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Abstract: This article establishes the vibrational behavior of functionally graded plates embedded
in a viscoelastic medium. The quasi-3D elasticity equations are used for this purpose. The three-
parameter Visco-Winkler-Pasternak model is employed to give the interaction between the viscoelastic
foundation and the presented plate. Hamilton’s principle is applied to derive the governing dynamic
equations. Many validation examples are presented. Additional benchmark results are tabulated
for future comparisons. The effects of various parameters like geometrical, material properties, and
viscoelastic foundations on the vibrational frequencies of homogeneous and functionally graded
plates are investigated. The frequencies increase as all parameters increase except the functionally
graded power-law index for which its increase causes a decrease in the frequency value.

Keywords: quasi-3D theory; eigenfrequencies; functionally graded plates; Visco-Winkler-Pasternak
foundation

1. Introduction

Functionally graded materials (FGMs), which were proposed by Koizumi [1,2], are
widely used in many real-life engineering applications due to their distinct properties
which cannot be achieved using traditional materials such as their capability to resist high
temperature, high strength, mechanical, and chemical properties. The FGMs are produced
by mixing ceramics and metals in which the ceramics and metals enhance the thermal
properties and mechanical properties, respectively. Therefore, FGMs become favorable
materials for designers in many applications such as aerospace, nuclear, marine, and
lightweight structures.

Several structural applications use plates resting on elastic foundations and a lot
of research has been conducted to investigate the vibration behavior of FGMs’ plates
supported by elastic foundations. Here, we restrict our attention to the vibration analyses
of different structures that rest on elastic foundations. The most famous model of the
elastic foundations is known as the Winkler-Pasternak model or, for simplicity, Pasternak’s
foundation model. It contains, of course, two parameters, the transverse stiffness coefficient
of Winkler and the shear stiffness coefficient of Pasternak. Hosseini-Hashemi et al. [3]
presented an analytical solution for the free vibrational analyses of FG rectangular plates
resting on Winkler or Pasternak elastic foundations using the first-order shear deformation
plate theory (FSDT).

A layerwise finite element formulation was introduced by Pandey and Pradyumna [4]
for the free vibration analysis of FG sandwich plates with a nonlinear variation of the
temperature through the thickness. Zenkour [5] presented the free vibration of a microbeam
resting on Pasternak’s foundation via the Green–Naghdi thermoelasticity theory without
energy dissipation. The neutral surface concept using the higher-order shear deformation
theory (HSDT) was used by Benferhat et al. [6] to investigate the free vibration response
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of FGMs plates resting on elastic foundations. Zaoui et al. [7] used the quasi-3D hybrid-
type HSDT to study the free vibration of FG plates resting on Pasternak’s foundation.
Zenkour and Radwan [8] presented the free vibrational analysis of multilayered composite
and softcore sandwich plates resting on Winkler-Pasternak foundations. Wang et al. [9]
analyzed the thermal vibration of FG graphene platelets reinforced composite annular
plate supported by an elastic foundation. Sobhy and Zenkour [10] discussed the vibration
of FG graphene, platelet-reinforced, composite, doubly-curved, shallow shells resting on
elastic foundations.

The HSDT and the two parameters, Pasternak and Winkler, as the elastic foundation
were used by Kumar et al. [11] to study the free vibration of tapered rectangular FG
plates. Liu et al. [12] used the FSDT and the multi-segment partition technique for the
dynamic analysis of FG plates reinforced with graphene platelets resting on the two-
parameter elastic foundation (Pasternak and Winkler). Arefi et al. [13] presented the size-
dependent free vibration of a three-layered exponentially graded (EG) nano-/micro-plate
with piezomagnetic face sheets resting on Pasternak’s foundation via MCST. Furthermore,
the two-parameter elastic foundation model was utilized by Tran et al. [14] to investigate the
vibration response of FG plates resting on an elastic foundation in a thermal environment.
Li et al. [15,16] presented a new semi-analytical method to analyze the free vibration of
uniform, stepped, and porous FG cylindrical shells under arbitrary boundary conditions.
Radaković et al. [17] presented a mathematical model to discuss the thermal buckling
and free vibration of a functionally graded plate that includes interaction with an elastic
foundation. Li et al. [18] discussed the vibration analysis of rotating, functionally graded,
nano-annular plates in a thermal environment. The edge-based smoothed, finite element
method and a mixed interpolation of tensorial components were used by Nguyen et al. [19]
to study the free vibration of FG porous plates resting on a two-parameter elastic foundation.
Tran et al. [20] used a nonlocal theory based upon four unknowns to complete the analysis
of FG porous nanoshells resting on an elastic foundation. Recently, Zenkour and El-
Shahrany [21] presented the forced vibration of a magnetoelastic, laminated, composite
beam resting on Pasternak’s foundation.

If we add the effect of the damping coefficient to the above two-parameter elastic
model, we can get the third viscoelastic foundation model. Several publications in the liter-
ature are made according to the inclusion of the third parameter to discuss the vibrational
problems of structures resting on the viscoelastic foundation [22–26]. The additional elastic
foundation model is denoted by Kerr’s foundation model. A lot of articles are concerned
with the force or the control of the hygrothermal vibration of sinusoidal FG nanobeams or
viscoelastic magnetostrictive sandwich plates resting on a hybrid of Kerr’s foundation [27,28].

This paper, for the first time, uses the Visco-Winkler-Pasternak elastic foundation
model in conjunction with a quasi-3D refined theory to study the vibration response of
FG plates. The analytical solutions for the natural vibration analysis of FG plates are
developed on the assumption that transverse shear displacements vary as a hyperbolic
function through the thickness of the plate. In addition, the transverse normal strain
is taken into consideration. Based on the present theory, comprehensive results of non-
dimensional frequencies of homogeneous and FG plates with and without the inclusion of
the three-parameter viscoelastic foundations are tabulated for future comparisons. Then
fundamental/natural frequencies are found by solving the eigenvalue problem. To verify
the accuracy of the present theory, many numerical examples are solved and compared
with other published solutions in the literature. In addition to the two-parameter elastic
foundation, the inclusion of a third damping parameter is also investigated.

2. Basic Equations
2.1. An FG Plate Structure

A functionally graded rectangular plate resting on a three-parameter elastic foundation
and bounded by the coordinate planes x = 0, a, y = 0, b, and z = −h/2, h/2, as shown in
Figure 1, is considered. The Cartesian coordinates x, y, z are chosen such as z is placed on
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the middle plane of the FG plate. The FG plate is made from metal (Aluminum-Al) and
ceramic (Alumina-Al2O3 or Zirconia-ZrO2) with the properties established in Section 3.
The bottom surface of the FG plate is metal-rich, and the top surface is ceramic-rich while
the middle is a mixture of both, which is varied using the following power-law function:

P(z) = (Pc − Pm)

(
z
h
+

1
2

)p
+ Pm, (1)

where the subscripts m and c denote metal and ceramic material properties, respectively,
and p is the gradient index that controls the smooth distribution of material through the
thickness of the FG plate and z is the distance from the neutral plane of the FG plate.
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Figure 1. The schematic diagram for the geometry of the FG plate resting on a Visco-Winkler-
Pasternak foundation.

2.2. A Quasi 3-D Higher-Order Plate Theory

Let vx(x, y, z; t), vy(x, y, z; t), and vz(x, y, z; t) denote the dynamic displacement com-
ponents of a material point located at (x, y, z) and time t in the x, y, and z directions,
respectively. The in-plane displacements and transverse displacement are assumed accord-
ing to the following refined quasi-3D plate theory:

vα = uα − zuz,α + f (z)φα,
vz = uz + g(z)φz, α = x, y

}
(2)

where the above displacements contain six unknowns uα, w, and φj as functions on (x, y, t).
The effects due to transverse shear strain and normal deformations are both included. The
function f (z) should be an odd function of z while g(z) should be an even function. That is

f (z) = h sin h
( z

h

)
− 4z3

3h2 cosh
(

1
2

)
, g(z) = f ′(z), ( )′ =

d( )
dz

. (3)

No transversal shear correction factors are needed for the present model because a
correct representation of the transversal shearing strain is given. In the displacement field
in Equation (2), the strains are given by{

εα

γxy

}
=

{
ε0

α

γ0
xy

}
+ z
{

ε1
α

γ1
xy

}
+ f (z)

{
ε2

α

γ2
xy

}
,

γαz = g(z)γ0
αz, εz = g′(z)ε0

z,
(4)

where

ε0
α = ∂uα

∂α , ε1
α = − ∂2uz

∂α2 , ε2
α = ∂φα

∂α , γ0
αz =

∂φz
∂α + φα, ε0

3 = φz,

γ0
xy =

∂uy
∂x + ∂ux

∂y , γ1
xy = −2 ∂2uz

∂x∂y , γ2
xy =

∂φy
∂x + ∂φx

∂y .
(5)
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In addition, the load-displacement formula between the plate and the supporting foun-
dations is expressed according to the three-parameter Visco-Winkler-Pasternak model by

R =

(
kw − ks∇2 + cd

∂

∂t

)
uz, (6)

where R is the foundation reaction per unit area, kw and ks are Winkler’s and Pasternak’s
foundation stiffnesses, respectively, and ∇2 represents Laplace’s operator. In addition, cd
refers to the damping coefficient. Some special models may be simply obtained from the
present models as:

Winkler’s model: ks = 0, cd = 0.
Pasternak’s model: kw = 0, cd = 0.
Winkler-Pasternak’s model: cd = 0.
Visco-Winkler’s model: ks = 0.
Visco-Pasternak’s model: kw = 0.

2.3. Constitutive Equations

For transverse shear and normal strain in the FG plate coordinates, the stress-strain
relationships can be expressed as

σx
σy
σz
τyz
τxz
τxy


=



c11 c12 c13 0 0 0
c22 c23 0 0 0

c33 0 0 0
c44 0 0

symm. c55 0
c66





εx
εy
εz

γyz
γxz
γxy


, (7)

where cij(z) are given by

c11(z) = c22(z) = c33(z) =
(1−ν)E(z)

(1−2ν)(1+ν)
,

c12(z) = c13(z) = c23(z) =
νE(z)

(1−2ν)(1+ν)
,

c44(z) = c55(z) = c66(z) =
E(z)

2(1+ν)
,

(8)

in which E(z) is Young’s modulus and ν is Poisson’s ratio.

