mean squares) [5] max-mean and max-mean filters [6,7], and other
SFD algorithms are the common examples. A human visual system (HVS) [8,9] based on
ISTD has been recently introduced where the target is considered to be the most prominent
object. Local contrast measure (LCM) [2] and its extended version are the highly researched
saliency-based approaches.

Another type of technique treats the detection of small targets as a binary classification
issue. Some of the well-known approaches in this class [10,11] are principal component
analysis (PCA) [12] and its extended version [13]. Wang et al. [14] built a large sea-sky
background dictionary to overcome the dictionary sample difficulties. Wang et al. [15]
employed the parameter of study weight to bifurcate the object of interest from the back-
ground. The first work using patch image was coined by Gao et. al. and gave an IPI model
to handle the problem of ISTD [1]. This IPI based model assumes that the background
patch image has the non-local self-correlation characteristic. Continuing this work, Y. He
et al. [16] presented a method based on sparse and low-rank representations for ISTD.
Inspired by this, Zhang et al. [17] proposed a block-diagonal adaptive target-constrained
representation method for sparse target separation and low-rank backgrounds.

The current IPI-based methods are affected by a difficult problem called l1-norm
sparsity issue, as a result of which these methods cannot accurately detect the background
and sometimes fail to classify the target component in the target image. Dai et al. [18] has
proposed a new method using the structural information of the background image, which
has better performance than other methods. However, this method requires calculating
the weight of the column, which is a difficult task. Dai et al. [19] again created a new
non-negative IPI model that uses the partial sum of the least sum of the singular values to
correctly and accurately estimate the background and preserve the large singular values.

The main drawback of this strategy is the difficulty in determining the energy con-
straint ratio as well as the ranking of the metrics. To overcome which Gao et al. [20]
Reweighted IPI (ReWIPI) was proposed to restrict the background patch image while
preserving the background edge information, which is based on the work of [21]. Similar
work was proposed in [22] However, even this may result in incorrect singular value
decomposition (SVD) calculations due to poor weight adjustment.

In [23], a proposal that used TV regularization and principal component pursuit
(TV-PCP) to provide intrinsic smoothness to the background patch image and another
method [24] based on the LP norm and TV was also proposed. Work on small target
detection method based on the TV norm is mentioned in [25]. Some recent developments
in IPI based approaches are also available in the literature, including reweighted IPI and
tensor model with both nonlocal and local prior information [26] and non-convex rank
approximation minimization [27,28]. Due to the small size of the target and the fact that the
background seems to be highly diversified in character, the small target recognition task
is extremely tough. However, current IPI approaches have had a lot of success in recent
years. Nonetheless, our findings revealed significant flaws that may have hampered the
performance of these cutting-edge approaches.

The initial flaw with these approaches was the improper estimate of background patch
images (BPI) using NNM, due to l1-norm-based sparsity issues. Another difficulty was
the constant weighting option, which controls the background versus target patch image
trade-off. Inconsistency is caused by both the low rank qualities of the background and
the sparsity property of the small target image. Such a result, having a global constant
weighting parameter, as in [19], is not a smart idea. Taking these problems into account,
Dai et al. [18] provided a proposal based on an adaptive column-wise weight parameter.
However, the performance of this method suffers due to additional processing required for
calculation of column-wise weights. As the present IPI approach uses NNM to restrict the
background patch image, edges in a highly varied background might be falsely recognised
as a target point owing to excessive shrinking of singular values. To solve this issue, the
PSMSV has been substituted for the NNM in the current IPI model, since it preserves the
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important features present in the background scene. The reason for using PSMSV is that it
preserves the large singular values and only minimize variance in the residual rank, which
basically minimize the noise variance of observed data and not the whole data matrix.
Second, the TV regularisation term was used to the IPI model’s background patch image in
order to keep strong edges while enhancing the small target.

In this study, a TV-PSMSV-based approach is proposed, which combines TV regular-
isation with PSMSV. Further, the mathematical solution of transformation optimization
using ADMM of the proposed method is presented and, finally, experimental evaluation
was used for the verification of performance.

The following is a summary of the research work’s main contribution:

1. An ISTD method called TV-PSMSV has been introduced in which a TV term was
inducted to the BPI model to obtain more detailed features in the scene. Moreover,
the PSMSV was adopted to limit BPI.

2. The suggested TV-PSMSV model used an ADMM-based method to address image
transformation optimization.

3. The suggested model was experimentally evaluated using standard data sets; the
findings revealed that it outperforms the referred state-of-the-art technique [1,18–20].

The remainder of the paper is laid out as follows. The technique of the suggested
method is detailed in depth in Section 2. Section 3 describes the proposed method’s
experimental findings using the original, noisy, and synthetic images of infrared image
sequences, as well as its comparison to existing baseline approaches. In Section 4, the final
conclusion is outlined.

2. Materials and Methods

This section presents the proposed TV-PSMSV method, the second part of the section
outlines the TV-PSMSV model, the last subsection introduces mathematical transformation
and optimization of the image using ADMM technology.

2.1. Total Variation (TV)

An approach based on total variation regularisation was introduced by Rudin et al. [29]
is used in numerous applications of image processing. The TV model demonstrated how
the TV standard may preserve the edges and corners of an image without sacrificing any
details. Let U ∈ Rx×y indicate an image, and Equations (1) and (2) define the discretised
anisotropic TVA and isotropic TV I of an image, respectively (2).

