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Abstract: The Tsallis entropy is an extension of the Shannon entropy and is used extensively in
physics. The cumulative residual Tsallis entropy, which is a generalization of the Tsallis entropy, plays
an important role in the measurement uncertainty of random variables and has simple relationships
with other important information and reliability measures. In this paper, some novel properties of
the cumulative residual Tsallis entropy are disclosed. Moreover, this entropy measure is applied
to testing the uniformity, where the limit distribution and an approximation of the distribution of
the test statistic are derived. In addition, the property of stability is discussed. Furthermore, the
percentage points and power against seven alternative distributions of this test statistic are presented.
Finally, to compare the power of the suggested test with that of other tests of uniformity, a simulation
study is conducted.

Keywords: cumulative residual Tsallis entropy; stability; empirical cumulative distribution function;
testing uniformity; Monte Carlo method; test power
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1. Introduction

The classical measure of uncertainty in a discrete distribution (Shannon [1]) has been
used in many areas, such as computer science [2], communication theory [2], the physical
and chemical fields [3], fuzzy sets [4], and finance [5,6]. A straightforward extension of
the discrete case to continuous distributions based on a probability density function (PDF)
fX(.) of a continuous random variable (RV) X, called differential entropy, reads (cf. [7])

S(X) = −E(log fX(X)) = −
∫ ∞

−∞
fX(x) log fX(x)dx. (1)

Many generalizations of the Shannon entropy have been published by inserting some
additional parameters, making these generalizations more responsive to diverse shapes of
probability distributions. Rao et al. [7] (see also, Wang et al. [8]) suggested a non-negative
measure of uncertainty and referred to it as the cumulative residual entropy (CRE). This
suggested measure is obtained by replacing the PDF fX(x) in (1) by the survival function
FX(x) := P(X > x) = 1 − FX(x). Thus, for any continuous RV X with a cumulative
distribution function (CDF) FX(x), the CRE is specified by

CRE(F) = −
∫ ∞

0
F|X|(x) log(F|X|(x))dx,
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where F|X|(x) = P(| X |> x).
The Tsallis entropy of order θ is a generalization of the Shannon entropy that was first

given by Havrda and Charvat [9]. Then, Tsallis [10] used its properties and placed it in a
physical context. This measure is defined for any continuous RV X as

Tθ(X) =
1

θ − 1
E(1− ( fX(X))θ−1) =

1
θ − 1

(
1−

∫ ∞

−∞
( fX(x))θdx

)
,

where 1 6= θ > 0. Clearly, as θ → 1, Tθ(X)→ S(X).
Motivated by the wide applicability of the Tsallis entropy, Sati and Gupta [11] proposed

the cumulative residual Tsallis entropy (CRTE) of order θ, which is given by

CT∗θ (X) =
1

θ − 1

(
1−

∫ ∞

0
(F̄|X|(x))θdx

)
, 1 6= θ > 0.

Rajesh and Sunoj [12] introduced an alternate measure of CRTE of order θ, which
possesses certain interesting properties with CT∗θ (X), as

CTθ(X) = CTθ(F) =
1

θ − 1

(∫ ∞

0
(F̄|X|(x)− (F̄|X|(x))θ)dx

)
, 1 6= θ > 0; (2)

when θ → 1, then CTθ(X) → CRE(F) but CT∗θ (X) 9 CRE(F), and CTθ(X) = CT∗θ (X) +
E (X)−1

θ−1 , for more details see Mohamed [13]. In this work we focus only on the measure (2).
Rajesh and Sunoj [12] detected several eminent features of the CRTE (2). For example,

the CRTE has more interesting mathematical features than the CRE, it can be easily esti-
mated from sample data, and these estimates asymptotically converge to the true values.
Moreover, the CRTE handles the information in residual life. For the standard uniform
distribution, denoted by U(0, 1), Rajesh and Sunoj [12] determined the value of the CRTE,
which is 1

2(θ+1) . The literature teems with several results of the Shannon entropy and
its related measures. Interested readers may refer to [14–18] for the Shannon entropy,
Kullback–Leibler divergence, and Fisher information number; [19,20] for fractional cu-
mulative residual entropy and cumulative residual entropy, respectively; [13,21–24] for
the Tsallis entropy and its related measures; and finally [25,26] for the extropy and Rényi
entropy and its applications, respectively.