2.4. Stress Resultants

For transverse shear and normal strain in the FG plate coordinates, the stress-strain
relationships can be expressed as{

(Nα, Mα, Sα),
(

Nxy, Mxy, Sxy
)}

=
∫ h/2
−h/2(1, z, f (z))

{
σα, τxy

}
dz,

Sz =
∫ h/2
−h/2 g′(z)σzdz,{

Qx, Qy
}
=
∫ h/2
−h/2 g(z)

{
τxz, τyz

}
dz.

(9)

Using expressions (3)–(7) in Equation (8), expressions for stress resultants
(

Nx, Ny, Nxy
)
,

moments
(

Mx, My, Mxy
)
, shape moments

(
Sx, Sy, Sxy

)
, and shear forces

(
Qx, Qy

)
can be

obtained. These expressions are given by:


N
M
S
Sz

 =


B B

=
B H

D D H
symm.

=
D

=
H

A33




ε 0

ε 1

ε 2

ε0
z

,
{

Qy
Qx

}
=

[
A44 0
0 A55

]{
γ0

yz
γ0

xz

}
, (10)
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where

N =


Nx
Ny
Nxy

, M =


Mx
My
Mxy

, S =


Nx
Ny
Sxy

, ε 0 =


ε0

x
ε0

y
γ0

xy

, ε 1 =


ε1

x
ε1

y
γ1

xy

, ε 2 =


ε2

x
ε2

y
γ2

xy

, (11)

B =

 B11 B12 0
B12 B22 0
0 0 B66

, B =

 B11 B12 0
B12 B22 0
0 0 B66

,
=
B =


=
B11

=
B12 0

=
B12

=
B22 0

0 0
=
B66

, (12)

D =

 D11 D12 0
D12 D22 0

0 0 D66

, D =

 D11 D12 0
D12 D22 0

0 0 D66

,
=
D =


=
D11

=
D12 0

=
D12

=
D22 0

0 0
=
D66

, (13)

H =

 H13
H23

0

, H =

 H13
H23

0

,
=
H =


=
H13
=
H23

0

, (14)

in which Bij, Bij, . . . etc., are the plate stiffness, defined by{
Bij, Bij,

=
Bij

}
=
∫ h/2
−h/2 cij(z){1, z, f (z)}dz{

Dij, Dij,
=
Dij

}
=
∫ h/2
−h/2 cij(z)

{
z2, z f (z), [ f (z)]2

}
dz

i, j = 1, 2, 6,

{
Hα3, Hα3,

=
Hα3

}
=
∫ h/2
−h/2 cα3(z)g′(z){1, z, f (z)}dz, α = 1, 2,

{A33, Arr} =
∫ h/2
−h/2

{
c33(z)[g′(z)]

2, crr(z)[g(z)]
2
}

dz, r = 4, 5.

(15)

Hamilton’s principle can be written as

δ
∫ t2

t1

(T −U)dt = 0, (16)

where the first variation of the kinetic energy T is represented as

δT = −
x

Ω

∫ h/2

−h/2
ρ

..
viδvidzdΩ, (17)

and U is the total potential energy represented as

δU =
x

Ω

[∫ h
2

− h
2

(
σiδεi + τijδγij

)
dz + Rδvz

]
dΩ. (18)

Using Equations (2), (4), (7), (17), and (18) in Equation (16) and carrying out the first
variation allows us to get the following governing equations associated with the present
quasi-3D plate theory:

δux : Nx,x + Nxy,y = I0
..
ux − I1

..
uz,x + I3

..
φx, (19)

δuy : Nxy,x + Ny,y = I0
..
uy − I1

..
uz,y + I3

..
φy, (20)

δuz : Mx,xx + 2Mxy,xy + My,yy − R = I0
..
uz + I1

( ..
ux,x +

..
uy,y

)
−I2∇2 ..

uz + I4

( ..
φx,x +

..
φy,y

)
+ I6

..
φz, (21)

δφx : Sx,x + Sxy,y −Qx = I3
..
ux − I4

..
uz,x + I5

..
φx, (22)
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δφy : Sxy,x + Sy,y −Qy = I3
..
uy − I4

..
uz,y + I5

..
φy, (23)

uz : Qx,x + Qy,y − Sz = I6
..
uz + I7

..
φz, (24)

where

{I0, I1, I2, I3, I4, I5, I6, I7} =
∫ h/2

−h/2
ρ(z)

{
1, z, z2, f , z f , f 2, g, g2

}
dz. (25)

The following closed-form solution is appropriate for such simply-supported plates
and is seen to satisfy all governing equations:

(ux, φx)(
uy, φy

)
(uz, φz)

 = ∑∞
l=1∑

∞
m=1


(
Uij, Xij

)
cos(λx) sin(µy)(

Vij, Yij
)

sin(λx) cos(µy)(
Wij, Zij

)
sin(λx) sin(µy)

e−iωt, (26)

where λ = iπ/a and µ = jπ/b. In addition, i and j represent the mode shapes of vibration
and they indicate the number of half-waves in x- and y-directions, respectively. The stress
and moment resultants in Equations (11)–(14) may be represented as

Nx = B11
∂ux
∂x + B12

∂uy
∂y − B11

∂2wb
∂x2 − B12

∂2wb
∂y2 −

=
B11

∂2ws
∂x2 −

=
B12

∂2ws
∂y2 + H13uz,

Ny = B12
∂ux
∂x + B22

∂uy
∂y − B12

∂2wb
∂x2 − B22

∂2wb
∂y2 −

=
B12

∂2ws
∂x2 −

=
B22

∂2ws
∂y2 + H23uz,

Nxy = B66

(
∂uy
∂x + ∂ux

∂y

)
− 2B66

∂2wb
∂x∂y − 2

=
B66

∂2ws
∂x∂y ,

Mx = B11
∂ux
∂x + B12

∂uy
∂y − D11

∂2wb
∂x2 − D12

∂2wb
∂y2 − D11

∂2ws
∂x2 − D12

∂2ws
∂y2 + H13uz,

My = B12
∂ux
∂x + B22

∂uy
∂y − D12

∂2wb
∂x2 − D22

∂2wb
∂y2 − D12

∂2ws
∂x2 − D22

∂2ws
∂y2 + H23uz,

Mxy = B66

(
∂uy
∂x + ∂ux

∂y

)
− 2D66

∂2wb
∂x∂y − 2D66

∂2ws
∂x∂y ,

Sx =
=
B11

∂ux
∂x +

=
B12

∂uy
∂y − D11

∂2wb
∂x2 − D12

∂2wb
∂y2 −

=
D11

∂2ws
∂x2 −

=
D12

∂2ws
∂y2 +

=
H13uz,

Sy =
=
B12

∂ux
∂x +

=
B22

∂uy
∂y − D12

∂2wb
∂x2 − D22

∂2wb
∂y2 −

=
D12

∂2ws
∂x2 −

=
D22

∂2ws
∂y2 +

=
H23uz,

Sxy =
=
B66

(
∂uy
∂x + ∂ux

∂y

)
− 2D66

∂2wb
∂x∂y − 2

=
D66

∂2ws
∂x∂y ,

Qx = A55
∂(ws+uz)

∂x , Qy = A44
∂(ws+uz)

∂y .

(27)

The governing Equations (19)–(24) after using Equations (26) and (27) are reduced to(
[K]− iω[R]−ω2[P ]

)
{∆} = {0}, (28)

where {∆} =
{

ux, uy, uz, φx, φy, φz
}T and the non-zero elements Kkl of the symmetric

matrix [K] and Pkl of the symmetric matrix [P ] are defined for FG plates by
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K11 = B11λ2 + B66µ2, K12 = (B12 + B66)λµ. , K13 = −λ
[
B11λ2 +

(
B12 + 2B66

)
µ2],

K14 =
=
B11λ2 +

=
B66µ2, K15 =

(
=
B12 +

=
B66

)
λµ, K16 = −H13λ, K22 = B66λ2 + B22µ2,

K23 = −µ
[(

B12 + 2B66
)
λ2 + B22µ2], K24 = K15, K25 =

=
B66λ2 +

=
B22µ2,

K26 = −H23µ, K33 = D11λ4 + 2(D12 + 2D66)λ
2µ2 + D22µ4 + ks

(
λ2 + µ2)+ kw,

K34 = −λ
[
D11λ2 +

(
D12 + 2D66

)
µ2], K35 = −µ

[(
D12 + 2D66

)
λ2 + D22µ2],

K36 = H13λ2 + H23µ2, K44 =
=
D11λ2 +

=
D66µ2 + A55,K45 =

(
=
D12 +

=
D66

)
λµ,

K46 =

(
A55 −

=
H13

)
λ, K55 =

=
D66λ2 +

=
D22µ2 + A44, K56 =

(
A44 −

=
H23

)
µ,

K66 = A55λ2 + A44µ2 + A33, P11 = P22 = I0, P13 = −I1λ, P14 = P25 = I3,

P23 = −I1µ, P33 = I0 + I2
(
λ2 + µ2), P34 = −I4λ, P35 = −I4µ, P36 = I6,

P44 = P55 = I5, P66 = I7, R33 = cd.