TVA(U) =
x

∑
i=1

y−1

∑
j=1

∣∣Ui,j −Ui,j+1
∣∣+ x−1

∑
i=1

y

∑
j=1

(1)

TV I =
x−1

∑
i=1

y−1

∑
j=1

( ∣∣Ui,j −Ui,j+1
∣∣2+∣∣Ui,j −Ui+1,j
∣∣2

) 1
2

+
y−1

∑
j=1

∣∣Ux,j −Ux,j+1
∣∣+ x−1

∑
i=1

∣∣Ui,y −Ui+1,y
∣∣ (2)

Let, DiU∈ R2 represent the discrete gradient of U at pixel I; image U is vectorized as
a column vector and Di represents the gradient operator of image. Then TV(U) can be
finally represented as given in Equation (3):

TV(U) = ∑
i
‖Di(U)‖2. (3)

2.2. TV-PSMSV Model

Single frame images are represented in the following way:

fo(x, y) = fB(x, y) + fT(x, y) + fN(x, y) (4)
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where fo, fB, fT , fN are the original, background, target, noise image, and (x,y) is position of
pixels in the image sequentially. Gao et al. [1], firstly, adopted (Equation (4)) in the (IPI)
model-formulated target background method as below:

D = T + B + N, (5)

where, D, B, T, and N are the input patch-image, BPI, and the target patch-image (TPI) and
the noise patch-image (NPI), respectively. The low-rank BPI matrix B and the sparse TPI
matrix T are decomposed from the matrix D. (Equation (5)) can be transformed into an
optimization problem as stated below, and this is inspired by the method in [30].

min
B, T
‖B‖∗ + λ‖T‖1,

s.t ‖D− T − B‖F ≤ δ
(6)

Here, symbol ‖.‖∗ represents the NN of the matrix which can be calculated as the
sum of singular values, symbol ‖.‖1 represents the l1-norm and it is calculated by formula
‖X‖1 = ∑

ij

∣∣Xij
∣∣, the symbol ‖.‖F represents the Frobenius norm, which is calculated using

the formula ‖X‖F =
√

∑
ij

X2
ij, symbol λ stands the weighting parameter and δ is the noise

level of images.

2.2.1. Background Patch Image (BPI)

The BPI is derived from a combination of low-rank subspace clusters as described in [1],
and NNM is used to calculate the BPI. Current target-background separation approaches,
such as IPI [1], WIPI [18], and [19], use NNM to restrict the BPI. Because NNM treats all
singular values the same, it shrinks them with the same threshold. As a result, instead
of using NNM, the proposed method used PSMSV [31] to estimate background owing
to inadequate samples. This is because PSMSV retains the larger singular values and
minimises noise.

Using PSMSV, the BPI matrix B may be defined as:
|‖B‖∗ − ‖PN B‖∗| =

∣∣∣∣∣min(m, n)
∑

i=1
σiB−

N
∑

i=1
σiB

∣∣∣∣∣
=

min(m, n)
∑

i=N+1
σiB = ‖B‖∗,≤r

= ‖B‖p=N ,

(7)

where symbols representation as follows:
σiB—the ith singular value of B (arranged in descending order), r—the upper limit

ratio of σN(B) and σ1(B) is equal to σN(B)
σ1(B) , ‖B‖p=N—the target rank of B.

2.2.2. Target Patch-Image (TPI)

Infrared images do not have a defined size for the small target. As a result, the
detection system may consider the TPI to be a sparse matrix. The l1-norm may be used to
calculate TPI in an infrared image, as demonstrated below in Equation (8).

‖T‖1 =

(
∑
ij

∣∣Tij
∣∣) (8)

2.2.3. Noise Patch-Image (NPI)

It is reasonable to consider that the NPI follows the Gaussian noise distribution as
described in Equation (9).

‖D− T − B‖F ≤ δ (9)
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Here, ‖.‖F stands for Frobenius Norm, and δ values varied depending on the image.
Finally, in addition to PSMSV, the TV regularisation term was included with the BPI.

The following is the formulation of the suggested PSMSV-TV model:

min
B,T
‖B‖∗,≤r + λ1TV(B) + λ2‖T‖1,

s.t D = B + T + N, ‖N‖F ≤ δ
(10)

where TV(.) represents the TV norm and λ1, λ2 are the constant parameter. The Equation (9)
can be written as below:

min
B,T
‖B‖∗,≤r + λ2‖T‖1 + λ1 ∑

i
‖DiB‖2,

s.t D = T + N + B, ‖N‖F ≤ δ
(11)

Here, Di is the gradient operator.
Finally, the proposed model applied a post-processing method on the TPI, to detect

the object effectivily.

2.3. Mathematical Solution of the PSMSV-TV Model Using ADMM

We may further reformulate the aforementioned minimization issue given in Equation (11)
by breaking it into sub-problems by using splitting variables as given below:

min
Z1,Z2,Z3

‖Z1‖∗,≤r + λ2‖Z3‖1 + λ1 ∑
i
‖zi‖2

s.t Z1 = B, Z2 = [z1; z2; z3 . . . . . . ; zmn], zi = DiB,
Z3 = T, D = N + T + B, ‖N‖F ≤ δ

(12)

The formulation of augmented Lagrangian function of above Equation (12) is derived
in Equation (13).

LA= min
P1,P2,P3

‖P1‖∗,≤r + λ1 ∑i ‖pi‖2 + λ2‖P3‖1+〈L1, Z1B〉 + β
2‖P1 − B‖F

2

+∑i〈li , pi − DiB〉+
βi
2 ‖pi − DiB‖F

2+〈L3, P3T〉 + β
2 ‖P3 − T‖F

2+

〈L4, D− N − T − B〉+ β
2 ‖D− N − T − B‖F

2

(13)

The standard trace inner product for the matrix of vectors is denoted by. The La-
grange multipliers are L1, L2, L3 and L4 and the penalty parameter is >0. Each variable
T, B, P1, P2, and P3 in Equation (13) are vectorized to column vectors for simplicity. The
optimization problem of image matrix is mathematically solved using the ADMM [30,32];
it is solved in every iteration by minimising each of the T, B, P1, P2, and P3 variables while
leaving the other variables constant. Lastly, the Lagrange multipliers have been modified
as follows: 

L1
k+1 ← L1

k + γβ
(

P1
k+1 − Bk+1

)
L2

k+1 ← L2
k + γβ

(
P2

k+1 − DBk+1
)

