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Abstract: In survival analysis, applying stress is often used to accelerate an experiment. Stress can
be discontinuous, and the step-stress model is applied widely due to its flexibility. However, in
reality, when new stress is applied, it often does not take effect immediately, but there will be a lagged
effect. Under the lagged-effect step-stress model, the statistical inference of the Chen distribution
is discussed. The Chen distribution is an important life distribution as its risk function is bathtub-
shaped with certain parameters. In this paper, the maximum likelihood estimators are presented and
the Newton–Raphson algorithm is used. According to the form of risk function under this model, the
explicit expressions of least squares estimators are obtained. The calculation methods of asymptotic
confidence intervals and coverage probabilities are proposed by using the observed Fisher matrix.
Finally, to evaluate the performance of the above estimation methods, a Monte Carlo simulation
study is provided.

Keywords: bathtub-shaped; lagged effect; step-stress; maximum likelihood estimators; least squares
estimators; asymptotic confidence intervals; Monte Carlo simulation

1. Introduction
1.1. Chen Distribution

In survival analysis, hazard function plays an important role in studying the life
phenomenon of a product. For many products, their failure rates decrease first, then keep
at a constant level, and increase finally. Such failure rate is like a bathtub, and this life
distribution is widely used in electronic, machinery, and medical fields. For example, some
drugs do not work well for children and the elderly, but they work well for middle-aged
people. In other words, the failure rate of drugs is relatively high in childhood but gradually
decreases with age. Then, the failure rate remains low in middle age for some time and
eventually increases with age. One of the life distributions with such hazard function is
the Chen distribution, which was first proposed by ref.[1]. It is a two-parameter lifetime
distribution with the bathtub-shaped or increasing hazard function and can model the real
data well.

Ref. [1] proposed confidence intervals and joint confidence regions for the Chen
distribution’s parameters under Type-II censoring. Ref. [2] investigated a simple method to
conduct the statistical test and obtain the exact confidence interval of the Chen distribution’s
shape parameter, which can also be applied to models under Type-II right censoring. Based
on Type-II right-censored samples of the Chen distribution, ref. [3] later discussed several
test statistics for an exact hypothesis test concerning the shape parameter. Ref. [4] obtained
the point estimations and interval estimations for the parameters under a Type-II censored
model. Ref. [5] proposed an extended maximum spacing method to estimate parameters of
the Chen distribution. Under hybrid censoring, ref. [6] discussed the maximum likelihood
estimations and several asymptotic confidence intervals. They also used the Lindley
method, and the Tierney and Kadane method, to calculate Bayes estimates. Based on
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the Chen distribution, ref. [7] analyzed the stress–strength reliability under progressive
Type-II censoring and generalized it to the proportional hazard family. Under progressively
censored samples of the Chen distribution, ref. [8] discussed maximum likelihood estimates,
different Bayes estimates, asymptotic confidence intervals, and prediction intervals. Based
on data from the Chen distribution, ref. [9] developed simplified forms of the single
moments and covariances. The estimates of the shape parameters as well as the prediction
of the records are also proposed.

A Chen (Chen(β,λ)) random variable T with two positive parameters β (≥0) and λ
(≥0) has the following probability density function (pdf):

f (t; β, λ) = λβtβ−1etβ
exp

{
λ
(

1− etβ
)}

, t > 0. (1)

The cumulative distribution function and the survival function are, respectively,
given by:

F(t; β, λ) = 1− exp
{

λ
(

1− etβ
)}

, t > 0. (2)

S(t; β, λ) = 1− F(t; β, λ) = exp
{

λ
(

1− etβ
)}

, t > 0. (3)

Accordingly, the hazard function is:

h(t; β, λ) =
f (t; β, λ)

S(t; β, λ)
= λβtβ−1etβ

, t > 0. (4)

The shape of the pdf varies with the parameters and the characteristics are summarized
as follows: (1) If 0 < β < 1: the pdf will decrease throughout or decrease first and then
increase when 0 < λ < 1; the pdf will decrease throughout when λ ≥ 1. (2) If β = 1: the
pdf will be unimodal when 0 < λ < 1; the pdf will decrease throughout when λ ≥ 1. (3) If
β > 1: the pdf will always be unimodal no matter which value λ takes. Different plots of
pdf are shown in Figures 1–4, respectively.
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Figure 1. pdf of Chen(t; β, λ), 0 < β < 1.
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Figure 2. pdf of Chen(t; β, λ), 0 < β < 1.
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Figure 3. pdf of Chen(t; β, λ), β = 1.
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Figure 4. pdf of Chen(t; β, λ), β > 1.
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Take the derivative of h(t; β, λ) with respect to t, then h′(t; β, λ) = λβtβ−2etβ
[(β− 1) +

βtβ]. Thus, the hazard function shows different shapes when β differs and the properties
are as follows: (1) The hazard function is bathtub-shaped when 0 < β < 1. (2) The
hazard function increases throughout when β ≥ 1. The corresponding plots are shown in
Figures 5 and 6, respectively.
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Figure 5. h(t; β, λ), 0 < β < 1.
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Figure 6. h(t; β, λ), β ≥ 1.

1.2. Step-Stress Model with Lagged Effect

Nowadays, due to the development of science and technology, the life of a product
is getting longer and longer, and waiting for the product to fail will cause a great waste
of time and manpower. Therefore, some measures need to be taken to accelerate product
failure. Applying stress is a common means to accelerate the experiment in life test and
reliability analysis, which can reduce time waste and other related costs. Stress can be
voltage, temperature, oxygen, etc. There are three common stress-application schemes:
constant-stress model, step-stress model, and progressive-stress model. Under the constant-
stress model, the stress remains unchanged until the products fail. The increase in stress in
the progressive-stress model is linear and continuous. In the step-stress model, the stress
can be changed, but it does not have to be changed continuously, and sudden change is
allowed. In this paper, a simple step-stress model is considered: at first, the initial stress
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level lasts for some time, and then at a given time, the stress level increases and remains
unchanged until all products fail.

The cumulative exposure model (CEM) is a commonly used step-stress model, which
assumes that the remaining life of the product is only associated with the cumulative
exposure experienced previously and current stress. Ref. [10] first proposed the concept
of the cumulative exposure model. Ref. [11] used the CEM to analyze step-stress data of
the Weibull distribution and presented the maximum likelihood estimation and interval
estimation under this method. Ref. [12] then presented the optimum scheme of the model,
including the optimum duration of the first stress, the optimum proportion failing, and the
asymptotic variance. Ref. [13] took into account the multiplier effect of stress, calculating
the maximum likelihood estimation of the Weibull family of functions and the Fisher infor-
mation matrix. Under CEM, ref. [14] discussed the maximum likelihood estimation and
interval estimations of the exponential distribution with Type-I hybrid censoring. Ref. [15]
later considered the Type-II censoring and independent competing risks in the model.
Ref. [16] proposed the optimal life tests of the Weibull distribution using the Bayesian
method under the model and used two algorithms to optimize it. Under CEM, Ref. [17]
discussed the maximum likelihood estimation of the Weibull distribution with Type-I
progressive hybrid censoring. Based on Type-II progressive hybrid censoring, Ref. [18]
discussed statistical inference and optimal design on a step-stress partially accelerated life
test for a hybrid system in the presence of masked data.