(29)

3. Numerical Results and Discussion

This section presents some numerical examples for vibration frequencies of isotropic
and FG rectangular plates. The accuracy and efficiency of the present quasi-3D refined
theory in predicting fundamental and natural frequencies of simply-supported plates are
discussed. The results due to the present theory are compared with those found in the
literature using various theories. Different material properties are assumed as follows:

3.1. Isotropic Plate

ν = 0.3. (30)

3.2. Functionally Graded Plates

Aluminum (Al) : Em = 70 GPa, ν = 0.3, ρm = 2703 kg/m3, (31)

Alumina (Al2O3) : Ec = 380 GPa, ν = 0.3, ρc = 3800 kg/m3, (32)

Zirconia (ZrO2) : Ec = 200 GPa, ν = 0.3, ρc = 5700 kg/m3. (33)

Numerical results concern values of dimensionless fundamental and natural frequen-
cies are displayed in Tables 1–18. Different forms for dimensionless frequencies and
foundation parameters are considered.

3.3. Analysis of Isotropic Plates

In this section, the special case of homogeneous isotropic plates is analyzed. Tables 1–4
present the results of the non-dimensional natural frequency obtained by the present quasi-
3D theory for square plates. In Tables 1–4, the non-dimensional natural frequencies and
nondimensional coefficients of foundations are utilized as

ω = ωa2

√
ρ0h
D0

, D0 =
E0h3

12(1− ν2)
, (34)

in which E0, ν, ρ0 denote Young’s modulus, Poisson’s ratio, and density of the isotropic material.
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Table 1 presents the natural frequencies of isotropic square plates due to the first
eight modes. These frequencies are compared with the solutions of different authors:
the 3D exact solutions by Leissa [29], Zhou et al. [30], Nagino et al. [31]; the FSDT us-
ing differential quadrature element method (DQM) by Liu and Liew [32]; and HDTs by
Hosseini-Hashemi et al. [33], Shufrin et al. [34], Akavci [35], and a quasi-3D hybrid type
HSDT by Mantari et al. [36].

Table 1. Non-dimensional natural frequencies ω = ωa2√ρh/D0 for isotropic square plates.

a/h Theory
Mode

(1,1) (1,2) (2,1) (2,2) (1,3) (3,1) (2,3) (3,2)

1000

Leissa [29] 19.7392 49.3480 49.3480 78.9568 98.6960 98.6960 128.3021 128.3021
Zhou et al. [30] 19.7115 49.3470 49.3470 78.9528 98.6911 98.6911 128.3048 128.3048
Akavci [35] 19.7391 49.3476 49.3476 78.9557 98.6943 98.6943 128.3020 128.3020
Mantari et al. [36] 19.7396 49.3482 49.3482 78.9568 98.6956 98.6956 128.3036 128.3036
Present 19.73914 49.34760 49.34760 78.95574 98.69434 98.69434 128.30197 128.30197

100

Leissa [29] 19.7319 49.3027 49.3027 78.8410 98.5150 98.5150 127.9993 127.9993
Nagino et al. [31] 19.7320 49.3050 49.3050 78.8460 98.5250 98.5250 128.0100 128.0100
Akavci [35] 19.7322 49.3045 49.3045 78.8456 98.5223 98.5223 128.0120 128.0120
Mantari et al. [36] 19.7326 49.3055 49.3055 78.8475 98.5250 98.5250 128.0156 128.0156
Present 19.73231 49.30491 49.30491 78.84657 98.52386 98.52386 128.01415 128.01415

10

Liu et al. [32] 19.0584 45.4478 45.4478 69.7167 84.9264 84.9264 106.5154 106.5154
Hosseini et al. [33] 19.0653 45.4869 45.4869 69.8093 85.0646 85.0646 106.7350 106.7350
Akavci [35] 19.0850 45.5957 45.5957 70.0595 85.4315 85.4315 107.3040 107.3040
Mantari et al. [36] 19.0901 45.6200 45.6200 70.1083 85.4964 85.4964 107.3896 107.3896
Present 19.09028 45.62185 45.62185 70.11284 85.50305 85.50305 107.39973 107.39973

5

Shufrin et al. [34] 17.4524 38.1884 38.1884 55.2539 65.3130 65.3130 78.9864 78.9864
Hosseini et al. [33] 17.4523 38.1883 38.1883 55.2543 65.3135 65.3135 78.9865 78.9865
Akavci [35] 17.5149 38.4722 38.4722 55.8358 66.1207 66.1207 80.1637 80.1637
Mantari et al. [36] 17.5271 38.4991 38.4991 55.8410 66.0874 66.0874 80.0364 80.0364
Present 17.52821 38.50383 38.50383 55.84950 66.09809 66.09809 80.04976 80.04976

It is clear from Table 1 that for the value of the side-to-thickness ratio (a/h = 1000), the
first mode of the present frequency is identical to those given by Leissa [29] and Akavci [35]
and has proximity with the one obtained by Mantari et al. [36]. Additionally, the high
modes of the present natural frequencies are identical to those given by Akavci [35] and are
very close to the ones obtained by Zhou et al. [30], Leissa [29], and Mantari et al. [36] For
the side-to-thickness ratio (a/h = 100), it is noted that the results are slightly less than those
predicted by Mantari et al. [36] and slightly greater than those predicted by Leissa [29],
Nagino et al. [31], and Akavci [35]. For moderately thick plates (a/h = 10), the present
natural frequencies are very close to those obtained by Mantari et al. [36] and slightly
greater than those predicted by Liu et al. [32], Hosseini et al. [33], and Akavci [35]. For thin
plates (a/h = 5), the present natural frequencies are close to those obtained by Akavci [35]
and Mantari et al. [36]

In Tables 2–4, the outcomes of the non-dimensional natural frequency ω represented
in Equation (34) for isotropic square plates resting on visco–Pasternak foundations are re-
ported. The nondimensional coefficients of the three-parameter foundations are utilized as

kw =
a4

D0
kw, ks =

a2

D0
ks, cd = cdh

√
h

ρ0D0
. (35)

The most important case is considered for isotropic square plates resting on the
two-parameter Pasternak foundation. However, additional results for plates resting on
three-parameter visco–Pasternak foundations are also included for future comparisons.
Different values for the three-parameter coefficients kw, ks, and cd are discussed.
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Table 2. Non-dimensional fundamental frequencies ω = ωa2√ρh/D0 for isotropic square plates
resting on Visco-Winkler-Pasternak foundations (a/h = 5, i = j = 1).

¯
kw

¯
ks

Matsunaga [37] Thai and Choi [38] Mantari et al. [36]
Present

¯
c d = 0

¯
c d = 0.5

¯
c d = 1

¯
c d = 1.5

0

0

17.5260 17.4523 17.5271 17.52821 — — —
10 17.7847 17.7248 17.7858 17.78691 17.80266 17.85029 17.93085
102 19.9528 20.0076 19.9613 19.96234 19.98001 20.03340 20.12372
103 34.3395 35.5039 34.7796 34.78009 34.81060 34.90277 35.05861
104 45.5260 45.5255 45.5260 45.52600 45.52600 45.52600 45.52600
105 45.5260 45.5255 45.5260 45.52600 45.52600 45.52600 45.52600

0

10

22.0429 22.2145 22.0707 22.07157 22.09109 22.15007 22.24983
10 22.2453 22.4286 22.2757 22.27657 22.29627 22.35578 22.45646
102 23.9830 24.2723 24.0401 24.04090 24.06214 24.12631 24.23485
103 36.6276 38.0650 37.2169 37.21732 37.24990 37.34833 37.51475
104 45.5260 45.5255 45.5260 45.52600 45.52600 45.52600 45.52600
105 45.5260 45.5255 45.5260 45.52600 45.52600 45.52600 45.52600

Table 3. Non-dimensional natural frequencies ω = ωa2√ρh/D0 for isotropic square plates resting
on Visco-Winkler-Pasternak foundations (a/h = 5, i = 1, j = 2).

¯
kw

¯
ks

Matsunaga [37] Thai and Choi [38] Mantari et al. [36]
Present

¯
c d = 0

¯
c d = 1

¯
c d = 2

¯
c d = 3

0

0

38.4827 38.1883 38.4991 38.50383 — — —
10 38.5929 38.3098 38.6093 38.61403 38.75920 39.21005 40.01800
102 39.5669 39.3895 39.5860 39.59068 39.73930 40.20086 41.02792
103 47.8667 48.8772 48.1688 48.17300 48.35118 48.90436 49.89463
104 71.9829 71.9829 71.9829 71.98293 71.98293 71.98293 71.98293
105 71.9829 71.9829 71.9829 71.98293 71.98293 71.98293 71.98293

0

10

43.4816 43.7943 43.5741 43.57850 43.74104 44.24576 45.14976
10 43.5747 43.9009 43.6701 43.67455 43.83742 44.34317 45.24900
102 44.3994 44.8445 44.5241 44.52853 44.69434 45.20920 46.13126
103 51.6029 53.3580 52.2029 52.20676 52.39828 52.99275 54.05639
104 71.9829 71.9829 71.9829 71.98293 71.98293 71.98293 71.98293
105 71.9829 71.9829 71.9829 71.98293 71.98293 71.98293 71.98293

The first three non-dimensional natural frequencies of a thicker square plate (a/h = 5)
resting on the elastic foundation are presented in Tables 2–4. The first mode (i = j = 1)
fundamental frequencies ω11 are represented in Table 2 while natural frequencies ω12
and ω13 are presented in Tables 3 and 4, respectively. In such tables, the frequencies are
compared with the refined shear deformation theory given by Thai and Choi [38], the HSDT
proposed by Matsunaga [37], and a quasi-3D hybrid type HSDT by Mantari et al. [36]
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Table 4. Non-dimensional natural frequencies ω = ωa2√ρh/D0 for isotropic square plates resting
on Visco-Winkler-Pasternak foundations (a/h = 5, i = 1, j = 3).