L3
k+1 ← L3

k + γβ
(

P3
k+1 − Tk+1

)
L4

k+1 ← L4
k + γβ

(
P4

k+1 − Bk+1 − Tk+1 − Nk+1
) (14)

Here γ > 0 represent step length.
The P1 sub-problem can be represented using given below Equation (15)

P1
k+1arg min

Z1

LA

(
P1, P2

k, P3
k, Bk, Tk)

= arg min ‖Z1‖∗,≤r
Z1

+〈L1, P1 − B〉+ β
2 ‖P1 − B‖F

2

= arg min
Z1

‖P1‖∗,≤r +
β
2 ‖P1 −

(
Bk − L1

k

β

)
‖

F
2

(15)
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This sub-problem can be solved by applying the Theorem 1 as given below:

Theorem 1. Let us considerX, L ∈ Rm×n, τ > 0, and l = min(m, n), which can be decomposed
by SVD. L can be considered as two matrices, L = L1 + L2 = UL1 DL1 Vl1

T + UL2 Dl2 VL2
T ; here,

UL1 , VL1 are singular value matrices corresponding to N highest singular values by SVD, and
UL2 , VL2 from (N + 1)th to the last singular values. Finally, the PSVM problem for singular values
may be described as shown in Equation (16):

arg min
1
2

X

‖X− L‖F
2 + τ‖X‖p=N (16)

The partial singular value thresholding operator may be used to describe the optimal
solution of Equation (15), which is defined as:

PN,τ [Y]= UY
(

DY1 + S τ

[
DY2

]
VY

T)
= Y1+UY2 S τ

[
DY2

]
VY2

T .
(17)

Here
DY1 is equal to diag(σ1, . . . ., σN,0, . . . , 0),

DY2 is equal to diag(0, . . . , 0, σN+1, . . . ., σl,)
(18)

In addition, S τ [x] = sign(x).max(|x| − τ, 0) is the thresholding operator [33–35]. It
may be phrased as follows for the P2 sub-problem:

P2
k+1 ← arg min

Z2

LA

(
P1

k, P2, P3
k, Bk, Tk

)
= arg min

P2

∑
i

(
‖pi‖2 +

〈
li K, zi − DiBK〉

+ βi
2 ‖pi − DiBK‖F

2

) (19)

Because it is a l2 optimization problem, the sub-problem (19) may be mathematically
solved using a 2-D shrinkage-like formula [36].{

pi = max
{
‖DiB− li

βi
‖

2
− 1

βi
, 0
}

.

(
Di B−

li
βi

)
‖Di B−

li
βi
‖

2

, (20)

The reformulation for the P3 sub-problem can be solved using the Equation (21):
P3

k+1 ← arg minLA

(
P1

k, P2
k, P3, P2

k, Bk, Tk
)

P3

= arg minλ2‖P3‖1,+〈L3, P3 − T〉+ β
2 ‖P3 − T‖F

2

= arg min
Z3

λ2‖P3‖1 +
β
2 ‖P3 −

(
Tk − L3

k

β

)
‖

F
2

(21)

The Equation (21) can be further solved by given below Equations (22) and (23).

P3
k+1 = Th λ2

β

(
Tk − L3

k

β

)
(22)

Thε(W) =


w− ε w > ε
w− ε w < −ε
0 otherwise

(23)

where Thε(.) represent the thresholding.
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For N sub-problem, the solutions may be represented as given in Equation (24)

Nk+1← arg min
N

〈Lk
4, D− Bk − Tk − N〉

+ β
2 ‖D− B− Tk − N‖F

2

= ‖N −
(

D− Tk − Bk + L4
k

β

)
‖

F
2

s.t. ‖N‖F ≤ δ

(24)

The Equation (24) can be further solved by given below Equation (25).

Nk+1 = PΩ

(
D− Tk − Bk +

L4
k

β

)
(25)

where Ω denotes the sphere of the ‖.‖F ≤ δ, and the PΩ is the projection onto the matching
sphere.

For the B sub-problem, the solutions may be represented as given in Equation (26)

Bk+1 ← ∂LA
∂B

= 0 (26)

Equation (26), for example, may be rewritten as:

− ∂LA
∂B

= L1
k + β

(
P1

k+1 − B
)
+ ∑

i

[
Di

T li + βiDi
T(pi − DiB)

]
+ L4

k + β
(

D− Tk+1
)

(27)

Bk+1 =

(
∑
i

βDi
T Di + 2β

)−1

 L1
k + L4

k +

(
∑
i

[
βiDi

T(pi − DiB) + Di
T li
])

+β
(

P1
k+1 − T + D

)
 (28)

Sub-problem may be handled in the same way as B sub-problem:

Tk+1 ← ∂LA
∂T

= 0 (29)

Tk+1 =
Lk + β

(
D− Bk+1

)
+ βp3

k+1 + L4
k

2β
(30)

2.4. Modelling for Small Target Extraction from Background Image

The entire target-background extraction process using the PSMSV-TV paradigm is
depicted by Figure 1 and is described as given below steps:

A: Creation of patch image from Input:

This is the initial phase, when an infrared patch image called D was created using the
original image fD from the image sequence. A sliding window moved from left to right
first and then moved down from top to bottom to create the patch-images.

B: Target background separation:

In the second phase, the input patch image was processed using Algorithm 1 to
fragment it into two matrices; the first one was a B and the second was a T.

C: Regeneration of the target and background image:

In the third phase, the proposed method reconstructed the fT , and the fB from the
target patch images and the background. The whole process could be accomplished using
the technique outlined in [1].
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D: Segmentation process:

Now the final touch was initiated, where some final-processing to enhance the quality
of target image was performed for the adaptive thresholding scheme was run as described
in [1] and it was calculated using given Equation (31):

tup = max
(

vmin, fT + kσ
)

(31)

Here σ, fT is the standard deviation and the average of the k and fT respectively, and
vmin is taken as an empirical constant value.
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Algorithm 1: The PSMSV-TV Method.