Although the CEM is widely used, ref. [19] pointed out that the hazard function
is discontinuous when the stress level changes. That is, the impact of stress change is
instantaneous. In reality, when the stress level changes, it often does not take effect
immediately, but there exists a lag period. The CEM is unreasonable and inappropriate
in this case. To solve this problem, the cumulative risk model (CRM) is proposed, which
takes into account the lagged effect. In this model, the risk function is continuous, and
it is supposed that the lagged effect causes a linear risk function in the intermediate
period, which is more consistent with reality. Ref. [19] first proposed the concept of the
cumulative risk model, and discussed the maximum likelihood estimation and least squares
estimation of the model under exponential distribution. Ref. [20] combined the CRM with
the degradation test model for data analysis. Ref. [21] took into account competing risks
under the exponential distribution. In addition to calculating the maximum likelihood
estimation, it also used three methods to calculate the confidence interval and coverage
probabilities. Ref. [22] later extended this model to the Weibull distribution, and took the
competing risks into account. Under masked data, ref. [23] also introduced competing risks
based on the CRM. Ref. [24] applied the CRM to fuzzy lifetime data. Ref. [25] calculated
the maximum likelihood estimation, the least square estimation, and Bayesian estimation
under a Weibull cumulative risk model.

Many studies on the step-stress model consider the CEM, but the CRM is more in
line with reality. In addition, most of the existing research on the CRM only involves the
exponential distribution or Weibull distribution. From the point of view of the hazard
function, although the Weibull distribution is widely used in survival and reliability anal-
ysis, its hazard function can only be monotonic or constant. Compared with the Weibull
distribution, the Chen distribution has a hazard function that can not only be monotonous
but also show the shape of the bathtub, which is important in practical fields. Statistical
analysis based on the Chen distribution can make applications of the CRM deeper and
wider. In this article, the Chen distribution and step-stress with lagged effect model are
both considered, which is of great significance in theory and practice.

It is assumed that lifetime under the initial stress level obeys the Chen distribution.
The stress level changes at τ1, which starts to take effect at τ2 due to the lagged effect, and
the parameters of the Chen distribution change at τ2 as well. From τ1 to τ2, the hazard
functions under these two stress levels are connected by a linear function.

The rest of the paper is arranged as follows. Some basic calculations and derivations
of the model are shown in Section 2. In Section 3, the maximum likelihood estimation and
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least square estimation under the CRM are given. In Section 4, the asymptotic confidence
intervals and coverage probabilities are discussed by using the large sample theory. To
evaluate the performance of the estimators, the simulation results are presented in Section 5.
Section 6 considers a special case where only one parameter changes when stress level
changes. Section 7 is the summary of the article.

2. Model Description

Assume that the lifetime under the initial stress obeys Chen(β1, λ1). The new stress is
applied at τ1, and it starts to take effect at τ2 (τ1 and τ2 are known). The lifetime under the
new stress obeys Chen(β2, λ2). From τ1 to τ2, the hazard function is linear and denoted as
a + bt (here, a and b are parameters).

The Chen hazard functions under the initial stress level and the second level are:

h1(t) = λ1β1tβ1−1etβ1 , t > 0, (5)

h2(t) = λ2β2tβ2−1etβ2 , t > 0. (6)

Under the CRM, the hazard function is given by:

h(t) =


λ1β1tβ1−1etβ1 , 0 < t < τ1

a + bt , τ1 ≤ t < τ2

λ2β2tβ2−1etβ2 , t ≥ τ2

. (7)

Note that when τ1 = τ2, the hazard function h0(t) can be written as follows, which is
the hazard function of the CEM as well:

h0(t) =

λ1β1tβ1−1etβ1 , 0 < t < τ1

λ2β2tβ2−1etβ2 , t ≥ τ1

(8)

In the CRM, we assume that τ1 6= τ2.
To make sure that the hazard function is continuous at τ1 and τ2, the following

equations must be satisfied:  λ1β1τ1
β1−1eτ

β1
1 = a + bτ1

λ2β2τ2
β2−1eτ2

β2
2 = a + bτ2

(9)

According to (9), λ1 and λ2 can be solved as:
λ1 =

(a + bτ1)e−τ
β1
1

β1τ1
β1−1

λ2 =
(a + bτ2)e−τ

β2
2

β2τ2
β2−1

. (10)

The cumulative hazard function H(t) under the model can be obtained by using the
formula H(t) =

∫ t
0 h(x)dx and replacing the parameters λ1 and λ2 according to (10).
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H(t) =



(a+bτ1)e
−τ

β1
1

β1τ1
β1−1 (etβ1 − 1), 0 < t < τ1

(a+bτ1)e
−τ

β1
1

β1τ1
β1−1 (eτ

β1
1 − 1) + a(t− τ1) +

b
2 (t

2 − τ2
1 ), τ1 ≤ t < τ2

(a+bτ1)e
−τ

β1
1

β1τ1
β1−1 (eτ

β1
1 − 1) + a(τ2 − τ1) +

b
2 (τ

2
2 − τ2

1 )

+ (a+bτ2)e
−τ

β2
2

β2τ2
β2−1 (etβ2 − eτ

β2
2 ), t ≥ τ2

(11)

The survival function S(t) under the model can be given as follows by the formula
S(t) = e−H(t):

S(t) =



exp

{
− (a+bτ1)e

−τ
β1
1

β1τ1
β1−1 (etβ1 − 1)

}
, 0 < t < τ1

exp

{
− (a+bτ1)e

−τ
β1
1

β1τ1
β1−1 (eτ

β1
1 − 1)− a(t− τ1)− b

2 (t
2 − τ2

1 )

}
, τ1 ≤ t < τ2

exp

{
− (a+bτ1)e

−τ
β1
1

β1τ1
β1−1 (eτ

β1
1 − 1)− a(τ2 − τ1)− b

2 (τ
2
2 − τ2

1 )

}

× exp

{
− (a+bτ2)e

−τ
β2
2

β2τ2
β2−1 (etβ2 − eτ

β2
2 )

}
, t ≥ τ2

(12)

According to the formula f (t) = h(t)S(t), the probability density function f (t) of the
lifetime under the CRM is as follows:

f (t) =



(a+bτ1)e
−τ

β1
1

τ1
β1−1 tβ1−1etβ1 exp

{
− (a+bτ1)e

−τ
β1
1

β1τ1
β1−1 (etβ1 − 1)

}
, 0 < t < τ1

(a + bt) exp

{
− (a+bτ1)e

−τ
β1
1

β1τ1
β1−1 (eτ

β1
1 − 1)− a(t− τ1)− b

2 (t
2 − τ2

1 )

}
, τ1 ≤ t < τ2

(a+bτ2)e
−τ

β2
2

τ2
β2−1 tβ2−1etβ2 exp

{
− (a+bτ1)e

−τ
β1
1

β1τ1
β1−1 (eτ

β1
1 − 1)− a(τ2 − τ1)− b

2 (τ
2
2 − τ2

1 )

}

× exp

{
− (a+bτ2)e

−τ
β2
2

β2τ2
β2−1 (etβ2 − eτ

β2
2 )

}
, t ≥ τ2

(13)

Thus, the corresponding cumulative distribution function F(t) under the CRM is
obtained by:
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F(t) =



1− exp

{
− (a+bτ1)e

−τ
β1
1

β1τ1
β1−1 (etβ1 − 1)

}
, 0 < t < τ1

1− exp

{
− (a+bτ1)e

−τ
β1
1

β1τ1
β1−1 (eτ

β1
1 − 1)− a(t− τ1)− b

2 (t
2 − τ2

1 )

}
, τ1 ≤ t < τ2

1− exp

{
− (a+bτ1)e

−τ
β1
1

β1τ1
β1−1 (eτ

β1
1 − 1)− a(τ2 − τ1)− b

2 (τ
2
2 − τ2

1 )

}

× exp

{
− (a+bτ2)e

−τ
β2
2

β2τ2
β2−1 (etβ2 − eτ

β2
2 )

}
, t ≥ τ2

. (14)

Based on the above analysis, the estimations of the parameters can be given in the
following section.