¯
kw

¯
ks

Matsunaga [37] Thai and Choi [38] Mantari et al. [36]
Present

¯
c d = 0

¯
c d = 1

¯
c d = 2

¯
c d = 3

0

0

65.9961 65.3135 66.0874 66.09809 — — —
10 66.0569 65.3841 66.1481 66.15875 66.40586 67.17631 68.56834
102 66.5995 66.0138 66.6907 66.70143 66.95005 67.72517 69.12547
103 71.5577 72.0036 71.8192 71.83050 72.09271 72.90970 74.38380
104 97.4964 101.7990 101.7992 101.79924 101.79924 101.79924 101.79924
105 101.7992 101.7990 101.7992 101.79924 101.79924 101.79924 101.79924

0

10

71.4914 71.9198 71.7485 71.75974 72.02177 72.83822 74.31135
10 71.5423 71.9839 71.8028 71.81402 72.07618 72.89304 74.36692
102 71.9964 72.5554 72.2886 72.29990 72.56328 73.38389 74.86433
103 76.1848 78.0290 76.9124 76.92383 77.19813 78.05223 79.59112
104 99.0187 101.7990 101.7992 101.79924 101.79924 101.79924 101.79924
105 101.7992 101.7990 101.7992 101.79924 101.79924 101.79924 101.79924

The fundamental frequencies in Table 2 are close to those obtained by Matsunaga [37]
and Mantari et al. [36] and slightly greater than those of Thai and Choi [38]. It is clear that
the frequencies increase as the two-parameter coefficients increase. For higher values of
the first parameter coefficient kw, the frequencies still have the same values. The inclusion
of the third-parameter coefficient cd is also discussed here. It is interesting to see that the
frequencies increase with the increase in the value of cd.

The natural frequencies in Tables 3 and 4 are also closer to those obtained by Mat-
sunaga [37] and Mantari et al. [36] and slightly greater than those of Thai and Choi [38].
Once again, the frequencies increase as the three-parameter coefficients increase. For higher
values of the first parameter coefficient kw the frequencies still have the same values. It is to
be noted that in Tables 2–4, as the mode m increases, the frequency increases irrespective of
the values of the three-parameter coefficients.

3.4. Analysis of FG Plates

Here, the non-dimensional fundamental frequencies of FG square plates are discussed
in Tables 5 and 6. The FG plates are fabricated of different materials. The mechanical prop-
erties of such materials are given in Equations (31)–(33). The non-dimensional frequency is
utilized as

ω̂ = ωh
√

ρm

Em
. (36)

The non-dimensional fundamental frequencies ω̂11 for thicker (a/h = 5) Aluminum-
Zirconia (Al/ZrO2) FG square plates without elastic foundations are compared with the
corresponding results in Table 5. Additional results for plates resting on Visco-Winkler-
Pasternak foundations are also presented. The nondimensional coefficients of the three-
parameter foundations are utilized as

kw =
a4

Dm
kw, ks =

a2

Dm
ks, cd = cdh

√
h

ρmDm
, Dm =

Emh3

12(1− ν2)
. (37)

In Table 5, the fundamental frequencies for three values of the FG power-law index
p are computed and compared with the 3D exact solution by Vel et al. [39], quasi-3D
sinusoidal and hyperbolic HSDTs by Neves et al. [40,41], a quasi-3D hybrid type HSDT
by Mantari et al. [36], and HSDTs by Akavci [35], Hosseini-Hashemi et al. [32], and Mat-
sunaga [42]. The frequencies increase with the increase in the FG power-law index p.
Neglecting the three-parameter foundation coefficients shows that the present frequencies
are identical to those of Mantari et al. [36]. In addition, the present frequencies agree well
with the HSDTs’ frequencies. For the sake of future comparison, dome frequencies for plates
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on the Visco-Winkler-Pasternak foundation are also included in the same table. Once again,
the frequencies increase with the increase in the three-parameter foundation coefficients.

Table 5. Non-dimensional fundamental frequencies ω̂ = ωh
√

ρm/Em for Al/ZrO2 FG square plates
resting on Visco-Winkler-Pasternak foundations (a/h = 5).

Theory
p

2 3 5

Vel and Batra [39] 0.2197 0.2211 0.2225
Neves et al. (εz = 0) [40] 0.2189 0.2202 0.2215
Neves et al. (εz 6= 0) [40] 0.2198 0.2212 0.2225
Neves et al. (εz = 0) [41] 0.2191 0.2205 0.2220
Neves et al. (εz 6= 0) [41] 0.2201 0.2216 0.2230
Hosseini-Hashemi et al. [33] 0.2264 0.2276 0.2291
Akavci [35] 0.2263 0.2268 0.2277
Matsunaga [42] 0.2264 0.2270 0.2280
Mantari et al. [36] 0.2285 0.2290 0.2295

Present

kw = ks = cd = 0 0.22848 0.22901 0.22952
kw = 10, ks = 0, cd = 0 0.23062 0.23130 0.23199
kw = 10, ks = 10, cd = 0 0.26937 0.27256 0.27610
kw = 10, ks = 10, cd = 1 0.26976 0.27301 0.27664
kw = 10, ks = 10, cd = 2 0.27095 0.27438 0.27825
kw = 102, ks = 10, cd = 2 0.28694 0.29132 0.29627

The non-dimensional fundamental frequencies ω̂11 = ωh
√

ρm/Em for Aluminum-
Alumina (Al/Al2O3) FG rectangular plates are presented in Table 6. The frequencies are
computed for four different values of the FG power-law index p and compared with a
quasi-3D hybrid type HSDT by Mantari et al. [36] and a 3D exact solution proposed by
Jin et al. [43]. Generally, the frequencies decrease with the increase in the FG power-law
index p. Additionally, the frequencies increase as both a/h and b/a decrease. Neglecting
the three-parameter foundation coefficients shows that the present frequencies give good
accuracy with those in [36] and [43] for square plates (b/a = 1). However, for rectangular
plates (b/a = 2), the present frequencies are very close to those of Mantari et al. [36]
and slightly greater than those of Jin et al. [43] For the sake of future comparison, some
frequencies for plates on the Visco-Winkler-Pasternak foundation are also included in
Table 6. The non-dimensional coefficients of the three-parameter foundations are given
in Equation (37). For all cases studied, the frequencies increase with the increase in the
three-parameter foundation coefficients.

Table 6. Non-dimensional fundamental frequencies ω̂ = ωh
√

ρm/Em for Al/Al2O3 FG rectangular
plates on Visco-Winkler-Pasternak foundations.

b/a a/h Theory
p

0 1 2 5

1 10

Jin et al. [43] 0.1135 0.0870 0.0789 0.0741

Mantari et al. [36] 0.1135 0.0882 0.0806 0.0755

Present

kw = ks = cd = 0 0.11350 0.08818 0.08057 0.07553

kw = 100, ks = 0, cd = 0.5 0.11627 0.09230 0.08533 0.08090

kw = 0, ks = 10, cd = 0.5 0.11889 0.09613 0.08969 0.08578

kw = 100, ks = 10, cd = 0.5 0.12152 0.09991 0.09397 0.09051
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Table 6. Cont.

b/a a/h Theory
p

0 1 2 5

1

5

Jin et al. [43] 0.4169 0.3222 0.2905 0.2676

Mantari et al. [36] 0.4168 0.3260 0.2961 0.2722

Present

kw = ks = cd = 0 0.41685 0.32605 0.29613 0.27221

kw = 100, ks = 0, cd = 0.5 0.42816 0.34278 0.31556 0.29463

kw = 0, ks = 10, cd = 0.5 0.43885 0.35824 0.33329 0.31481

kw = 100, ks = 10, cd = 0.5 0.44956 0.37344 0.35056 0.33425

2

Jin et al. [43] 1.8470 1.4687 1.3095 1.1450

Mantari et al. [36] 1.8505 1.4774 1.3219 1.1551

Present

kw = ks = cd = 0 1.85081 1.47762 1.32213 1.15544

kw = 100, ks = 0, cd = 0.5 1.93506 1.59673 1.46375 1.33166

kw = 0, ks = 10, cd = 0.5 2.01192 1.70066 1.58405 1.47548

kw = 100, ks = 10, cd = 0.5 2.08633 1.79759 1.69386 1.60293

2

10

Jin et al. [43] 0.0719 0.0550 0.0499 0.0471

Mantari et al. [36] 0.0718 0.0557 0.0510 0.0479

Present

kw = ks = cd = 0 0.07181 0.05573 0.05097 0.04794

kw = 100, ks = 0, cd = 0.5 0.07614 0.06209 0.05824 0.05605

kw = 0, ks = 10, cd = 0.5 0.07711 0.06348 0.05981 0.05778

kw = 100, ks = 10, cd = 0.5 0.08115 0.06912 0.06611 0.06466

5

Jin et al. [43] 0.2713 0.2088 0.1888 0.1754

Mantari et al. [36] 0.2712 0.2115 0.1926 0.1786

Present

kw = ks = cd = 0 0.27124 0.21151 0.19262 0.17861

kw = 100, ks = 0, cd = 0.5 0.28875 0.23709 0.22197 0.21183

kw = 0, ks = 10, cd = 0.5 0.29268 0.24266 0.22828 0.21885

kw = 100, ks = 10, cd = 0.5 0.30894 0.26520 0.25347 0.24662

2

Jin et al. [43] 0.9570 0.7937 0.7149 0.6168

Mantari et al. [36] 1.3040 1.0346 0.9293 0.8236

Present

kw = ks = cd = 0 1.30422 1.03469 0.92945 0.82385

kw = 100, ks = 0, cd = 0.5 1.42513 1.20475 1.12760 1.06040

kw = 0, ks = 10, cd = 0.5 1.45155 1.24029 1.16792 1.10679

kw = 100, ks = 10, cd = 0.5 1.55824 1.37906 1.32259 1.28071

The non-dimensional fundamental frequencies ω̌11 =
(
ωa2/h

)√
ρm/Em for Aluminum-

Zirconia (Al/ZrO2) FG square plates resting on Visco-Winkler-Pasternak foundations are
reported in Table 7. When p = 0, the frequency parameter tends to ω̆11 =

(
ωa2/h

)√
ρc/Ec.