Input: Input is the original IPI D,β,γ,λ1,λ2,ratio r, tol
Output: Tk, Bk

1: Initialize: Bk = zeros(m, n), Tk = zeros(m, n), P1 = P3 = zeros(m, n), L1 =
L3 = zeros(m, n), L2 = zeros (2, mn), P2 = zeros (mn, 2),γ = 1.5, tol = 10−5,

2: while (not converged) do:

3: P1
k+1=PN,β−1

(
Bk − L1

k

β

)
4: P2

k+1 is calculated using Equation (19)

5: P3
k+1 = Th λ2

β

(
Tk − L3

k

β

)
6: Bk+1 is solved by Equation (28)
7: Tk+1 is solved by Equation (30)

8: Nk+1 = PΩ

(
D− Tk − Bk + L4

k

β

)
9: Update Li(i = 1, 2, 3, 4) according to Equation (14)

10: Convergence checking ‖D−Tk−Bk‖2
F

‖D‖F
< tol

11: k++
12: end while.
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3. Experimental Result Analysis

In the experimental analysis, the performance of the proposed TV-PSMSV was evalu-
ated against the referenced existing methods. This involved standard dataset preparation
and comprehensive experimentation on real, noisy, and synthetic image sequences in a
variety of background environments.

3.1. Dataset Preparation

The dataset for experimental evaluation consisted of 1080 infrared images with various
backgrounds such as sea, sky, cloud, and ground; dataset description was presented in
Table 1. We began by experimenting with single item infrared pictures. Second, the
suppression capacity of the proposed technique was proven using picture sequences with
Gaussian noise. We employed synthetic image sequences to assess the robustness of the
proposed technique. In addition, we addressed how characteristics such as image patch
size and sliding step size affected the outcomes. The proposed strategy has been compared
with eight baseline approaches: max-mean filter [6], max-median filter [6], top-hat filter [37],
IPI [1], RPCA [18], NIPPS [19], RIPT [26] and TV-PCP [23] on six distinct original infrared
images. The parameter settings for all of the baseline techniques are listed in Table 2. The
ADMM was used here to solve the procedure. All of the algorithms were implemented in
MATLAB 2015a on a PC with a configuration of 2.2 GHz processor, and 4GB of RAM.

Table 1. Summery of taken dataset.

Infrared Real
Sequences # Image Size No of

Frames Target Characteristics Target Type Background
Characteristics

# 1 256 × 200 30
The target is small in
size, yet it has a great

imaging range.
A small ship Blurred sea-sky

backgrounds.

# 2 256 × 200 250
The target is small in
size, yet it has a great

imaging range.
An airplane High dense clouds with less

local contrast

# 3 256 × 200 250

The target is small in
size, yet it has a great

imaging range and SRC
value is low.

An airplane With varying background

# 4 128 × 128 100

The target is small in
size, yet it has a great

imaging range and SRC
value is low

A Helicopter Changing background

# 5 128 × 128 200 Small size with 1 or
2 target A ship Changing background

# 6 280 × 228 250

The target is small in
size, yet it has a great

imaging range and SRC
value is low

A man walking
through the forest

Background with
heavy clouds.

Table 2. Summery of parameter settings for evaluation.

No. Methods Parameter Values

1 Max-Mean Filter [5] Filter size 5 × 5
2 Max-Median Filter [5] Filter size 5 × 5
3 Top-Hat filter [37] Structure shape is 3 × 3

4 NIPPS [19] Patch size = 50 × 50, sliding step = 10, ρ = 1.5, λ =
L√

min(m,n)
, r = 10−3, L = 2, tolerance error, ε = 10−7,

5 RPCA [18] sliding step = 10, Patch size = 50 × 50, tolerance error ε = 10−7, λ = 1√
m
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Table 2. Cont.

No. Methods Parameter Values

6 IPI model [1] sliding step = 10, Patch size = 50 × 50, tolerance error ε = 10−7,
λ = 1√

m ,

7 RIPT [26]
Patch size is 50 × 50, sliding step is 10, λ = L√

min(m,n)
, L = 1, h = 1,

ε = 10−7

8 TV-PCP [23]
Patch size is 50 × 50, sliding step is 14, lambda = 0.005, maxIter = 250,

Tol = 5 × 106, beta = 0.025, gama = 1.5, lambda2 =
1/(sqrt(min(mm, nn)), ρ = 1.5

9 ISTD based on TV-PSMSV sliding step = 14, Patch size = 50 × 50, β = 0.025, λ1 = 0.005,
λ2 = L√

min(m,n)
, r = 10−3, L = 2, γ = 1.5, tolerance error ε = 10−5

3.2. Experimental Evaluation Using Real Image Sequence
3.2.1. Evaluation of Background Suppression of Images Sequences

This section shows the experimental results of each strategy on taken dataset of six
different image sequences with different complex backgrounds. In Figures 2 and 3, the
suggested TV-PSMSV technique is displayed alongside the max-mean filter, max-median
filter [6], top-hat filter [37], IPI [1], RPCA [16], NIPPS [20], RIPT [27] and TV-PCP [23]
approaches. In the Figure 2 the experimental results of Max-mean, Max-median,Top-hat
and IPI methods are presented. The top hat, max-mean, and max-median methods are
simple and easy to implement. Due to this reason, these methods demonstrated strong
detecting skills when the background was moderately sluggish and smooth. However, they
exhibited poor capability when the background was quite strong and dense.
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Figure 3. Following rows (a–e) depicts the Background suppression result on six original image
sequences: (a) RPCA, (b) NIPPS, (c) RIPT, (d) TV-PCP, (e) PSMSV-TV.

As it can be observed from the Figure 3 that, the RPCA approach has shown good
performance, but its shortcoming is that it had a fixed regulating value, making background
prediction problematic at times.. The NIPPS approach utilises the partial sum minimization
of singular values in place of the NNM in the IPI to contrain the background. Due to this,
this method was also capable of suppressing background effectively. In addition to this,
the model just minimised the noise variance without taking into account the entire data
matrix, which makes this model different from the others. Although the IPI method could
detect the target object quite well, this method lacked its performance due to the presence
of heavy noise and l1 norm sparsity. Thus, the detection of a non-target object may be seen
in the target image.