3. Point Estimation
3.1. Maximum Likelihood Estimation

Assume that t1, t2, · · · , tn are the failure times under the model. Among them, n1
products fail during the first stress application (before τ1), n2 products fail in the lag
period (from τ1 to τ2), n3 products fail during the second stress application (after τ2), and
n1 + n2 + n3 = n.

The maximum likelihood estimation method (MLE) is a classical point estimation
method and is widely used in estimating parameters. According to the theory of maximum
likelihood estimation, the likelihood function can be written as follows. Denote it as
L(β1, β2, a, b).

L(β1, β2, a, b) =
n

∏
i=1

f (ti) (15)

Plug (13) into (15), and the likelihood function can be expressed as:

L(β1, β2, a, b) =
n1

∏
i=1

[
(a + bτ1)e−τ

β1
1

τ1
β1−1 ti

β1−1et
β1
i exp

− (a + bτ1)e−τ
β1
1

β1τ1
β1−1 (et

β1
i − 1)


]

×
n1+n2

∏
i=n1+1

[
(a + bti) exp

− (a + bτ1)e−τ
β1
1

β1τ1
β1−1 (eτ

β1
1 − 1)− a(ti − τ1)−

b
2
(t2

i − τ2
1 )


]

×
n

∏
i=n1+n2+1

[
(a + bτ2)e−τ

β2
2

τ2
β2−1 ti

β2−1etβ2 exp
{
−a(τ2 − τ1)−

b
2
(τ2

2 − τ2
1 )

}

× exp

− (a + bτ1)e−τ
β1
1

β1τ1
β1−1 (eτ

β1
1 − 1)− (a + bτ2)e−τ

β2
2

β2τ2
β2−1 (etβ2

i − eτ
β2
2 )


]

.

(16)

Based on the form of L(β1, β2, a, b), it can be seen that when n2 = 0, n1 = 0 or
n2 = 0, n3 = 0, the maximum likelihood estimates (MLEs) do not exist. In the following, it
is assumed that ni > 0.

The log-likelihood function l(β1, β2, a, b) is given by:
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l(β1, β2, a, b) = ln L(β1, β2, a, b)

=n1
[

ln(a + bτ1)− τ1
β1
]
+ (β1 − 1)

n1

∑
i=1

ln(
ti
τ1
) +

n1

∑
i=1

ti
β1 − (a + bτ1)e−τ

β1
1

β1τ1
β1−1

n1

∑
i=1

(et
β1
i − 1)

+
n1+n2

∑
i=n1+1

ln(a + bti)− (n2 + n3)
(a + bτ1)e−τ

β1
1

β1τ1
β1−1 (eτ1

β1 − 1)− a
n1+n2

∑
i=n1+1

(ti − τ1)

− b
2

n1+n2

∑
i=n1+1

(t2
i − τ2

1 ) + n3
[

ln(a + bτ2)− τ2
β2
]
+ (β2 − 1)

n

∑
i=n1+n2+1

ln(
ti
τ1
) +

n

∑
i=n1+n2+1

ti
β2

− a(τ2 − τ1)n3 −
b
2
(τ2

2 − τ2
1 )n3 −

(a + bτ2)e−τ
β2
2

β2τ2
β2−1

n

∑
i=n1+n2+1

(etβ2
i − eτ

β2
2 ).

(17)

In order to maximize the l(β1, β2, a, b), take partial derivatives in (17) with respect to
β1, β2, a, and b. The results are as follows:

∂l(β1, β2, a, b)
∂β1

=− (a + bτ1)e−τ
β1
1

β1τ1
β1−1

{
−( 1

β1
+ ln τ1 + τ

β1
1 ln τ1)

[ n1

∑
i=1

(et
β1
i − 1) + (n2 + n3)(eτ1

β1 − 1)
]

+(n2 + n3)(eτ1
β1 τ1

β1 ln τ1) +
n1

∑
i=1

et
β1
i tβ1

i ln ti

}
− n1τ

β1
1 ln τ1 +

n1

∑
i=1

ln(
ti
τ1
)

+
n1

∑
i=1

ti
β1 ln ti,

(18)

∂l(β1, β2, a, b)
∂β2

=− (a + bτ2)e−τ
β2
2

β2τ2
β2−1

{
−( 1

β2
+ ln τ2 + τ

β2
2 ln τ2)

[ n

∑
i=n1+n2+1

(etβ2
i − eτ

β2
2 )
]

+
n

∑
i=n1+n2+1

(etβ2
i tβ2

i ln ti − eτ
β2
2 τ

β2
2 ln τ2)

}
− n3τ

β2
2 ln τ2 +

n

∑
i=n1+n2+1

ln(
ti
τ1
)

+
n

∑
i=n1+n2+1

ti
β2 ln ti,

(19)

∂l(β1, β2, a, b)
∂a

=
n1

a + bτ1
− e−τ

β1
1

β1τ1
β1−1

[ n1

∑
i=1

(et
β1
i − 1) + (n2 + n3)(eτ1

β1 − 1)
]
+

n1+n2

∑
i=n1+1

1
a + bti

−
n1+n2

∑
i=n1+1

(ti − t1) +
n3

a + bτ2
− (τ2 − τ1)n3 −

e−τ
β2
2

β2τ2
β2−1

n

∑
i=n1+n2+1

(etβ2
i − eτ

β2
2 ),

(20)

∂l(β1, β2, a, b)
∂b

=
n1τ1

a + bτ1
− e−τ

β1
1

β1τ1
β1−2

[ n1

∑
i=1

(et
β1
i − 1) + (n2 + n3)(eτ1

β1 − 1)
]
+

n1+n2

∑
i=n1+1

ti
a + bti

− 1
2

n1+n2

∑
i=n1+1

(t2
i − t2

1) +
n3τ2

a + bτ2
− 1

2
(τ2

2 − τ2
1 )n3 −

e−τ
β2
2

β2τ2
β2−2

n

∑
i=n1+n2+1

(etβ2
i − eτ

β2
2 ).

(21)

By making the above functions equal to 0 simultaneously, the maximum likelihood
estimates of β1, β2, a, and b can be solved. However, explicit solutions cannot be given
because the forms of the equations are complex and nonlinear. Therefore, some numerical
techniques, such as the Newton–Raphson algorithm, can be used to calculate approximate
estimates of parameters. This can be realized by using the optim function in R software.
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3.2. Least Squares Estimation

Observing the form of cumulative hazard function (11), we notice that it is a linear
function of a and b when assuming other parameters are known. As a result, least squares
estimation (LSE) can be used to estimate a and b.