The frequencies, without the three-parameter foundation coefficients, are compared with
the 3D exact solutions proposed by Vel and Batra [39], HSDTs proposed by Akavci [35],
a quasi-3D hybrid type HSDT by Mantari et al. [36], and Matsunaga [42]. In general, the
frequencies increase as both p and a/h increase. The present frequencies are compared well
with those reported in [36]. Additionally, the frequencies approach to the corresponding
solutions obtained in [35,39,42]. If the Visco-Winkler-Pasternak foundations are taken into
account, the frequencies increase. Once again, the non-dimensional coefficients of the
three-parameter foundations are given in Equation (37).
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Table 7. Non-dimensional fundamental frequencies ω̌ =
(
ωa2/h

)√
ρm/Em for Al/ZrO2 FG square

plates on Visco-Winkler-Pasternak foundations.

p a/h Vel and Batra [39] Akavci [35] Matsunaga [42] Mantari et al. [36] Present (
¯
kw,

¯
ks,

¯
c d)

(0,0,0) (10,0,0.1) (0,10,0.1) (10,10,0.1)

0 *
√

10 4.6582 4.6569 4.6582 4.6601 4.66072 4.68987 5.20264 5.22844
10 5.7769 5.7754 5.7769 5.7769 5.77698 5.80392 6.28692 6.31166

1
5 5.4806 5.7110 5.7123 5.7501 5.75043 5.79726 6.61170 6.65231

10 5.9609 6.1924 6.1932 6.2365 6.23656 6.28244 7.08625 7.12659
20 6.1076 6.3388 6.3390 6.3842 6.38419 6.42989 7.23208 7.27240

2 5 5.4923 5.6593 5.6599 5.7115 5.71197 5.76558 6.68866 6.73430

3 5 5.5285 5.6718 5.6757 5.7246 5.72519 5.78258 6.76582 6.81423

5 5 5.5632 5.6941 5.7020 5.7376 5.73811 5.79984 6.85123 6.90276

* ω̆ =
(
ωa2/h

)√
ρc/Ec.

In Tables 8–10, the non-dimensional natural frequencies ω̆ for Aluminum-Alumina
(Al/Al2O3) FG rectangular plates (b/a = 2) resting on Visco-Winkler-Pasternak foundations
are reported. Three values of the side-to-thickness ratio a/h = 5, 10, 20 are considered. The
non-dimensional frequency and the non-dimensional coefficients of the three-parameter
foundations are utilized as

ω̆ =
ωa2

h

√
ρc

Ec
, cd = cdh

√
h

ρcDc
,kw =

a4

Dc
kw, ks =

a2

Dc
ks Dc =

Ech3

12(1− ν2)
. (38)

Tables 8–10 present the first four non-dimensional natural frequencies ω̆11, ω̆12, ω̆13
and ω̆21 of FG plates for various values of the FG power-law index p. Firstly, the fre-
quencies increase as both the mode number and side-to-thickness ratio a/h increase and
as the FG power-law index p decreases. For kw = ks = cd = 0, the present frequencies
are compared with the corresponding ones due to the HSDTs proposed by Akavci [35],
Thai et al. [44], a quasi-3D hybrid type HSDT by Mantari et al. [36], and the FSDT utilized
by Hosseini-Hashemi et al. [3] The present frequencies are very close to those in [35,36] and
slightly greater than those in [3,44]. Furthermore, it is shown that for different values of
a/h the present frequencies get good agreements with the other theories. The frequencies,
with the inclusion of the three-parameter foundation coefficients, are presented for future
comparisons. The results represent benchmarks to help other investigators to assure their
results for plates resting on three-parameter viscoelastic foundations. It is obvious that
the frequency slightly increases when adding the three parameters of viscoelastic foun-
dations one by one. The maximum frequencies occurred when all foundation coefficients
are included.



Mathematics 2022, 10, 716 14 of 26

Table 8. Non-dimensional natural frequencies ω̆ =
(
ωa2/h

)√
ρc/Ec for Al/Al2O3 FG rectangular

plates on Visco-Winkler-Pasternak foundations (b/a = 2, a/h = 5).

Mode Theory
p

0 1 2 5 8 10

(1,1)

Akavci [35] 3.4495 2.6529 2.3989 2.2275 2.1724 2.1455

Thai et al. [44] 3.4412 2.6475 2.3949 2.2272 2.1697 2.1407

Hosseini et al. [3] 3.4409 2.6473 2.4017 2.2528 2.1985 2.1677

Mantari et al. [36] 3.4513 2.6913 2.4508 2.2725 2.2032 2.1689

Present

kw = ks = cd = 0 3.45145 2.69138 2.45102 2.27273 2.20328 2.16887

kw = 10, ks = 0, cd = 0.1 3.57401 2.87249 2.66011 2.51080 2.45332 2.42438

kw = 0, ks = 10, cd = 0.1 4.74470 4.43132 4.37556 4.37628 4.37573 4.37110

kw = 10, ks = 10, cd = 0.1 4.83425 4.54296 4.49522 4.50341 4.50555 4.50200

(1,2)

Akavci [35] 5.3003 4.0906 3.6900 3.3952 3.3031 3.2626

Thai et al. [44] 5.2813 4.0781 3.6805 3.3938 3.2964 3.2514

Hosseini et al. [3] 5.2802 4.0773 3.6953 3.4492 3.3587 3.3094

Mantari et al. [36] 5.3039 4.1487 3.7677 3.4633 3.3484 3.2955

Present

kw = ks = cd = 0 5.30428 4.14891 3.76818 3.46376 3.34863 3.29565

kw = 10, ks = 0, cd = 0.1 5.38275 4.26554 3.90401 3.62103 3.51478 3.46565

kw = 0, ks = 10, cd = 0.1 6.67940 6.03846 5.88419 5.81358 5.78825 5.77233

kw = 10, ks = 10, cd = 0.1 6.74143 6.11832 5.97100 5.90714 5.88422 5.86923

(1,3)

Akavci [35] 8.1179 6.2950 5.6614 5.1479 4.9921 4.9313

Thai et al. [44] 8.0749 6.2663 5.6390 5.1425 4.9758 4.9055

Hosseini et al. [3] 8.0710 6.2636 5.6695 5.2579 5.1045 5.0253

Mantari et al. [36] 8.1244 6.3814 5.7751 5.2484 5.0560 4.9747

Present

kw = ks = cd = 0 8.12516 6.38194 5.77596 5.24934 5.05661 4.97515

kw = 10, ks = 0, cd = 0.1 8.17497 6.45589 5.86279 5.35193 5.16569 5.08687

kw = 0, ks = 10, cd = 0.1 9.58143 8.41316 8.08122 7.86334 7.78824 7.75204

kw = 10, ks = 10, cd = 0.1 9.62310 8.46823 8.14203 7.93018 7.85721 7.82177

(2,1)

Akavci [35] 10.1828 7.9209 7.1105 6.4181 6.2111 6.1355

Thai et al. [44] 10.1164 7.8762 7.0751 6.4074 6.1846 6.0954

Hosseini et al. [3] 9.7416 7.8711 7.1189 6.5749 5.9062 5.7518

Mantari et al. [36] 10.1907 8.0264 7.2479 6.5397 6.2856 6.1833

Present

kw = ks = cd = 0 10.19182 8.02721 7.24906 6.54102 6.28651 6.18403

kw = 10, ks = 0, cd = 0.1 10.23084 8.08500 7.31724 6.62262 6.37363 6.27329

kw = 0, ks = 10, cd = 0.1 11.69616 10.13547 9.65993 9.31233 9.19418 9.14170

kw = 10, ks = 10, cd = 0.1 11.72947 10.17994 9.70947 9.36749 9.25130 9.19949
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Table 9. Non-dimensional natural frequencies ω̆ =
(
ωa2/h

)√
ρc/Ec for Al/Al2O3 FG rectangular

plates on Visco-Winkler-Pasternak foundations (b/a = 2, a/h = 10).

Mode Theory p

0 1 2 5 8 10

(1,1)

Akavci [35] 3.6542 2.7952 2.5376 2.3915 2.3418 2.3124

Thai et al. [44] 3.6518 2.7937 2.5364 2.3916 2.3411 2.3110

Hosseini et al. [3] 3.6518 2.7937 2.5386 2.3998 2.3504 2.3197

Mantari et al. [36] 3.6549 2.8365 2.5943 2.4398 2.3761 2.3398

Present

kw = ks = cd = 0 3.65486 2.83651 2.59442 2.43983 2.37599 2.33961

kw = 10, ks = 0, cd = 0.1 3.77600 3.01640 2.80120 2.67192 2.61867 2.58757

kw = 0, ks = 10, cd = 0.1 4.94508 4.58507 4.52571 4.53573 4.53665 4.53077

kw = 10, ks = 10, cd = 0.1 5.03519 4.69835 4.64720 4.66450 4.66813 4.66344

(1,2)

Akavci [35] 5.7754 4.4231 4.0118 3.7682 3.6864 3.6403

Thai et al. [44] 5.7694 4.4192 4.0090 3.7682 3.6846 3.6368

Hosseini et al. [3] 5.7693 4.4192 4.0142 3.7881 3.7072 3.6580

Mantari et al. [36] 5.7769 4.4881 4.1008 3.8443 3.7401 3.6827

Present

kw = ks = cd = 0 5.77698 4.48818 4.10112 3.84448 3.74004 3.68252

kw = 10, ks = 0, cd = 0.1 5.85372 4.60305 4.23389 3.99463 3.89754 3.84363

kw = 0, ks = 10, cd = 0.1 7.13799 6.38008 6.21360 6.16032 6.13672 6.11716

kw = 10, ks = 10, cd = 0.1 7.20008 6.46117 6.30177 6.25482 6.23361 6.21512

(1,3)

Akavci [35] 9.2029 7.0612 6.3959 5.9766 5.8388 5.7662

Thai et al. [44] 9.1880 7.0515 6.3886 5.9765 5.8341 5.7575

Hosseini et al. [3] 9.1876 7.0512 6.4015 6.0247 5.8887 5.8086

Mantari et al. [36] 9.2066 7.1643 6.5363 6.0976 5.9231 5.8315

Present

kw = ks = cd = 0 9.20678 7.16448 6.53682 6.09800 5.92308 5.83137

kw = 10, ks = 0, cd = 0.1 9.25458 7.23620 6.62003 6.19285 6.02286 5.93351

kw = 0, ks = 10, cd = 0.1 10.62513 9.17828 8.80991 8.61977 8.54454 8.49887

kw = 10, ks = 10, cd = 0.1 10.66630 9.23397 8.87138 8.68657 8.61339 8.56863

(2,1)