The RIPT method has impressed well in terms of target detection and background
suppression ability. RIPT did not do well in the presence of noise. Although the TV-PCP
method performed well, it still had issues in non-smooth background. Motivated by
the work in TV-PCP [23], the inner smoothness and the sharp edges information of the
background could be extracted by introducing the TV norm. Therefore, the suggested
approach could smooth the background beautifully, allowing strong edges and buildings
to be very easily predicted, allowing the true target to be identified smoothly. Furthermore,
there may be clutter in the background of the image whose grey level was comparable to
the potential target, making it harder to recognize the target object. As a result, the 3D
grey map in Figure 4 could better assist in predicting the position of the small target in
the image.
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3.2.2. Evaluation of Background Suppression for Noisy Images Sequences

The next experiment was conducted in the context of noisy images. Figure 5a depicts
the original image sequences, whereas Figure 5b,c depict images with Gaussian noise of 10
and 20 standard deviations (sd.), respectively. It can be seen from the findings in Figure 5d,e
that the suggested technique performed better than the mentioned methods in terms of
background suppression and small target detection in noisy images.
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Figure 5. Experimental result in case of noisy images, (a) Real images, (b) Noisy images with standard
deviation (sd.) of 10, (c) Background suppression Figure 4b, (d) Noisy images with standard deviation
(sd.) of 20, and (e) Background suppression Figure 4d.

3.2.3. Experimental Evaluation on a Synthetic Image Sequences

In the third evaluation, the performance of the proposed TV-PSMSV method is val-
idated against the synthetic image sequences. A dataset of synthetic image sequences
was prepared with varied backgrounds applying real infrared images. The small targets
with variable size were embedded into the background at different random locations. The
synthetic dataset preparation process was clearly defined in [1]. During the experiment
evaluation, one and four target image sequences were identified. In addition, the proposed
TV-PSMSV’s ability to decrease background noise was evaluated; results are shown into
the Figure 6.
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3.3. Evaluation Metrics Indicators

In order to assess the outcome of the presented TV-PSMSV approach, two standard
classical evaluation metrics were considered, namely: SCRG and background suppres-
sion factor (BSF). Detailed description of these indicators is outlined in [38] and can be
represented as shown in Equation (32):

BSF =
Cin
Cout

, SCRG =

(
S
C

)
out(

S
C

)
in

(32)

Here, C and S denote the clutter standard deviation and signal amplitude, and the
original input and the output target image are represented by in and out, respectively.
The experimental results values of BSF and SCRG are shown in Table 3 for all referenced
methods along with TV-PSMSV on six different image sequences. The largest and second
largest value of these indicators is shown in the table with red and blue colour. From the
indicator mentioned in the table, it can be observed that the proposed TV-PSMSV method
had the best result of BSF for the sequences 1 to 4 and 6 and second-highest value for the
5th sequence.
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Table 3. Observed values of BSF and SCRG.

ISTD Evaluation
Indicators Seq1 Seq2 Seq3 Seq4 Seq5 Seq6

Top Hat BSF 0.488 2.339 0.512 2.354 0.923 0.923
SCRG 1.281 5.733 7.376 53.302 3.081 24.651

Max-Median
BSF 1.296 3.895 0.747 3.249 1.167 1.195

SCRG 1.608 1.708 5.415 36.456 2.117 17.393

Max-Mean
BSF 1.383 3.387 0.863 3.816 1.861 1.255

SCRG 1.529 1.580 6.461 51.109 3.117 17.867

IPI
BSF 5.025 4.057 1.481 13.778 29.862 10.410

SCRG 0.047 3.450 5.665 263.310 125.505 195.948

RPCA
BSF 3.799 25.882 3.073 6.468 0.494 3.790

SCRG 10.739 60.950 36.166 76.236 0.683 90.559

NIPPS
BSF 4.604 6.169 2.687 6.726 7.413 7.576

SCRG 2.792 6.298 23.787 168.042 30.018 4.700

RIPT
BSF 3.507 7.124 3.101 2.874 0.896 14.874

SCRG 2.122 4.835 9.308 1.233 0.062 0.038

TV-PCP
BSF 1.403 4.948 1.776 3.002 1.477 3.026

SCRG 0.857 2.694 6.726 27.870 0.033 14.284

TV-PSMSV
BSF 12.043 25.905 15.147 21.218 19.065 24.915

SCRG 14.384 62.224 95.985 189.954 2.061 218.774

Similarly, for the sequences 1 to 6, the suggested method’s SCRG value was the greatest.
Therefore, it can be concluded that the suggested strategy of TV-PSMSV outperformed the
mentioned current methods in terms of enhancement as well as background suppression.

The receiver operation curve (ROC) is a second statistic that may be used for the
experimental evaluation of various approaches. The connection between the probability
detection Pd as well as false alarm rate Pf is represented by this curve [39] which may be
expressed by using Equations (33) and (34)

Pd =
Number o f detected pixels
Number o f real target pixels

, (33)

Pf =
Number o f f alse alarms

Total number o f pixels
in the whole image

(34)

All of the aforementioned metrics were evaluated in a small local region with a
rectangular size of dimensions a× b, background rectangle size of dimensions (a + 2d)×
(b + 2d), and here, d is taken as a constant equal to 20 pixels.