For a dataset size of n, if we estimate the probability of the i-th failure time by its
relative frequency, using the non-parametric estimation, the fitted cumulative density
function F̂(ti) can be obtained by:

F̂(ti) = P̂(t ≤ ti) =
i− 1

n
. (22)

According to the formula H(t) = − ln(1− F(t)), the fitted cumulative hazard function
Ĥ(ti) is:

Ĥ(ti) = ln(
n

n− i + 1
). (23)

Based on the above analysis, when the parameters β1 and β2 are known, the least
squares estimates of a, b can be obtained by minimizing the least squares distance between
H(t) and Ĥ(t). Denote the least squares distance function as Q(a, b), and it is given by:

Q(a, b) =
n

∑
i=1

(H(ti)− Ĥ(ti))

=
n1

∑
i=1

[(k1a + k2b)(et
β1
i − 1)− ln(

n
n− i + 1

)]2

+
n1+n2

∑
i=n1+1

[(k1a + k2b)(eτ
β1
1 − 1) + a(ti − τ1) +

b
2
(t2

i − τ2
1 )− ln(

n
n− i + 1

)]2

+
n

∑
i=n1+n2+1

[(k1a + k2b)(eτ
β1
1 − 1) + a(τ2 − τ1) +

b
2
(τ2

2 − τ2
1 ) + (k3a + k4b)(etβ2 − eτ

β2
2 )

− ln(
n

n− i + 1
)]2

(24)

where:

k1 =
1

eτ
β1
1 β1τ1

β1−1
, k2 =

1

eτ
β1
1 β1τ1

β1−2
, k3 =

1

eτ
β2
2 β2τ2

β2−1
, k4 =

1

eτ
β2
2 β2τ2

β2−2
. (25)

For the given β1 and β2, the analytic expression of least square estimates â(β1, β2) and
b̂(β1, β2) can be obtained by taking the derivative of Q(a, b). The results are as follows:

â(β1, β2) =
B1C2 − B2C1

A1B2 − B2
1

b̂(β1, β2) =
B1C1 − A1C2

A1B2 − B2
1

(26)

where A1, B1, C1, B2, and C2 are concerned with β1, β2, a, b, τ1, τ2, ti and are shown specifi-
cally in the Appendix A.

Note that if β1 and β2 are assumed to be unknown, we can plug â(β1, β2) and b̂(β1, β2)
into the log-likelihood function l(β1, β2, a, b). Thus, the log-likelihood function is only
concerned with β1 and β2 (denote it as l(β1, β2)), which makes it more conducive to
calculate the maximum likelihood estimates. By maximizing l(β1, β2), the estimates of
β1 and β2 can be obtained. Using (10) and (26), the estimates of λ1, λ2, a, and b can be
calculated as well.

The least squares estimates (LSEs) of the parameters calculated in this section can also
be used as the initial iterative values when calculating the maximum likelihood estimates
in the previous section.
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4. Interval Estimation
4.1. Observed Fisher Information Matrix

Based on the large-sample theory, when the sample size n is large enough, the in-
verse of the Fisher information matrix can be used as the approximation of the variance–
covariance matrix. Denote the Fisher information matrix as I.

I = E


− ∂2l

∂a2 − ∂2l
∂a∂b − ∂2l

∂a∂β1
− ∂2l

∂a∂β2

− ∂2l
∂b∂a − ∂2l

∂b2 − ∂2l
∂b∂β1

− ∂2l
∂b∂β2

− ∂2l
∂β1∂a − ∂2l

∂β1∂b − ∂2l
∂β2

1
− ∂2l

∂β1∂β2

− ∂2l
∂β2∂a − ∂2l

∂β2∂b − ∂2l
∂β2∂β1

− ∂2l
∂β2

2

 (27)

The specific elements of I are provided in the Appendix A.
Since it is difficult to calculate the above expectations, the observed Fisher information

matrix is often used as a substitute for the Fisher matrix, which does not take expectations
but takes the parameter values as the maximum likelihood estimates. Denote it as O.

O =


− ∂2l

∂a2 − ∂2l
∂a∂b − ∂2l

∂a∂β1
− ∂2l

∂a∂β2

− ∂2l
∂b∂a − ∂2l

∂b2 − ∂2l
∂b∂β1

− ∂2l
∂b∂β2

− ∂2l
∂β1∂a − ∂2l

∂β1∂b − ∂2l
∂β2

1
− ∂2l

∂β1∂β2

− ∂2l
∂β2∂a − ∂2l

∂β2∂b − ∂2l
∂β2∂β1

− ∂2l
∂β2

2


|a=â,b=b̂,β1=β̂1,β2=β̂2

(28)

Therefore, the approximated variance–covariance matrix of â, b̂, β̂1, and β̂2 is given by:
ˆVar(â) ˆCov(â, b̂) ˆCov(â, β̂1) ˆCov(â, β̂2)

ˆCov(b̂, â) ˆVar(b̂) ˆCov(b̂, β̂1) ˆCov(b̂, β̂2)
ˆCov(β̂1, â) ˆCov(β̂1, b̂) ˆVar(β̂1) ˆCov(β̂1, β̂2)
ˆCov(β̂2, â) ˆCov(β̂2, b̂) ˆCov(β̂2, β̂1) ˆVar(β̂2)

 = O−1. (29)

As the maximum likelihood estimators have asymptotic normality under regularity
condition, it can be known that (â, b̂, β̂1, β̂2) obeys the quaternion normal distribution
approximately. Its mean vector is (a, b, β2, β2) and the variance–covariance matrix is O−1.
Based on the above analysis, the asymptotic confidence intervals of â, b̂, β̂1, and β̂2 can also
be calculated. In the next section, the specific implementation steps and the calculation
method of coverage probabilities are given.

4.2. Asymptotic Confidence Interval

When given a set of initial parameters β1, β2, λ1, and λ2, the following steps can
generate sample data and compute the confidence intervals and coverage probabilities.

Step 1: Generate n random numbers that are independent and identically distributed
in a Uniform distribution U(0, 1). Then, invert F(t) in (14) to generate the survival time ti.
The corresponding function is as follows:
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ti =



[
ln(1− β1τ1

β1−1ln(1− ui)

(a + bτ1)e−τ
β1
1

)
] 1

β1 , 0 < ui < F(τ1)

−a +

√
a2 − 2b[ln(1− ui) +

(a+bτ1)e
−τ

β1
1

β1τ1
β1−1 (eτ1

β1 − 1)− aτ1 − b
2 τ2

1 ]

b
F(τ1) ≤ ui < F(τ2)

[
ln(e−τ

β2
2 −

ln(1− ui) +
(a+bτ1)e

−τ
β1
1

β1τ1
β1−1 (eτ1

β1 − 1) + a(τ2 − τ1) +
b
2 (τ

2
2 − τ2

1 )− ln(1− ui)

(a + bτ2)e−τ
β2
2

β2τ2
β2−1)

] 1
β2

ui ≥ F(τ2)

(30)

Step 2: Use the data ti generated from Step 1 and the log-likelihood function (17) to
calculate the MLEs of a, b, β1, and β2. Denote them as â, b̂, β̂1, and β̂2. Calculate the MLEs
of λ1 and λ2 via the equation (10) and denote them as λ̂1 and λ̂2.

Step 3: Use the data ti generated from Step 1 and the MLEs from Step 2 to calculate
the observed Fisher information matrix O.

Step 4: Invert O matrix to calculate the asymptotic variance–covariance matrix, and
denote it as A. Obtain the asymptotic variance of β1 and β2 as ˆvar(β̂1) and ˆvar(β̂2).

Step 5: Based on the theory of the Delta method ([26]), the asymptotic variance of λ̂1
and λ̂2 can be calculated using the following equations:

ˆvar(λ̂1) = C1 ACT
1

ˆvar(λ̂2) = C2 ACT
2

(31)

where:

C1 = (
∂λ1(a, b, β1)

∂a
,

∂λ1(a, b, β1)

∂b
,

∂λ1(a, b, β1)

∂β1
, 0 )

C2 = (
∂λ2(a, b, β2)

∂a
,

∂λ2(a, b, β2)

∂b
, 0 ,

∂λ2(a, b, β2)

∂β2
)

(32)

CT
1 and CT

2 are the transpose matrices of C1 and C2, respectively. Further, the specific
expressions of C1 and C2 are shown in the Appendix A.