Akavci [35] 11.8560 9.1093 8.2428 7.6738 7.4892 7.3965

Thai et al. [44] 11.8315 9.0933 8.2309 7.6731 7.4813 7.3821

Hosseini et al. [3] 11.8310 9.0928 8.2515 7.7505 7.5688 7.4639

Mantari et al. [36] 11.8616 9.2416 8.4222 7.8291 7.5963 7.4783

Present

kw = ks = cd = 0 11.86203 9.24189 8.42299 7.82973 7.59651 7.47829

kw = 10, ks = 0, cd = 0.1 11.89892 9.29724 8.48733 7.90347 7.67423 7.55787

kw = 0, ks = 10, cd = 0.1 13.30715 11.31242 10.77355 10.45683 10.33484 10.26714

kw = 10, ks = 10, cd = 0.1 13.33967 11.35714 10.82331 10.51139 10.39125 10.32437
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Table 10. Non-dimensional natural frequencies ω̆ =
(
ωa2/h

)√
ρc/Ec for Al/Al2O3 FG rectangular

plates resting on Visco-Winkler-Pasternak foundations (b/a = 2, a/h = 20).

Mode Theory p

0 1 2 5 8 10

(1,1)

Akavci [35] 3.7129 2.8357 2.5774 2.4402 2.3924 2.3623

Thai et al. [44] 3.7123 2.8352 2.5771 2.4403 2.3923 2.3619

Hosseini et al. [3] 3.7123 2.8352 2.5777 2.4425 2.3948 2.3642

Mantari et al. [36] 3.7132 2.8777 2.6354 2.4892 2.4277 2.3908

Present

kw = ks = cd = 0 3.71313 2.87770 2.63557 2.48923 2.42750 2.39055

kw = 10, ks = 0, cd = 0.05 3.83394 3.05727 2.84172 2.71973 2.66821 2.63648

kw = 0, ks = 10, cd = 0.05 5.00322 4.62897 4.56905 4.58347 4.58523 4.57888

kw = 10, ks = 10, cd = 0.05 5.09349 4.74266 4.69098 4.71261 4.71708 4.71193

(1,2)

Akavci [35] 5.9215 4.5238 4.1108 3.8883 3.8112 3.7632

Thai et al. [44] 5.9199 4.5228 4.1100 3.8884 3.8107 3.7622

Hosseini et al. [3] 5.9198 4.5228 4.1115 3.8939 3.8170 3.7681

Mantari et al. [36] 5.9220 4.5909 4.2032 3.9665 3.8672 3.8084

Present

kw = ks = cd = 0 5.92192 4.59085 4.20342 3.96649 3.86700 3.80806

kw = 10, ks = 0, cd = 0.05 5.99822 4.70524 4.33538 4.11474 4.02212 3.96672

kw = 0, ks = 10, cd = 0.05 7.28089 6.48489 6.31643 6.27436 6.25285 6.23193

kw = 10, ks = 10, cd = 0.05 7.34305 6.56631 6.40495 6.36905 6.34989 6.33007

(1,3)

Akavci [35] 9.5711 7.3159 6.6453 6.2759 6.1488 6.0715

Thai et al. [44] 9.5669 7.3132 6.6433 6.2760 6.1476 6.0690

Hosseini et al. [3] 9.5668 7.3132 6.6471 6.2903 6.1639 6.0843

Mantari et al. [36] 9.5723 7.4242 6.7942 6.4023 6.2391 6.1440

Present

kw = ks = cd = 0 9.57223 7.42418 6.79463 6.40232 6.23878 6.14351

kw = 10, ks = 0, cd = 0.05 9.61945 7.49521 6.87676 6.49490 6.33580 6.24279

kw = 0, ks = 10, cd = 0.05 10.98422 9.43713 9.06263 8.90094 8.83088 8.78146

kw = 10, ks = 10, cd = 0.05 11.02533 9.49302 9.124280 8.96765 8.89955 8.85106

(2,1)

Akavci [35] 12.4633 9.5307 8.6542 8.1634 7.9954 7.8950

Thai et al. [44] 12.4562 9.5261 8.6509 8.1636 7.9934 7.8909

Hosseini et al. [3] 12.4560 9.5261 8.6572 8.1875 8.0207 7.9166

Mantari et al. [36] 12.4652 9.6715 8.8478 8.3279 8.1127 7.9888

Present

kw = ks = cd = 0 12.46522 9.67154 8.84835 8.32803 8.11232 7.98825

kw = 10, ks = 0, cd = 0.05 12.50143 9.72605 8.91143 8.39926 8.18701 8.06469

kw = 0, ks = 10, cd = 0.05 13.89984 11.73763 11.18768 10.91733 10.80357 10.72952

kw = 10, ks = 10, cd = 0.05 13.93224 11.78246 11.23750 10.97160 10.85959 10.78637

Tables 11–14 present the non-dimensional fundamental frequencies for Aluminum-
Alumina (Al/Al2O3) FG rectangular plates resting on visco–Pasternak foundations (kw = 0,
ks = 100). Several values of the FG power-law index p, aspect ratio a/b, and side-to-
thickness ratio a/h are considered. In fact, there is no foundation in Table 11, and the
inclusion of one-by-one elastic foundation is made in Tables 12–14. In such tables, the
inclusion of the third-parameter coefficient cd is also discussed. The non-dimensional
frequency and the non-dimensional third coefficient of the viscoelastic foundations are
utilized as

ω̌ =
ωa2

h

√
ρm

Em
, cd = cdh

√
h

ρmDm
, (39)
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and the other non-dimensional coefficients of the two-parameter foundations are given
in Equation (37). In the absence of the third coefficient of the viscoelastic foundations cd,
the present frequencies are compared with the HSDTs proposed by Thai and Choi [38],
Akavci [35], and a quasi-3D hybrid type HSDT by Mantari et al. [36]

Table 11. Non-dimensional fundamental frequencies ω̌ =
(
ωa2/h

)√
ρm/Em for Al/Al2O3 FG

rectangular plates (kw = ks = cd = 0).

a/b a/h p Akavci [35] Thai and Choi [38] Mantari et al. [36] Present

0.5

5
1 5.2122 5.2016 5.2875 5.28772
5 4.3763 4.3757 4.4648 4.46520
10 4.2153 4.2058 4.2611 4.26116

10
1 5.4918 5.4887 5.5728 5.57286
5 4.6986 4.6987 4.7934 4.79350
10 4.5432 4.5404 4.5969 4.59661

20
1 5.5712 5.5704 5.6538 5.65379
5 4.7943 4.7943 4.8906 4.89057
10 4.6411 4.6404 4.6971 4.69669

1

5
1 8.0368 8.0122 8.1509 8.15131
5 6.6705 6.6678 6.8043 6.80521
10 6.4099 6.3879 6.4746 6.47492

10
1 8.6899 8.6824 8.8178 8.81788
5 7.4033 7.4034 7.5529 7.55319
10 7.1521 7.1453 7.2353 7.23501

20
1 8.8879 8.8859 9.0196 9.01959
5 7.6393 7.6394 7.7929 7.79291
10 7.3934 7.3916 7.4823 7.48166

2

5
1 17.8289 17.7148 18.0607 18.06273
5 14.3625 14.3312 14.6274 14.63068
10 13.7120 13.6095 13.8083 13.81014

10
1 20.8487 20.8063 21.1501 21.15090
5 17.5051 17.5028 17.8593 17.86082
10 16.8613 16.8232 17.0445 17.04463

20
1 21.9670 21.9548 22.2914 22.29144
5 18.7946 18.7950 19.1737 19.17401
10 18.1727 18.1616 18.3877 18.38645
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Table 12. Non-dimensional fundamental frequencies ω̌ =
(
ωa2/h

)√
ρm/Em for Al/Al2O3 FG

rectangular plates resting on visco-Winkler foundations (kw = 100, ks = 0).

a/b a/h p Akavci [35] Thai and Choi [38] Mantari et al. [36]
Present

¯
c d = 0

¯
c d = 0.25

0.5

5
1 5.8746 5.8654 5.9257 5.92588 5.92620
5 5.2360 5.2355 5.2934 5.29366 5.29417
10 5.1288 5.1212 5.1467 5.14660 5.14722

10
1 6.1393 6.1366 6.2077 6.20770 6.20801
5 5.5276 5.5277 5.6038 5.60384 5.60430
10 5.4199 5.4176 5.4596 5.45931 5.45987

20
1 6.2152 6.2144 6.2883 6.28824 6.28829
5 5.6156 5.6157 5.6969 5.69685 5.69692
10 5.5087 5.5080 5.5545 5.55415 5.55422

1

5
1 8.4748 8.4517 8.5671 8.56752 8.56801
5 7.2560 7.2534 7.3618 7.36260 7.36336
10 7.0373 7.0175 7.0758 7.07594 7.07683

10
1 9.1107 9.1035 9.2282 9.22829 9.22876
5 7.9520 7.9521 8.0866 8.08681 8.08751
10 7.7356 7.7293 7.8067 7.80636 7.80720

20
1 9.3044 9.3025 9.4292 9.42918 9.42925
5 8.1789 8.1790 8.3212 8.32122 8.32132
10 7.9658 7.9640 8.0468 8.04617 8.04629

2

5
1 18.0231 17.9108 18.2385 18.24050 18.24161
5 14.6363 14.6057 14.8810 14.88418 14.88578
10 14.0098 13.9101 14.0861 14.08780 14.08965

10
1 21.0241 20.9821 21.3187 21.31945 21.32062
5 17.7396 17.7373 18.0843 18.08585 18.08761
10 17.1126 17.0751 17.2873 17.28741 17.28949