The output of the presented technique against the baseline approaches can be seen
in Figure 6, which is represented by an ROC curve. Figure 7a shows that the IPI and
RPCA methods produced better results than the proposed method. The suggested methods
improved detection ability because of TV term introduced in the BPI, which smooths the
background and successfully detects the target. In addition, NIPPS did not get a decent
outcome for sequence 1. Figure 7b shows that the TV-PSMSV did not produce good results
when related with the RPCA method. Figure 7c shows that the TV-PSMSV technique
had the highest performance, followed by IPI, and that the rest of the other methods
performed poorly. Figure 8a shows that the suggested TV-PSMSV method, when compared
to other methods, produced good results; however, NIPPS had weak detection ability. The
suggested TV-PSMSV approach had the best detection rate, followed by IPI, as shown in
Figure 8b. Finally, because of adding the TV term with the input scene, it can be observed
from Figure 8c that the suggested technique had strong detection ability.
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3.4. Parameter Analysis

This section evaluates three critical characteristics that is mainly used to test the
robustness of the proposed TV-PSMSV technique under various background scenarios are
discussed in the next section. These characteristics are patch size, step size, and regulating
parameter. We must use these parameters to achieve greater performance, as they may not
provide the global best solution. Evaluation results of Figure 9 shows the ROC curves for
four separate images with 4 varying characteristics.

3.4.1. Image Patch-Size

Patch size is thought to be a crucial factor in detection of performance. We know that
fine-tuning the patch parameter increases the sparsity of the target. However, this will very
certainly increase the computational cost of the method. In the experiment, we tested patch
sizes of 20, 30, 40, 50, and 60 and generated the ROC curve for the four image sequences,
which can be seen in Figure 9a. The ROC curve shows that adjusting the image patch size
had an impact on both detection performance and computational complexity. Patch size 30
is thought to be ideal in the method.

3.4.2. Step-Size

Similarly, the step size must be adjusted properly. In the experiment, the patch size
was set to 30 × 30, and then step sizes of 6, 8, 10, and 12 were explored. The ROC curve
on step size shows that adopting a small step increases computation time and reduces the
algorithm’s detection performance. Reduce calculation time by increasing the step size to a
large amount. Figure 9b indicates that a step size of 10 is the optimum option.
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3.4.3. Controlling Parameter λ

The controlling parameter λ = L√
min(m,n)

is another key parameter that helps to

balance the BPI and TPI. A larger λ value would over-shrink the small target, while a
small value would leave residue in the complex background image, thereby increasing the
number of false alarms. L = 0.5, L = 1, L = 1.5, and L = 2 are the four values we chose for
L. Figure 9c shows the experimental results for various L values (c). When compared to
various L values, the ideal value at L = 1 yields an excellent performance.

3.4.4. Computational or Running Complexity

Table 4 depicts the running time along with the execution cost of one scene out of the
whole dataset as in Figure 2a. The total computation cost of the top-hat method with the
size of the structure element as K2 and the size of the image as M × N is O (K2logK2MN),
whereas the execution cost of the max-mean and max-mean methods here is O (M × N ×
K2). The execution cost of all competing approaches based on the IPI model is O (M × N2),
where the patch image size is M × N and it depends on the cost of the SVD of each step in
the algorithm.

Table 4. Comparative summary of time and computing cost.

Method Top-Hat Max-Median Max-Mean RPCA NIPPS IPI RIPT TV-PCP TV-PSMSV

Time (s) 0.868 6.65 7.69 8.77 4.11 11.51 1.93 392.77 242.69

Computational
Cost O (K2 M × N log K) O (M × N × K2) O (M × N × K2) O (M × N2) O (M × N2) O (M × N2) O (M × N2) O (K ×M × N2) O (K ×M × N2)

The cost for the NIPPS, RPCA,RIPT and IPI is O (m × n2) and for TV-PCP and the
finally for proposed TV-PSMSV method, the cost of ADMM to updating every sub problem
and the multipliers for running patch size of m × n is O (m × n). In addition, the cost of
executing a 2-D TV regularisation is O (m × n log (m × n), while the cost of running a full
SVD is O (m × n2). As a result, the total calculation cost is O ((m × n) + (m × n log (m × n)
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+ (m × n)2); in the worst case, the cost will be O (m × n2 × k), where k denotes the number
of time running the process. Because of the induction of TV regularisation, the suggested
TV-PSMSV has a substantially higher cost of running per image than the other baseline
approaches due to the introduction of TV regularization.

4. Conclusions

In the present work a model, namely, TV-PSMSV is presented, which is used in the
ISTD system. This model addressed the issue of employing NNM for restricting the BPI
in existing IPI-based approaches. In TV-PSMSV, NNM was substituted with PSMSV to
constrain the BPI due to over-shrinkage of singular values. Secondly, to take care of the
strong edges in the background of the input scene and to improve the object of interest, a
TV regularisation term was inducted into the BPI. Finally, the ADMM approach was used to
solve the target-background separation procedure. Experimental outcome demonstrate that
the presented TV-PSMSV method yielded better results in stronger background suppression
and detection ability than previous baseline approaches. In the near future, this work can be
extended into more robust tensor-patch images-based models to improve existing IPI-based
approaches.

Author Contributions: Conceptualization: S.A. and S.S.R.; Methodology: S.A. and S.S.R.; Validation:
Y.A. and G.K.; Formal Analysis: Y.A. and G.K.; Investigation: O.I.K. and L.P.V. Resources: S.A. and
S.S.R.; Data Curation: S.A. and S.S.R.; Writing original draft preparation: S.A. and S.S.R.; Writing
review and editing: Y.A. and O.I.K.; Visualization: G.K. and L.P.V.; Supervision: Y.A. and O.I.K.;
Project Administration: S.A., Y.A. and S.S.R.; Funding Acquisition: S.A. All authors have read and
agreed to the published version of the manuscript.

Funding: This research is funded by Taif University, TURSP-2020/313.

Data Availability Statement: Not applicable.

Acknowledgments: We are grateful to Taif University, Taif, Saudi Arabia, for funding this research
under Taif University Researchers Supporting Project Number (TURSP-2020/313).

Conflicts of Interest: There are no conflict of interest declared by the authors.