Step 6: The lower and upper bounds of the 100(1 − α)% confidence intervals for
β1, β2, λ1, λ2 are given by:

β̂L
i = min{β̂i − u α

2

√
ˆvar(β̂i), 0} β̂U

i = β̂i + u α
2

√
ˆvar(β̂i), i = 1, 2

λ̂L
i = min{λ̂i − u α

2

√
ˆvar(λ̂i), 0} λ̂U

i = λ̂i + u α
2

√
ˆvar(λ̂i), i = 1, 2

(33)

where uq is the q-quantile of a standardized normal distribution.
Step 7: Repeat the foregoing steps 999 times to obtain the coverage probabilities

as CPrs.

CPr(β1) =
999

∑
j=1

I(β̂L
1j < β1 < β̂U

1j)

999
(34)

where I(β̂L
1j < β1 < β̂U

1j) is the indicator function. β̂L
1j and β̂U

1j are the j-th results of the β1’
lower and upper bounds of the 100(1− α)% confidence intervals.

In the same way, we can obtain the CPrs of β2, λ1, and λ2.
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5. Simulation Results and Analysis

In this section, the simulation results under different sample sizes (n) and differ-
ent parameters are presented using the method given in the previous section with the
R program.

The simulation results of the MLEs, LSEs, 95% and 99% confidence intervals, and
the corresponding coverage probabilities are given by Monte Carlo simulations, which
evaluate the performance of the estimation methods. By comparing the mean, bias, and
mean square error of MLEs and LSEs, the advantages and disadvantages of the two
methods are compared.

Based on the characteristics of the Chen distribution’s hazard function, different pa-
rameters are chosen to generate random numbers, and the results are listed in Tables 1–4.
The results include the mean, bias, mean square error (MSE), lower bounds (LB95%), up-
per bounds (UB95%), and coverage probabilities (CPr95%) of 95% confidence interval and
lower bounds (LB99%), upper bounds (UB99%), and coverage probabilities (CPr99%) of 99%
confidence intervals.

Table 1 shows the simulation results when the hazard functions under the two stresses
are both bathtub-shaped with n = 50, n = 100, n = 200.

Table 1. The results of MLEs, LSEs, interval estimates, and CPrs when β1 = 0.7, β2 = 0.9, λ1 = 0.5016,
λ2 = 1.0015, τ1 = 0.5, τ2 = 1, a = −0.85, b = 3.3.

n Par Method Mean Bias MSE LB95% UB95% CPr95% LB99% UB99% CPr99%

50

λ1
MLE 0.5469 0.0454 0.0247 0.2580 0.8359 0.944 0.1666 0.9273 0.984
LSE 0.5165 0.0149 0.0173

λ2
MLE 1.0326 0.0311 0.1454 0 2.5273 0.964 0 3.0001 0.981
LSE 0.6894 −0.3121 0.0137

β1
MLE 0.7597 0.0597 0.0473 0.3832 1.1362 0.947 0.2641 1.2553 0.988
LSE 0.7294 0.0294 0.0191

β2
MLE 1.1487 0.2487 0.2595 0.2605 2.0368 0.901 -0.0204 2.3178 0.964
LSE 1.1840 0.2840 0.0512

100

λ1
MLE 0.5181 0.0165 0.0102 0.3220 0.7142 0.948 0.2599 0.7762 0.993
LSE 0.5286 0.0270 0.0089

λ2
MLE 1.1001 0.0986 1.6755 0.1456 2.0545 0.953 0 2.3564 0.984
LSE 0.7872 −0.2143 0.0114

β1
MLE 0.7238 0.0238 0.0178 0.4708 0.9768 0.951 0.3907 1.0568 0.988
LSE 0.7327 0.0327 0.0095

β2
MLE 1.0009 0.1009 0.1027 0.4122 1.5896 0.917 0.2259 1.7758 0.970
LSE 1.0530 0.1530 0.0117

200

λ1
MLE 0.5108 0.0092 0.0047 0.3736 0.6480 0.960 0.3302 0.6914 0.992
LSE 0.5171 0.0155 0.0049

λ2
MLE 0.9841 −0.0173 0.1017 0.3514 1.6168 0.969 0.1512 1.8170 0.995
LSE 0.8632 −0.1382 0.0072

β1
MLE 0.7143 0.0143 0.0089 0.5382 0.8904 0.953 0.4825 0.9462 0.988
LSE 0.7210 0.0210 0.0041

β2
MLE 0.9707 0.0707 0.0439 0.5673 1.3740 0.930 0.4397 1.5016 0.977
LSE 0.9881 0.0881 0.0046

Table 2 shows the simulation results when the distributions under the two stress levels
are the same as those in Table 1, but the lag time (τ2 − τ1) is shortened.

Table 3 shows the simulation results when the hazard functions under the two different
stresses both increase monotonically with n = 50, n = 100, n = 200.
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Table 2. The results of MLEs, LSEs, interval estimates, and CPrs when β1 = 0.7, β2 = 0.9, λ1 = 0.5016,
λ2 = 1.0015, τ1 = 0.5, τ2 = 0.7, a = −2.0235, b = 5.6470.

n Par Method Mean Bias MSE LB95% UB95% CPr95% LB99% UB99% CPr99%

50

λ1
MLE 0.5406 0.0390 0.0278 0.2367 0.8444 0.947 0.1406 0.9406 0.981
LSE 0.5392 0.0376 0.0221

λ2
MLE 1.0617 0.0602 0.3453 0.2177 1.9056 0.955 0 2.1726 0.988
LSE 0.8517 −0.1498 0.0387

β1
MLE 0.7529 0.0529 0.0489 0.3675 1.1382 0.944 0.2456 1.2602 0.979
LSE 0.7409 0.0409 0.0194

β2
MLE 1.0346 0.1346 0.1296 0.3951 1.6742 0.930 0.1928 1.8765 0.983
LSE 1.0550 0.1550 0.0041

100

λ1
MLE 0.5205 0.0189 0.0130 0.3122 0.7288 0.931 0.2464 0.7947 0.981
LSE 0.5247 0.0231 0.0124

λ2
MLE 1.0101 0.0086 0.1397 0.4483 1.5719 0.953 0.2706 1.7496 0.984
LSE 0.8970 −0.1044 0.0212

β1
MLE 0.7259 0.0259 0.0189 0.4647 0.9872 0.952 0.3820 1.0698 0.990
LSE 0.7302 0.0302 0.0107

β2
MLE 0.9733 0.0733 0.0555 0.5470 1.3996 0.927 0.4122 1.5345 0.978
LSE 0.9928 0.0928 0.0012

200

λ1
MLE 0.5099 0.0083 0.0058 0.3649 0.6549 0.949 0.3191 0.7007 0.987
LSE 0.5235 0.0219 0.0063

λ2
MLE 1.0059 0.0044 0.0406 0.6175 1.3943 0.953 0.4946 1.5172 0.992
LSE 0.9280 −0.0735 0.0124

β1
MLE 0.7135 0.0135 0.0086 0.5323 0.8947 0.949 0.4750 0.9520 0.988
LSE 0.7201 0.0201 0.0047

β2
MLE 0.9285 0.0285 0.0225 0.6366 1.2204 0.948 0.5442 1.3128 0.992
LSE 0.9569 0.0569 0.0041

Table 4 shows the simulation results when the hazard function under the first stress
level is bathtub-shaped and in the second stress level is monotonically increasing with
n = 50, n = 100, n = 200.