20
1 22.1378 22.1257 22.4585 22.45857 22.45967
5 19.0187 19.0192 19.3921 19.39248 19.39408
10 18.4115 18.4005 18.6222 18.62087 18.62278

It can be seen from Tables 11–14 that the present frequencies are in excellent agreement
with the corresponding results of Mantari et al. [36] and slightly more than those of Thai
and Choi [38] and Akavci [35]. The frequencies increase as both a/h and a/b increase and
as p decreases in case of neglecting the foundation medium. The frequency when a/b = 2
is more than twice of this when a/b = 1.
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Table 13. Non-dimensional fundamental frequencies ω̌ =
(
ωa2/h

)√
ρm/Em for Al/Al2O3 FG

rectangular plates resting on visco–Pasternak foundations (kw = 0, ks = 100).

a/b a/h p Akavci [35] Thai and Choi [38] Mantari et al. [36]
Present

¯
c d = 0

¯
c d = 0.25

0.5

5
1 10.8489 10.8450 10.7649 10.76493 10.76552
5 10.9925 10.9919 10.9106 10.91023 10.91134
10 11.0818 11.0793 10.9611 10.96027 10.96164

10
1 11.0940 11.0926 11.1042 11.10417 11.10472
5 11.2538 11.2538 11.2645 11.26443 11.26537
10 11.3313 11.3302 11.3190 11.31873 11.31989

20
1 11.1660 11.1656 11.1999 11.19984 11.20017
5 11.3343 11.3343 11.3680 11.36794 11.36849
10 11.4093 11.4090 11.4236 11.42342 11.42390

1

5
1 14.3923 14.3818 14.2406 14.24088 14.24170
5 14.3071 14.3052 14.1562 14.15569 14.15721
10 14.3829 14.3759 14.1600 14.15860 14.16046

10
1 14.9443 14.9401 14.9631 14.96319 14.96395
5 14.8693 14.8692 14.8895 14.88945 14.89075
10 14.9193 14.9162 14.8957 14.89520 14.89681

20
1 15.1189 15.1177 15.1825 15.18244 15.18316
5 15.0607 15.0607 15.1251 15.12506 15.12623
10 15.1056 15.1047 15.1330 15.13257 15.13403

2

5
1 25.6912 25.6294 25.2563 25.25781 25.25932
5 24.3625 24.3453 23.8994 23.89854 23.90119
10 24.3109 24.2696 23.6297 23.62625 23.62944

10
1 28.2316 28.2023 28.2878 28.28833 28.28988
5 26.7223 26.7201 26.7859 26.78627 26.78890
10 26.5586 26.5362 26.4775 26.47653 26.47974

20
1 29.2272 29.2181 29.4271 29.42715 29.42860
5 27.7770 27.7772 27.9891 27.98915 27.99147
10 27.5919 27.5847 27.6803 27.67920 27.68203

In each table, in addition to the examination of the aspect ratios a/b, thickness ratios
a/h, and the FG power-law index p, we discussed several combinations of the founda-
tion parameters kw and ks. Furthermore, different values of the third damping coefficient
cd are considered. The results show that the three Visco-Winkler-Pasternak foundation
parameters have effects of increasing the non-dimensional frequencies. The Pasternak
parameter ks has more of an effect on increasing the frequencies than the Winkler parameter
kw. However, the damping parameter cd has a little and sensitive effect on increasing
the frequencies. It is interesting to discuss the effect of the FG power-law index p on the
non-dimensional frequencies. As shown in Table 11, the frequency parameter ω̌ decreases
with the increase in p and this is irrespective of the values of a/h and a/b. Additionally, it
is observed in Table 12 that if a plate is just rested on Winkler’s foundation or visco-Winkler
foundations, the increase of the FG power-law index decreases the non-dimensional fre-
quency. However, this situation is inversed if the plate is rested on Pasternak’s foundation
regardless of the absence (Table 13) or presence (Table 14) of Winkler’s foundation or
visco-Winkler foundations.
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Table 14. Non-dimensional fundamental frequencies ω̌ =
(
ωa2/h

)√
ρm/Em for Al/Al2O3 FG

rectangular plates resting on Visco-Winkler-Pasternak foundations (kw = 100, ks = 100).

a/b a/h p Akavci [35] Thai and Choi [38] Mantari et al. [36]
Present

¯
c d = 0

¯
c d = 0.25

0.5

5
1 11.1817 11.1780 11.0894 11.08946 11.09007
5 11.3598 11.3593 11.2700 11.26956 11.27071
10 11.4581 11.4558 11.3285 11.32767 11.32909

10
1 11.4284 11.4270 11.4358 11.43582 11.43638
5 11.6243 11.6243 11.6322 11.63214 11.63311
10 11.7103 11.7093 11.6957 11.69536 11.69657

20
1 11.5008 11.5005 11.5331 11.53311 11.53346
5 11.7054 11.7054 11.7374 11.73738 11.73796
10 11.7888 11.7886 11.8021 11.80186 11.80257

1

5
1 14.6407 14.6305 14.4792 14.47947 14.48030
5 14.5862 14.5843 14.4258 14.42519 14.42675
10 14.6702 14.6636 14.4366 14.43508 14.43698

10
1 15.1927 15.1887 15.2084 15.20848 15.20924
5 15.1498 15.1497 15.1669 15.16678 15.16811
10 15.2075 15.2045 15.1810 15.18053 15.18217

20
1 15.3674 15.3663 15.4293 15.42927 15.43000
5 15.3414 15.3414 15.4039 15.40390 15.40509
10 15.3938 15.3929 15.4198 15.41946 15.42094

2

5
1 25.8251 25.7640 25.3782 25.37974 25.38125
5 24.5206 24.5036 24.0450 24.04408 24.04674
10 24.4759 24.4352 23.7803 23.77672 23.77992

10
1 28.3613 28.3322 28.4137 28.41429 28.41586
5 26.8763 26.8741 26.9360 26.93632 26.93896
10 26.7186 26.6964 26.6338 26.63282 26.63605

20
1 29.3557 29.3467 29.5539 29.55394 29.55539
5 27.9292 27.9294 28.1392 28.13924 28.14156
10 27.7497 27.7426 27.8366 27.83544 27.83829

Table 15 presents the non-dimensional fundamental frequencies for Al/Al2O3 FG
rectangular plates resting on viscoelastic foundations with h/a = 0.15 and several values
of a/b. The non-dimensional frequency and the non-dimensional viscoelastic foundation
coefficients are utilized as
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Table 15. Non-dimensional fundamental frequencies for Al/Al2O3 FG rectangular plates
(h/a = 0.15).

(
¯
kw,

¯
ks) a/b Theory

p

0 1 5 ∞

(0,0)

0.5

Akavci [35] 0.08018 0.06148 0.05215 0.04081
Hosseini et al. [3] 0.08006 0.06335 0.05379 0.04100
Mantari et al. [36] 0.08021 0.06238 0.05321 0.04083
Present cd = 0 0.080209 0.062382 0.053210 0.040825

1

Akavci [35] 0.12508 0.09613 0.08089 0.06366
Hosseini et al. [3] 0.12480 0.09644 0.08027 0.06335
Mantari et al. [36] 0.12514 0.09753 0.08253 0.06370
Present cd = 0 0.12514 0.09753 0.08253 0.063696

2

Akavci [35] 0.28659 0.22189 0.18232 0.14587
Hosseini et al. [3] 0.28513 0.20592 0.16315 0.14591
Mantari et al. [36] 0.28682 0.22498 0.18592 0.14600
Present cd = 0 0.286844 0.224999 0.185947 0.146000

(100,10)

0.5

Baferani et al. [45] 0.12869 0.10498 0.09227 —
Akavci [35] 0.12876 0.10388 0.09098 0.06554
Hosseini et al. [3] 0.12870 0.10519 0.09223 0.06591
Mantari et al. [36] 0.12804 0.10388 0.09118 0.06517

Present
cd = 0 0.128037 0.103883 0.091179 0.065169
cd = 0.5 0.128140 0.103981 0.091284 0.065243

1

Baferani et al. [45] 0.17020 0.13854 0.12077 —
Akavci [35] 0.17039 0.13592 0.11774 0.08673
Hosseini et al. [3] 0.17020 0.13652 0.11786 0.08663
Mantari et al. [36] 0.16931 0.13610 0.11825 0.08618

Present
cd = 0 0.169312 0.136102 0.118253 0.086178
cd = 0.5 0.169454 0.136236 0.118398 0.086279

2

Baferani et al. [45] 0.31449 0.26966 0.22932 —
Akavci [35] 0.32889 0.25901 0.21785 0.16741
Hosseini et al. [3] 0.32768 0.24674 0.20359 0.16773
Mantari et al. [36] 0.32670 0.25992 0.21953 0.16630

Present
cd = 0 0.326723 0.259934 0.219551 0.166298
cd = 0.5 0.327020 0.260213 0.219848 0.166511

ω̃ = ωh
√

ρc
Ec

, cd = cdh
√

h
ρcDc

, kw = a4

Dc
kw,

ks =
a2

Dc
ks, Dc =

h3

12(1−ν2)

p(p2+3p+8)Em+3(p2+p+2)Ec
(1+p)(2+p)(3+p) .

(40)

It is to be noted that when p→ 0 (ceramic plate), Dc will tends to Dc while when
p→ ∞ (metal plate) Dc will tends to Dm.

The present frequencies are compared with the corresponding ones of the FSDT of
Hosseini-Hashemi et al. [3], the HSDTs proposed by Akavci [35] and Baferani et al. [45],
and a quasi-3D hybrid type HSDT by Mantari et al. [36] It can be seen from this table that
the present results are identical to those proposed by Mantari et al. [36], close to the ones of
Akavci [38] and Mantari et al. [36], and slightly more than those of Baferani et al. [45] Once
again, the frequencies increase with the inclusion of the damping coefficient cd.