Stephens [27] provided a useful guide to goodness-of-fit tests using statistics based
on the empirical CDF. Furthermore, power comparisons of several uniformity tests were
performed in [27]. The power attributes of an entropy-based test when employed for
measuring uniformity were examined by Dudewicz and Van der Meulen [28]. Further-
more, Dudewicz and Van der Meulen [28] demonstrated that the entropy-based test has
good power qualities for various alternatives by comparing it to other uniformity tests.
Noughabi [29] developed a test for uniformity based on the CRE and studied some of its
features. In addition, he compared the percentage points and power of seven alternative
distributions. Mohamed et al. [30] used the fractional and weighted CRE measures to test
the uniformity.

In this paper, we study the CRTE (2) for testing uniformity. The outcome of a simu-
lation study reveals that the test under CRTE is competing with the test based on CRE in
terms of power. In addition, some interesting statistical properties of the CRTE are revealed.
We also use the Monte Carlo method via simulation and normality asymptotic, as well as
the beta approximation, to derive the percentage points under the CRTE. In addition, the
CRTE and other tests are compared in terms of power analysis.

Work Motivation

The Tsallis entropy of order θ, which was introduced by Tsallis [10], plays an important
role in the measurement uncertainty of RVs and leads nonextensive statistics. The Tsallis
entropy is the basis of the so-called nonextensive statistical mechanics, which generalizes
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the Boltzmann-Gibbs theory (cf. [31]). Tsallis statistics have found applications in a wide
range of phenomena in diverse disciplines such as physics, chemistry, biology, medicine,
economics, geophysics, etc. For example, Cartwright [32] proposed applications of the
Tsallis entropy in various fields, such as describing the fluctuation of the magnetic field in
the solar wind and signs of breast cancer in mammograms. Sati and Gupta [11] introduced
a cumulative residual Tsallis entropy of order θ and studied its various properties in
the context of reliability modeling. After one year, Rajesh and Sunoj [12] introduced an
alternate measure of CRTE (defined by (2)) and studied its properties. Unlike the CRTE of
Sati and Gupta [11], the proposed measure had some additional features and had simple
relationships with other important information and reliability measures.

There are many different types of probability distributions, and the uniform distri-
bution is perhaps the simplest of them all. For a continuous distribution, the uniform
distribution defines equal probability over a given range. As a result, it is valuable as a
reference distribution. Random number generation is one of the most important uses of uni-
form distribution. Moreover, in the field of economics, usually, demand and replenishment
may not follow the expected normal distribution. As a result, different distribution models
are employed to better anticipate probabilities and trends. According to Wanke [33], uni-
form distribution is more effective when evaluating lead-time for inventory management
at the beginning of the lifecycle when a brand new product is being studied. Furthermore,
social scientists use uniform distribution to represent a lack of knowledge. For example,
in a simulation where distribution is not known, uniform random variates are often used.
Uniform distribution is also used to describe the measurement error of some instruments
or measuring systems. All of these factors (cf. [34]) explain the increasing interest in the
choice of simple and computationally efficient tests for hypotheses about the uniform law
of analyzed samples.

The aforesaid theoretical and practical importance of the statistic CRTE defined in (2) and
the tests for uniformity provides a sufficient motivation to study and reveal some important
properties of that statistic and use it for testing the uniformity.

The rest of the paper is organized as follows. In Section 2, we obtain some new findings
of the CRTE. In Section 3, we propose the CRTE test statistic for uniformity and discuss
some of its properties, including the property of stability. In Section 5, we propose the
methods of finding the percentage points of CRTE. In addition, we estimate the percentage
points of CRTE. In Section 6, we use a Monte Carlo simulation to carry out the power
comparison of the uniformity of different tests against seven alternative distributions.

2. Some Properties of CRTE

In what follows, the symbols ( p−→n ), ( d−→n ), and ( a.s.−→n ) stand for convergence in
probability, convergence in distribution and almost surely, as n → ∞. In this section, we
derive some properties of the measure CTθ(X), which is defined in (2).