References
1. Gao, C.; Meng, D.; Yang, Y.; Wang, Y.; Zhou, X.; Hauptmann, A.G. Infrared Patch-Image Model for Small Target Detection in a

Single Image. IEEE Trans. Image Process. 2013, 22, 4996–5009. [CrossRef] [PubMed]
2. Chen, C.L.P.; Li, H.; Wei, Y.; Xia, T.; Tang, Y.Y. A Local Contrast Method for Small Infrared Target Detection. IEEE Trans. Geosci.

Remote Sens. 2014, 52, 574–581. [CrossRef]
3. Reed, I.S.; Gagliardi, R.M.; Stotts, L.B. Optical moving target detection with 3-D matched filtering. IEEE Trans. Aerosp. Electron.

Syst. 1988, 24, 327–336. [CrossRef]
4. Rawat, S.; Verma, S.K.; Kumar, Y. Review on recent development in infrared small target detection algorithms. Procedia Comput.

Sci. 2020, 167, 2496–2505. [CrossRef]
5. Bae, T.-W.; Kim, Y.-C.; Ahn, S.-H.; Sohng, K.-I. A novel Two-Dimensional LMS (TDLMS) using sub-sampling mask and step-size

index for small target detection. IEICE Electron. Express 2010, 7, 112–117. [CrossRef]
6. Deshpande, S.D.; Er, M.H.; Venkateswarlu, R.; Chan, P. Max-mean and max-median filters for detection of small targets. In Signal

and Data Processing of Small Targets; SPIE: Denver, CO, USA, 1999; Volume 3809, pp. 74–84. [CrossRef]
7. Rawat, S.; Verma, S.K.; Kumar, Y. Infrared small target detection based on Non-convexTriple Tensor Factorization. IET Image

Process. 2021, 15, 556–570. [CrossRef]
8. Itti, L.; Koch, C.; Niebur, E. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach.

Intell. 1998, 20, 1254–1259. [CrossRef]
9. Li, G.; Liu, F.; Sharma, A.; Khalaf, O.I.; Alotaibi, Y.; Alsufyani, A.; Alghamdi, S. Research on the Natural Language Recognition

Method Based on Cluster Analysis Using Neural Network. Math. Probl. Eng. 2021, 9982305. [CrossRef]
10. Alotaibi, Y. A New Database Intrusion Detection Approach Based on Hybrid Meta-heuristics. Comput. Mater. Contin. 2021, 66,

1879–1895. [CrossRef]
11. Suryanarayana, G.; Chandran, K.; Khalaf, O.I.; Alotaibi, Y.; Alsufyani, A.; Alghamdi, S.A. Accurate Magnetic Resonance

Image Super-Resolution Using Deep Networks and Gaussian Filtering in the Stationary Wavelet Domain. IEEE Access 2021, 9,
71406–71417. [CrossRef]

http://doi.org/10.1109/TIP.2013.2281420
http://www.ncbi.nlm.nih.gov/pubmed/24043387
http://doi.org/10.1109/TGRS.2013.2242477
http://doi.org/10.1109/7.7174
http://doi.org/10.1016/j.procs.2020.03.302
http://doi.org/10.1587/elex.7.112
http://doi.org/10.1117/12.364049
http://doi.org/10.1049/ipr2.12049
http://doi.org/10.1109/34.730558
http://doi.org/10.1155/2021/9982305
http://doi.org/10.32604/cmc.2020.013739
http://doi.org/10.1109/ACCESS.2021.3077611


Mathematics 2022, 10, 671 19 of 19

12. Hu, T.; Zhao, J.J.; Cao, Y.; Wang, F.L.; Yang, J. Infrared small target detection based on saliency and principle component analysis.
J. Infrared Millim. Waves 2010, 29, 303–306.

13. Gao, C.; Su, H.; Li, L.; Li, Q.; Huang, S. Small infrared target detection based on kernel principal component analysis.
In Proceedings of the 2012 5th International Congress on Image and Signal Processing, Chongqing, China, 16–18 October
2012; pp. 1335–1339.

14. Wang, X.; Shen, S.; Ning, C.; Xu, M.; Yan, X. A sparse representation-based method for infrared dim target detection under
sea–sky background. Infrared Phys. Technol. 2015, 71, 347–355. [CrossRef]

15. Wang, C.; Qin, S. Adaptive detection method of infrared small target based on target-background separation via robust principal
component analysis. Infrared Phys. Technol. 2015, 69, 123–135. [CrossRef]

16. He, Y.; Li, M.; Zhang, J.; An, Q. Small infrared target detection based on low-rank and sparse representation. Infrared Phys. Technol.
2015, 68, 98–109. [CrossRef]

17. Zhang, Z.; Ren, J.; Li, S.; Hong, R.; Zha, Z.; Wang, M. Robust Subspace Discovery by Block-diagonal Adaptive Locality-constrained
Representation. In Proceedings of the 27th ACM International Conference on Multimedia, Association for Computing Machinery
(ACM), Nice, France, 21–25 October 2019; pp. 1569–1577.

18. Dai, Y.; Wu, Y.; Song, Y. Infrared small target and background separation via column-wise weighted robust principal component
analysis. Infrared Phys. Technol. 2016, 77, 421–430. [CrossRef]

19. Dai, Y.; Wu, Y.; Song, Y.; Gao, J. Non-negative infrared patch-image model: Robust target-background separation via partial sum
minimization of singular values. Infrared Phys. Technol. 2017, 81, 182–194. [CrossRef]

20. Guo, J.; Wu, Y.; Dai, Y. Small target detection based on reweighted infrared patch–image model. IET Image Process. 2017, 12, 70–79.
[CrossRef]

21. Gu, S.; Xie, Q.; Meng, D.; Zuo, W.; Feng, X.; Zhang, L. Weighted Nuclear Norm Minimization and Its Applications to Low Level
Vision. Int. J. Comput. Vis. 2017, 121, 183–208. [CrossRef]

22. Zhang, L.; Li, M.; Qiu, X.; Zhu, Y. Infrared Small Target Detection Based on Four-Direction Overlapping Group Sparse Total
Variation. Trait. Signal 2020, 37, 367–377. [CrossRef]