Table 16 presents the non-dimensional fundamental frequencies for Aluminum-Zirconia
(Al/ZrO2) FG rectangular plates (a/b = 1.5) resting on viscoelastic foundations with sev-
eral values of the side-to-thickness ratio a/h. The non-dimensional frequency and the
non-dimensional viscoelastic foundation coefficients are utilized as given in Equation (40).
The present solution is compared with the corresponding ones of the theories presented in
Table 15. In general, the frequencies are slightly decreasing as the FG power-law index p in-
creases while they rapidly increase as the side-to-thickness ratio a/h increases. Furthermore,
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the inclusion of the viscoelastic foundations increases the values of the frequency parameter.
Once again, the present results are identical to those proposed by Mantari et al. [36] for
free pleats or plates resting on elastic foundations. In the case of kw = ks = 0, the present
frequencies are slightly greater than those proposed by Akavci [38] and Hosseini et al. [3].
However, in the case of kw = 250, ks = 25, the present frequencies are slightly smaller than
those proposed by Akavci [38] and Hosseini et al. [3], especially when a/h ≥ 10. In the case
of the viscoelastic coefficients, the frequencies increase with the inclusion of the damping
coefficient cd.

Table 16. Non-dimensional fundamental frequencies ω̃ = ωh
√

ρc/Ec for Al/ZrO2 FG rectangular
plates (a/b = 1.5).

(
¯
kw,

¯
ks) a/h Theory

p

0 1 5 ∞

(0,0)

20

Akavci [35] 0.02393 0.02202 0.02244 0.02056
Hosseini et al. [3] 0.02392 0.02156 0.02180 0.02046
Mantari et al. [36] 0.02393 0.02217 0.02260 0.02057
Present cd = 0 0.023931 0.022174 0.022597 0.02056

10

Akavci [35] 0.09203 0.08489 0.08576 0.07908
Hosseini et al. [3] 0.09188 0.08155 0.08171 0.07895
Mantari et al. [36] 0.09207 0.08549 0.08638 0.07911
Present cd = 0 0.092068 0.085493 0.086386 0.079111

5

Akavci [35] 0.32471 0.30152 0.31860 0.27902
Hosseini et al. [3] 0.32284 0.29399 0.29099 0.27788
Mantari et al. [36] 0.32498 0.30349 0.29990 0.27925
Present cd = 0 0.325006 0.303514 0.299939 0.279268

(250,25)

20

Baferani et al. [45] 0.03421 0.03249 0.03314 —
Akavci [35] 0.03422 0.03213 0.03277 0.02940
Hosseini et al. [3] 0.03421 0.03184 0.03235 0.02937
Mantari et al. [36] 0.03417 0.03220 0.03283 0.02936

Present
cd = 0 0.034169 0.032200 0.032834 0.029361
cd = 0.5 0.034272 0.032213 0.032848 0.029395

10

Baferani et al. [45] 0.13365 0.12749 0.12950 —
Akavci [35] 0.13375 0.12585 0.12778 0.11492
Hosseini et al. [3] 0.13365 0.12381 0.12533 0.11484
Mantari et al. [36] 0.13302 0.12557 0.12755 0.11430

Present
cd = 0 0.133019 0.125569 0.127554 0.114299
cd = 0.5 0.133127 0.125707 0.127731 0.114495

5

Baferani et al. [45] 0.43246 0.46406 0.44824 —
Akavci [35] 0.50044 0.47298 0.47637 0.43000
Hosseini et al. [3] 0.49945 0.46997 0.47400 0.43001
Mantari et al. [36] 0.48945 0.46401 0.46838 0.42057

Present
cd = 0 0.489466 0.464028 0.468392 0.420583
cd = 0.5 0.489910 0.464595 0.469153 0.421389

3.5. Parametric Studies

The above two sections are concerned with verifying the accuracy of the present model
with the corresponding ones available in the literature. The present parametric studies
are carried out to investigate the influences of the FG power-law index p, aspect ratio a/b,
thickness ratio a/h, and the two foundation parameters kw and ks on the natural frequency
of Al/Al2O3 and Al/ZrO2 plates. In addition, the effect of the damping parameter cd is
taken into consideration in most cases.

The variations of non-dimensional natural frequencies for Aluminum-Alumina (Al/Al2O3)
FG rectangular plates concerning different parameters are presented in Tables 17 and 18.
The thickness and aspect ratios and the first mode number are fixed as i = 1, h/a = 0.2, and
b/a = 0.5, respectively. The effects of the FG power-law index p, the second mode number j,
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and the Visco-Winkler-Pasternak foundations kw, ks, and cd. The frequencies increase as all
parameters increase, except the FG power-law index p for which the frequencies decrease.

Table 17. Non-dimensional fundamental frequencies ω̃ = ωh
√

ρc/Ec for Al/Al2O3 FG rectangular
plates (h/a = 0.2, b/a = 0.5).

Mode
¯
ks

¯
kw

¯
c d

p

0 1 2 5 ∞

(1,1)

0

0 0 0.46607 0.36775 0.33164 0.29787 0.23722

10
0 0.46741 0.36892 0.33283 0.29905 0.23790
1 0.46916 0.37056 0.33448 0.30070 0.23917
2 0.47462 0.37569 0.33960 0.30576 0.24314

100
0 0.47923 0.37925 0.34336 0.30943 0.24392
1 0.48103 0.38094 0.34506 0.31114 0.24521
2 0.48661 0.38621 0.35034 0.31638 0.24928

10

0
0 0.52750 0.42118 0.38575 0.35094 0.26849
1 0.52947 0.42304 0.38766 0.35288 0.26990
2 0.53558 0.42886 0.39358 0.35885 0.27436

10
0 0.52866 0.42218 0.38676 0.35193 0.26908
1 0.53063 0.42405 0.38868 0.35387 0.27050
2 0.53675 0.42988 0.39461 0.35986 0.27496

100
0 0.53900 0.43112 0.39573 0.36066 0.24392
1 0.54101 0.43302 0.39769 0.36265 0.24521
2 0.54724 0.43897 0.40376 0.36879 0.24928

Table 18. Non-dimensional natural frequencies ω̃ = ωh
√

ρc/Ec for Al/Al2O3 FG rectangular plates
(h/a = 0.2, b/a = 0.5).

Mode
¯
ks

¯
kw

¯
c d

p

0 1 2 5 ∞

(1,2)

0

0 0 1.17023 0.93832 0.83770 0.72561 0.59563

10
0 1.17072 0.93873 0.83813 0.72607 0.59588
1 1.17499 0.94280 0.84212 0.72977 0.59895
2 1.18832 0.95560 0.85469 0.74137 0.60870

100
0 1.17508 0.94244 0.84202 0.73020 0.59810
1 1.17935 0.94652 0.84602 0.73391 0.60117
2 1.19270 0.95933 0.85861 0.74557 0.61093

10

0
0 1.24726 1.00366 0.90580 0.79747 0.63484
1 1.25160 1.00781 0.90995 0.80143 0.63796
2 1.26515 1.02085 0.92301 0.81384 0.64785

10
0 1.24769 1.00402 0.90618 0.79787 0.63506
1 1.25204 1.00818 0.91033 0.80183 0.63818
2 1.26558 1.02122 0.92339 0.81424 0.64807

100
0 1.25158 1.00731 0.90959 0.80144 0.63704
1 1.25593 1.01147 0.91375 0.80541 0.64016
2 1.26948 1.02452 0.92683 0.81787 0.65006
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Table 18. Cont.

Mode ¯
ks

¯
kw

¯
c d

p

0 1 2 5 ∞

(1,3)

0

0 0 1.95174 1.58204 1.40727 1.19641 0.99341

10
0 1.95203 1.58228 1.40752 1.19669 0.99356
1 1.95889 1.58883 1.41381 1.20228 0.99849
2 1.98029 1.60940 1.43361 1.21989 1.01411

100
0 1.95461 1.58442 1.40979 1.19918 0.99487
1 1.96146 1.59097 1.41607 1.20477 0.99979
2 1.98282 1.61150 1.43585 1.22237 1.01539

10

0
0 2.04872 1.66250 1.49197 1.28918 1.04277
1 2.05515 1.66863 1.49797 1.29470 1.04739
2 2.07508 1.68772 1.51677 1.31206 1.06190

10
0 2.04897 1.66271 1.49218 1.28941 1.04290
1 2.05539 1.66883 1.49818 1.29494 1.04751
2 2.07532 1.68792 1.51698 1.31230 1.06202

100
0 2.05118 1.66453 1.49410 1.29150 1.04402
1 2.05759 1.67064 1.50009 1.29702 1.04863
2 2.07747 1.68970 1.51886 1.31437 1.06311

4. Conclusions

In the present study, a refined quasi-3D elasticity theory is presented for natural
vibration analysis of homogeneous and FG plates resting on Visco-Winkler-Pasternak
foundations. The governing equations of motion are derived due to Hamilton’s principle.
The closed-form solutions are obtained for different types of rectangular plates. A validation
study is performed to verify the accuracy of the present frequencies. Furthermore, a
parametric study is carried out to investigate the effects of various parameters on the
natural frequencies of FG plates. Such parameters are the FG power-law index, aspect and
thickness ratios, and foundation parameters, especially the inclusion of the third damping
parameter. The following points can be outlined from the present study:

• The quasi-3D theory satisfies both the zero transverse and normal shear stress condi-
tions on the plate surfaces and does not require any shear correction factor;

• Compared to other theories in the literature, the present quasi-3D theory produces
accurate results for both thin and thick FG plates;

• One of the important notes is that Pasternak’s parameter has a greater effect on
increasing the non-dimensional frequency than both the Winkler’s and visco-Winkler
parameters;

• In general, in the inclusion of the viscoelastic foundation, increasing the value of Win-
kler, Pasternak, and damping coefficients causes an increase in the natural frequencies
of FG plates;

• The FG power-law index affects reducing the non-dimensional frequencies of FG
plates on visco-Winkler-Pasternak foundations.
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