Table 3. The results of MLEs, LSEs, interval estimates, and CPrs when β1 = 1, β2 = 1.2, λ1 = 0.7642,
λ2 = 1.1061, τ1 = 0.4, τ2 = 0.6, a = −0.7, b = 4.6.

n Par Method Mean Bias MSE LB95% UB95% CPr95% LB99% UB99% CPr99%

50

λ1
MLE 0.9009 0.1367 0.2990 0.2552 1.5466 0.940 0.0509 1.7509 0.987
LSE 0.8342 0.0700 0.0793

λ2
MLE 1.1245 0.0185 0.1404 0.4643 1.7848 0.938 0.2554 1.9937 0.978
LSE 1.0138 −0.0923 0.0563

β1
MLE 1.0870 0.0870 0.1224 0.5168 1.6572 0.944 0.3364 1.8376 0.982
LSE 1.0527 0.0527 0.0511

β2
MLE 1.3984 0.1984 0.2188 0.5822 2.2146 0.940 0.324 2.4727 0.989
LSE 1.3959 0.1959 0.0055



Mathematics 2022, 10, 674 15 of 23

Table 3. Cont.

n Par Method Mean Bias MSE LB95% UB95% CPr95% LB99% UB99% CPr99%

100

λ1
MLE 0.8139 0.0497 0.0504 0.3951 1.2326 0.950 0.2627 1.3651 0.988
LSE 0.8284 0.0643 0.0451

λ2
MLE 1.1094 0.0033 0.0576 0.6578 1.5613 0.942 0.5152 1.7038 0.984
LSE 1.0331 −0.0730 0.0343

β1
MLE 1.0354 0.0354 0.0390 0.6529 1.4179 0.955 0.5319 1.5389 0.988
LSE 1.0504 0.0504 0.0249

β2
MLE 1.2926 0.0926 0.0779 0.7531 1.8323 0.951 0.5823 2.003 0.989
LSE 1.3152 0.1152 0.0015

200

λ1
MLE 0.7859 0.0217 0.0208 0.4976 1.0741 0.957 0.4064 1.1653 0.994
LSE 0.8156 0.0514 0.0219

λ2
MLE 1.1142 0.0082 0.0290 0.7977 1.4307 0.947 0.6976 1.5309 0.987
LSE 1.0520 −0.0541 0.0170

β1
MLE 1.0168 0.0168 0.0184 0.7512 1.2823 0.963 0.6672 1.3664 0.993
LSE 1.0339 0.0339 0.0122

β2
MLE 1.2398 0.0398 0.0382 0.8716 1.6081 0.949 0.7551 1.7246 0.992
LSE 1.2693 0.0693 0.0005

Table 4. The results of MLEs, LSEs, interval estimates, and CPrs when β1 = 0.8, β2 = 1.2, λ1 = 0.3679,
λ2 = 0.0802, τ1 = 1, τ2 = 2, a = 0.5, b = 0.3.

n Par Method Mean Bias MSE LB95% UB95% CPr95% LB99% UB99% CPr99%

50

λ1
MLE 0.3705 0.0027 0.0048 0.2254 0.5157 0.977 0.1795 0.5616 0.996
LSE 0.3761 0.0082 0.0061

λ2
MLE 0.0295 −0.0508 0.5604 0 0.2688 0.981 0 0.3445 0.994
LSE 0.0426 −0.0376 0.0001

β1
MLE 0.8371 0.0371 0.0278 0.5147 1.1595 0.954 0.4127 1.2615 0.990
LSE 0.8159 0.0159 0.0105

β2
MLE 1.3156 0.1156 0.0826 0.7707 1.8606 0.871 0.5984 2.0329 0.936
LSE 1.3586 0.1586 0.0133

100

λ1
MLE 0.3715 0.0036 0.0024 0.2717 0.4714 0.972 0.2401 0.5029 0.991
LSE 0.3737 0.0058 0.0031

λ2
MLE 0.0908 0.0106 0.0077 0 0.2173 0.969 0 0.2573 0.993
LSE 0.0552 −0.0250 0.0001

β1
MLE 0.8204 0.0204 0.0141 0.5984 1.0424 0.943 0.5282 1.1126 0.995
LSE 0.8161 0.0161 0.0052

β2
MLE 1.2495 0.0495 0.0363 0.8793 1.6197 0.923 0.7622 1.7368 0.969
LSE 1.2895 0.0895 0.0035

200

λ1
MLE 0.3711 0.0032 0.0012 0.3016 0.4405 0.965 0.2796 0.4625 0.994
LSE 0.3709 0.0030 0.0015

λ2
MLE 0.0791 −0.0011 0.0019 0 0.1625 0.965 0 0.1889 0.997
LSE 0.0635 −0.0167 0.0001

β1
MLE 0.8058 0.0058 0.0060 0.6519 0.9596 0.956 0.6033 1.0083 0.993
LSE 0.8101 0.0101 0.0026

β2
MLE 1.2360 0.0360 0.0161 0.9859 1.4861 0.915 0.9068 1.5652 0.971
LSE 1.2551 0.0551 0.0014
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Based on Tables 1–4, some conclusions are summarized as follows.

(1) No matter which values the parameters take, the estimated values are close to the
real values, and mostly the bias and mean square errors decrease with the increase in
sample size, which shows that the two estimations are effective.

(2) From the perspective of bias, the results of LSE are generally better than MLE when
n = 50; the results of MLE are generally better than LSE when n = 100 and n = 200.
This means that LSE is preferred when the sample size is small, while MLE is preferred
when the sample size is large.

(3) Under different parameters, the mean square errors of LSEs are generally less than
that of MLEs, and the advantage of LSE in the mean square errors is more obvious
when the sample size n is small.

(4) In terms of the asymptotic confidence intervals, generally, the coverage probabilities
of the 95% are close to 95%, and the coverage probabilities of the 99% are close to 99%,
which verifies the correctness of the methods. The coverage probabilities are closer
to 1-α with the increase in the sample size, which means the asymptotic confidence
intervals will be more precise when the sample size is larger.

(5) In general, the estimations perform better when the hazard function under the first
stress is bathtub-shaped and under the second stress is monotonically increasing. The
coverage probabilities fit better when the risk function is monotonically increasing
under both stress levels.

(6) Comparing Tables 1 and 2, it can be seen that when the lagged-effect time is shortened,
the mean square errors of MLEs and LSEs both increase under the small sample size.

6. A Special Case

Since the parameter β determines whether the shape of the hazard function is a bathtub
shape or not and, in many cases, the stress does not change the shape of the hazard function,
a special case will be discussed below.

When assuming that parameter β1 is equal to parameter β2 and denoting them as β,
the model becomes the following form.