23. Wang, X.; Zhenming, P.; Dehui, K.; Zhang, P.; He, Y. Infrared dim target detection based on total variation regularization and
principal component pursuit. Image Vis. Comput. 2017, 63, 1–9. [CrossRef]

24. Rawat, S.; Verma, S.K.; Kumar, Y. Reweighted infrared patch image model for small target detection based on non-convex
Lp-norm minimisation and TV regularization. IET Image Process. 2020, 14, 1937–1947. [CrossRef]

25. Wan, M.; Gu, G.; Xu, Y.; Qian, W.; Ren, K.; Chen, Q. Total Variation-Based Interframe Infrared Patch-Image Model for Small Target
Detection. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [CrossRef]

26. Dai, Y.; Wu, Y. Reweighted Infrared Patch-Tensor Model with Both Nonlocal and Local Priors for Single-Frame Small Target
Detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3752–3767. [CrossRef]

27. Zhang, L.; Peng, L.; Zhang, T.; Cao, S.; Peng, Z. Infrared small target detection via non-convex rank approximation minimization
joint l2,1 norm. Remote Sens. 2018, 10, 1821. [CrossRef]

28. Zhang, L.; Peng, Z. Infrared Small Target Detection Based on Partial Sum of the Tensor Nuclear Norm. Remote Sens. 2019, 11, 382.
[CrossRef]

29. Rudin, L.I.; Osher, S.; Fatemi, E. Nonlinear total variation based noise removal algorithms. Phys. D Nonlinear Phenom. 1992, 60,
259–268. [CrossRef]

30. Chen, G.; Zhang, J.; Li, D.; Chen, H. Robust Kronecker product video denoising based on fractional-order total variation model.
Signal Process. 2016, 119, 1–20. [CrossRef]

31. Oh, T.-H.; Tai, Y.-W.; Bazin, J.-C.; Kim, H.; Kweon, I.S. Partial Sum Minimization of Singular Values in Robust PCA: Algorithm
and Applications. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 744–758. [CrossRef]

32. Wang, Z.; Li, H.; Ling, Q.; Li, W. Robust Temporal-Spatial Decomposition and Its Applications in Video Processing. IEEE Trans.
Circuits Syst. Video Technol. 2013, 23, 387–400. [CrossRef]

33. Donoho, D.L.; Johnstone, I.M. Adapting to Unknown Smoothness via Wavelet Shrinkage. J. Am. Stat. Assoc. 1995, 90, 1200.
[CrossRef]

34. Hale, E.T.; Yin, W.; Zhang, Y. Fixed-Point Continuation for `1`1-Minimization: Methodology and Convergence. SIAM J. Optim.
2008, 19, 1107–1130. [CrossRef]

35. Li, C. An Efficient Algorithm for Total Variation Regularization with Applications to the Single Pixel Camera and Compressive Sensing;
Rice University: Houston, TX, USA, 2010.

36. Lin, Z.; Chen, M.; Ma, Y. The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices. arXiv
2010, arXiv:1009.5055.

37. Bai, X.; Zhou, F. Analysis of new top-hat transformation and the application for infrared dim small target detection. Pattern
Recognit. 2010, 43, 2145–2156. [CrossRef]

38. Hilliard, C.I. Selection of a clutter rejection algorithm for real-time target detection from an airborne platform. In Proceedings of
the SPIE Proceedings, Orlando, FL, USA, 13 July 2000; Volume 4048, pp. 74–84.

39. Gu, Y.; Wang, C.; Liu, B.; Zhang, Y. A Kernel-Based Nonparametric Regression Method for Clutter Removal in Infrared Small-
Target Detection Applications. IEEE Geosci. Remote Sens. Lett. 2010, 7, 469–473. [CrossRef]

http://doi.org/10.1016/j.infrared.2015.05.014
http://doi.org/10.1016/j.infrared.2015.01.017
http://doi.org/10.1016/j.infrared.2014.10.022
http://doi.org/10.1016/j.infrared.2016.06.021
http://doi.org/10.1016/j.infrared.2017.01.009
http://doi.org/10.1049/iet-ipr.2017.0353
http://doi.org/10.1007/s11263-016-0930-5
http://doi.org/10.18280/ts.370303
http://doi.org/10.1016/j.imavis.2017.04.002
http://doi.org/10.1049/iet-ipr.2019.1660
http://doi.org/10.1109/LGRS.2021.3126772
http://doi.org/10.1109/JSTARS.2017.2700023
http://doi.org/10.3390/rs10111821
http://doi.org/10.3390/rs11040382
http://doi.org/10.1016/0167-2789(92)90242-F
http://doi.org/10.1016/j.sigpro.2015.06.027
http://doi.org/10.1109/TPAMI.2015.2465956
http://doi.org/10.1109/TCSVT.2012.2204935
http://doi.org/10.1080/01621459.1995.10476626
http://doi.org/10.1137/070698920
http://doi.org/10.1016/j.patcog.2009.12.023
http://doi.org/10.1109/LGRS.2009.2039192

	Introduction 
	Materials and Methods 
	Total Variation (TV) 
	TV-PSMSV Model 
	Background Patch Image (BPI) 
	Target Patch-Image (TPI) 
	Noise Patch-Image (NPI) 

	Mathematical Solution of the PSMSV-TV Model Using ADMM 
	Modelling for Small Target Extraction from Background Image 

	Experimental Result Analysis 
	Dataset Preparation 
	Experimental Evaluation Using Real Image Sequence 
	Evaluation of Background Suppression of Images Sequences 
	Evaluation of Background Suppression for Noisy Images Sequences 
	Experimental Evaluation on a Synthetic Image Sequences 

	Evaluation Metrics Indicators 
	Parameter Analysis 
	Image Patch-Size 
	Step-Size 
	Controlling Parameter  
	Computational or Running Complexity 


	Conclusions 
	References