The hazard functions under the two stresses are:

h1(t) = λ1βtβ−1etβ
, t > 0, (35)

h2(t) = λ2βtβ−1etβ
, t > 0. (36)

Under the CRM, the hazard function is obtained by:

h(t) =


λ1βtβ−1etβ

, 0 < t < τ1

a + bt , τ1 ≤ t < τ2

λ2βtβ−1etβ
, t ≥ τ2

(37)

Replace parameters λ1 and λ2 with a and b, and the cumulative hazard function H(t)
under the model is:

H(t) =



(a+bτ1)e
−τ

β
1

βτ1
β−1 (etβ − 1), 0 < t < τ1

(a+bτ1)e
−τ

β
1

βτ1
β−1 (eτ

β
1 − 1) + a(t− τ1) +

b
2 (t

2 − τ2
1 ), τ1 ≤ t < τ2

(a+bτ1)e
−τ

β
1

βτ1
β−1 (eτ

β
1 − 1) + a(τ2 − τ) + b

2 (τ
2
2 − τ2

1 )

+ (a+bτ2)e
−τ

β
2

βτ2
β−1 (etβ − eτ

β
2 ), t ≥ τ2

(38)
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The survival function S(t) under the model is:

S(t) =



exp

{
− (a+bτ1)e

−τ
β
1

βτ1
β−1 (etβ − 1)

}
, 0 < t < τ1

exp

{
− (a+bτ1)e

−τ
β
1

βτ1
β−1 (eτ

β
1 − 1)− a(t− τ1)− b

2 (t
2 − τ2

1 )

}
, τ1 ≤ t < τ2

exp

{
− (a+bτ1)e

−τ
β
1

βτ1
β1−1 (eτ

β
1 − 1)− a(τ2 − τ1)− b

2 (τ
2
2 − τ2

1 )

}

× exp

{
− (a+bτ2)e

−τ
β
2

βτ2
β−1 (etβ − eτ

β
2 )

}
, t ≥ τ2

(39)

The probability density function f (t) of the lifetime is as follows:

f (t) =



(a+bτ1)e
−τ

β
1

τ1
β−1 tβ−1etβ

exp

{
− (a+bτ1)e

−τ
β
1

βτ1
β−1 (etβ − 1)

}
, 0 < t < τ1

(a + bt) exp

{
− (a+bτ1)e

−τ
β
1

βτ1
β−1 (eτ

β
1 − 1)− a(t− τ1)− b

2 (t
2 − τ2

1 )

}
, τ1 ≤ t < τ2

(a+bτ2)e
−τ

β
2

τ2
β−1 tβ−1etβ

exp

{
− (a+bτ1)e

−τ
β
1

β1τ1
β−1 (eτ

β
1 − 1)− a(τ2 − τ1)− b

2 (τ
2
2 − τ2

1 )

}

× exp

{
− (a+bτ2)e

−τ
β
2

βτ2
β−1 (etβ − eτ

β
2 )

}
, t ≥ τ2

(40)

The corresponding cumulative distribution function F(t) is given by:

F(t) =



1− exp

{
− (a+bτ1)e

−τ
β
1

βτ1
β−1 (etβ − 1)

}
, 0 < t < τ1

1− exp

{
− (a+bτ1)e

−τ
β
1

βτ1
β−1 (eτ

β
1 − 1)− a(t− τ1)− b

2 (t
2 − τ2

1 )

}
, τ1 ≤ t < τ2

1− exp

{
− (a+bτ1)e

−τ
β
1

βτ1
β−1 (eτ

β
1 − 1)− a(τ2 − τ1)− b

2 (τ
2
2 − τ2

1 )

}

× exp

{
− (a+bτ2)e

−τ
β
2

βτ2
β−1 (etβ − eτ

β
2 )

}
, t ≥ τ2

(41)

Accordingly, the log-likelihood function l(β, a, b) can be written as:
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l(β, a, b) =n1
[

ln(a + bτ1)− τ1
β
]
+

n1+n2

∑
i=n1+1

ln(a + bti) + n3
[

ln(a + bτ2)− τ2
β
]

+ (β− 1)[
n1

∑
i=1

ln(
ti
τ1
) +

n

∑
i=n1+n2+1

ln(
ti
τ1
)] +

n1

∑
i=1

ti
β +

n

∑
i=n1+n2+1

ti
β

− a[
n1+n2

∑
i=n1+1

(ti − τ1) + (τ2 − τ1)n3]−
b
2
[

n1+n2

∑
i=n1+1

(t2
i − τ2

1 ) + (τ2
2 − τ2

1 )n3]

− (a + bτ1)e−τ
β
1

βτ1
β−1 [

n1

∑
i=1

(etβ
i − 1) + (n2 + n3) + (eτ1

β − 1)]

− (a + bτ2)e−τ
β
2

βτ2
β−1

n

∑
i=n1+n2+1

(etβ
i − eτ

β
2 )

(42)

Other relevant parameter estimations can also be obtained. The corresponding meth-
ods are similar to those of previous sections and the specific steps are omitted.

7. Conclusions

In this paper, the parameter estimations and the statistical inference of the Chen distri-
bution under the step-stress model with lagged effect are studied. Maximum likelihood
estimation is used for point estimation, and the Newton–Raphson algorithm is used when
solving the nonlinear equations. Based on the unique linear form of risk function under
CRM, another point estimation is obtained based on the large sample theory and the least
squares estimation method. Different from maximum likelihood estimation, it gives the
specific expressions of a, b for the given β1, β2. Moreover, using the observed Fisher ma-
trix and the asymptotic normality of the maximum likelihood estimators, a method to
construct the asymptotic confidence interval and coverage probabilities is provided. The
performance of those estimation methods is evaluated by Monte Carlo simulation. It can be
seen from the simulation results that the accuracy of the two point estimations is different
when parameters or sample sizes change, which may be due to distinct forms of the Chen
distribution’s risk functions.

The bathtub-shaped hazard function of the Chen distribution is of great significance in
real life. The step-stress model is practical in survival analysis and the lagged effect makes
it more consistent with reality. This paper can also be further extended by considering
competing risks or a censoring scheme.
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Appendix A

Appendix A.1. The Expressions of â(β1, β2) and b̂(β1, β2)

â(β1, β2) =
B1C2 − B2C1

A1B2 − B2
1

b̂(β1, β2) =
B1C1 − A1C2

A1B2 − B2
1

(A1)

where:

A1 =
n1

∑
i=1

[k1(et
β1
i − 1)]2 +

n1+n2

∑
i=n1+1

[k1(eτ
β1
1 − 1) + (ti − τ1)]

2

+
n

∑
i=n1+n2+1

[k1(eτ
β1
1 − 1) + (τ2 − τ1) + k3(etβ2 − eτ

β2
2 )]2

B1 =
n1

∑
i=1

k1k2(et
β1
i − 1)2 +

n1+n2

∑
i=n1+1

[k1(eτ
β1
1 − 1) + (ti − τ1)][k2(eτ

β1
1 − 1) +

1
2
(t2

i − τ2
1 )]

+
n

∑
i=n1+n2+1

[k1(eτ
β1
1 − 1) + (τ2 − τ1) + k3(etβ2 − eτ

β2
2 )][k2(eτ

β1
1 − 1) +

1
2
(τ2

2 − τ2
1 ) + k4(etβ2 − eτ

β2
2 )]

C1 =−
n1

∑
i=1

[ln(
n

n− i + 1
)k1(et

β1
i − 1)]−

n1+n2

∑
i=n1+1

ln(
n

n− i + 1
)[k1(eτ

β1
1 − 1) + (ti − τ1)]

−
n

∑
i=n1+n2+1

ln(
n

n− i + 1
)[k1(eτ

β1
1 − 1) + (τ2 − τ1) + k3(etβ2 − eτ

β2
2 )]

B2 =
n1

∑
i=1

[k2(et
β1
i − 1)]2 +

n1+n2

∑
i=n1+1

[k2(eτ
β1
1 − 1) +

1
2
(t2

i − τ2
1 )]

2

+
n

∑
i=n1+n2+1

[k2(eτ
β1
1 − 1) +

1
2
(τ2

2 − τ2
1 ) + k4(etβ2 − eτ

β2
2 )]2

C2 =−
n1

∑
i=1

[ln(
n

n− i + 1
)k2(et

β1
i − 1)]−

n1+n2

∑
i=n1+1

ln(
n

n− i + 1
)[k2(eτ

β1
1 − 1) +

1
2
(t2

i − τ2
1 )]

−
n

∑
i=n1+n2+1

ln(
n

n− i + 1
)[k2(eτ

β1
1 − 1) +

1
2
(τ2

2 − τ2
1 ) + k4(etβ2 − eτ

β2
2 )]

(A2)
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Appendix A.2. The Specific Elements of I

∂2l
∂a2 =− n1

(a + bτ1)2 −
n1+n2

∑
i=n1+1

1
(a + bti)2 −

n3

(a + bτ2)2

∂2l
∂b2 =−

n1τ2
1

(a + bτ1)2 −
n1+n2

∑
i=n1+1

t2
i

(a + bti)2 −
n3τ2

2
(a + bτ2)2

∂2l
∂β2

1
=− n1τ

β1
1 (ln τ1)

2 +
n1

∑
i=1

ti
β1(ln ti)

2

+
(a + bτ1)e−τ

β1
1

β1τ1
β1−1 (

1
β1

+ ln τ1 + τ
β1
1 ln τ1)

{
−( 1

β1
+ ln τ1 + τ

β1
1 ln τ1)

[ n1

∑
i=1

(et
β1
i − 1)

+(n2 + n3)(eτ1
β1 − 1)

]
+ (n2 + n3)(eτ1

β1 τ1
β1 ln τ1) +

n1

∑
i=1

et
β1
i tβ1

i ln ti

}

− (a + bτ1)e−τ
β1
1

β1τ1
β1−1

{
(

1
(β1)2 − τ

β1
1 (ln τ1)

2)
[ n1

∑
i=1

(et
β1
i − 1) + (n2 + n3)(eτ1

β1 − 1)
]

−( 1
β1

+ ln τ1 + τ
β1
1 ln τ1)

[ n1

∑
i=1

et
β1
i tβ1

i ln ti + (n2 + n3)(eτ1
β1 τ

β1
1 ln τ1)

]
[
(n2 + n3)eτ1

β1 τ
β1
1 (ln τ1)

2(τ
β1
1 + 1)

]
+

n1

∑
i=1

et
β1
i tβ1

i (ln ti)
2(tβ1

i + 1)

}

∂2l
∂β2

2
=− n3τ

β2
2 (ln τ1)

2 +
n

∑
i=n1+n2+1

ti
β2(ln ti)

2

+
(a + bτ2)e−τ

β2
2

β2τ2
β2−1 (

1
β2

+ ln τ2 + τ
β2
2 ln τ2)

{
−( 1

β2
+ ln τ2 + τ

β2
2 ln τ2)

[ n

∑
i=n1+n2+1

(etβ2
i − eτ

β2
2 )
]

+
n1

∑
i=1

(etβ2
i tβ2

i ln ti − eτ
β2
2 τ

β2
2 ln τ2)

}

− (a + bτ2)e−τ
β2
2

β2τ2
β2−1

{
(

1
β2

2
− τ

β2
2 ln τ2)

[ n

∑
i=n1+n2+1

(etβ2
i − eτ

β2
2 )
]

−( 1
β2

+ ln τ2 + τ
β2
2 ln τ2)

[ n

∑
i=n1+n2+1

(etβ2
i tβ2

i ln ti − eτ
β2
2 τ

β2
2 ln τ2)

n

∑
i=n1+n2+1

[
etβ2

i tβ2
i (ln ti)

2(tβ2
i + 1)− eτ

β2
2 τ

β2
2 (ln τ2)

2(τ
β2
2 + 1)

]}

(A3)
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∂2l
∂a∂b

=
∂2l

∂b∂a
=− n1τ1

(a + bτ1)2 −
n1+n2

∑
i=n1+1

ti
(a + bti)2 −

n3τ2

(a + bτ2)2

∂2l
∂a∂β1

=
∂2l

∂β1∂a
=− (a + bτ1)e−τ

β1
1

β1τ1
β1−1

{
−( 1

β1
+ ln τ1 + τ

β1
1 ln τ1)

[ n1

∑
i=1

(et
β1
i − 1) + (n2 + n3)(eτ1

β1 − 1)
]

+(n2 + n3)(eτ1
β1 τ1

β1 ln τ1) +
n1

∑
i=1

et
β1
i tβ1

i ln ti

}

∂2l
∂a∂β2

=
∂2l

∂β2∂a
=− (a + bτ2)e−τ

β2
2

β2τ2
β2−1

{
−( 1

β2
+ ln τ2 + τ

β2
2 ln τ2)

[ n

∑
i=n1+n2+1

(etβ2
i − eτ

β2
2 )
]

+
n

∑
i=n1+n2+1

(etβ2
i tβ2

i ln ti − eτ
β2
2 τ

β2
2 ln τ2)

}

∂2l
∂b∂β1

=
∂2l

∂β1∂b
=− (a + bτ1)e−τ

β1
1

β1τ1
β1−2

{
−( 1

β1
+ ln τ1 + τ

β1
1 ln τ1)

[ n1

∑
i=1

(et
β1
i − 1) + (n2 + n3)(eτ1

β1 − 1)
]

+(n2 + n3)(eτ1
β1 τ1

β1 ln τ1) +
n1

∑
i=1

et
β1
i tβ1

i ln ti

}

∂2l
∂b∂β2

=
∂2l

∂β2∂b
=− (a + bτ2)e−τ

β2
2

β2τ2
β2−2

{
−( 1

β2
+ ln τ2 + τ

β2
2 ln τ2)

[ n

∑
i=n1+n2+1

(etβ2
i − eτ

β2
2 )
]

+
n

∑
i=n1+n2+1

(etβ2
i tβ2

i ln ti − eτ
β2
2 τ

β2
2 ln τ2)

}

∂2l
∂β1∂β2

=
∂2l

∂β2∂β1
=0

(A4)

Appendix A.3. The Expression of C1 and C2

C1 = (
∂λ1(a, b, β1)

∂a
,

∂λ1(a, b, β1)

∂b
,

∂λ1(a, b, β1)

∂β1
, 0 )

C2 = (
∂λ2(a, b, β2)

∂a
,

∂λ2(a, b, β2)

∂b
, 0 ,

∂λ2(a, b, β2)

∂β2
)

(A5)

where:
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λ1(a, b, β1) =
(a + bτ1)e−τ

β1
1

β1τ1
β1−1

λ2(a, b, β2) =
(a + bτ2)e−τ

β2
2

β2τ2
β2−1

∂λ1(a, b, β1)

∂a
=

e−τ
β1
1

β1τ1
β1−1

∂λ1(a, b, β1)

∂b
=

τ1e−τ
β1
1

β1τ1
β1−1

∂λ1(a, b, β1)

∂β1
= − (a + bτ1)

(β1τ1
β1−1eτ

β1
1 )2

eτ
β1
1 τ1

β1−1(1 + β1lnτ1 + β1τ1
β1 lnτ1)

∂λ2(a, b, β2)

∂a
=

e−τ
β2
2

β2τ2
β2−1

∂λ2(a, b, β2)

∂b
=

τ2e−τ
β2
2

β2τ2
β2−1

∂λ2(a, b, β2)

∂β2
= − (a + bτ2)

(β2τ2
β2−1eτ

β2
2 )2

eτ
β2
2 τ2

β2−1(1 + β2lnτ2 + β2τ2
β2 lnτ2)

(A6)
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