Theorem 1. Let X = (X1, X2, ..., XN) be a random vector in RN . Furthermore, for all 1 ≤ i ≤ N
and some q > N, let Xi ∈ Lq, i.e., E[|Xi|q] < ∞. Then, CTθ(X) < ∞, θ > 1.

Proof. For all 0 ≤ x ≤ 1 and 1 6= θ > 0, we can easily check that the function g(x; θ) :=
1

θ−1 (x− xθ) attains its maximum value θ
θ

1−θ at x0 = θ−
1

θ−1 . Moreover,

0 ≤ g(x; θ) ≤ θ
θ

1−θ ≤ 1, 0 ≤ x ≤ 1, 1 6= θ > 0. (3)

On the other hand, for each 0 < p < 1, we are now going to prove the inequality

g(x; θ) =
1

θ − 1
(x− xθ) ≤ θ

θ
1−θ

xp

1− p
, 0 ≤ x ≤ 1, θ > 1. (4)
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Clearly, in view of the relation (3), the inequality (4) holds if L(x; p) := xp

1−p ≥ 1. Since,

for L(x; p) < 1, we obtain x < (1− p)
1
p , we consider the ratio g(x;θ)θ

θ
θ−1

L(x;p) in the interval

x < (1− p)
1
p , where θ > 1. By using (3), we obtain

g(x; θ)θ
θ

θ−1

L(x; p)
≤ 1− p

θ − 1
(x1−p − xθ−p) ≤ (1− p)x1−p

θ − 1
≤ 1− p

θ − 1
(1− p)

1−p
p =

(1− p)
1
p

θ − 1
.

Thus, the inequality (4) holds if (1−p)
1
p

θ−1 ≤ 1 or, equivalently, θ ≥ 1 + (1− p)
1
p . On the

other hand, since p may be arbitrarily chosen in the interval (0, 1), we can choose it to be
sufficiently close to 1, in order that the inequality (4) be held for any θ > 1. This proves
the inequality (4). It is worth mentioning that this inequality is not satisfied for θ < 1, in
general, Figure 1 shows this fact.

Figure 1. The relation between the functions g(x; θ) and m(x) := θ
θ

1−θ L(x; p) with different values of
θ and 0 < p < 1.
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Now, for any 0 < p < 1 and 1 ≤ i ≤ N, we can use the inequality (4) to obtain

1
θ − 1

[
P[|Xi| > xi, 1 ≤ i ≤ N]− Pθ [|Xi| > xi, 1 ≤ i ≤ N]

]
≤ θ

θ
1−θ

1− p
Pp[|Xi| > xi, 1 ≤ i ≤ N] ≤ θ

θ
1−θ

1− p

N

∏
i=1

F̄
p
N
|Xi |

(xi). (5)

Integrating both sides of (5) over RN
+ = {xi ∈ RN ; xi ≥ 0} and utilizing the Markov

inequality, we obtain

CTθ(X) ≤ θ
θ

1−θ

1− p

∫
RN
+

N

∏
i=1

F̄
p
N
|Xi |

(xi)dxi =
θ

θ
1−θ

1− p

N

∏
i=1

{∫ ∞

0
F̄

p
N
|Xi |

(xi)dxi

}

=
θ

θ
1−θ

1− p

N

∏
i=1

{∫ 1

0
F̄

p
N
|Xi |

(xi)dxi +
∫ ∞

1
F̄

p
N
|Xi |

(xi)dxi

}

≤ θ
θ

1−θ

1− p

N

∏
i=1

1 +
∫ ∞

1

[
1
xq

i
E[|Xi|q]

] p
N

dxi

,

which is finite if pq
N > 1. Thus, for any q > N, we can choose p < 1 (sufficiently close to

one) to satisfy pq
N > 1 and the result follows.

Remark 1. For any RV X, it is well-known that the existence of Var(X) implies X ∈ L2. Thus,
the existence of Var(X) is a sufficient condition for CTθ(X) < ∞, θ > 1.

Theorem 2 (Weak convergence). Let the sequence Xn of N-dimensional random vectors converge
in distribution to a random vector X. Furthermore, for all n, let Xn ∈ Lq, q > N. Then,

lim
n→+∞

CTθ(Xn) = CTθ(X).

Proof. Since Xn
d−→n X, we have

lim
n→+∞

(
F̄|Xn |(x)− F̄θ

|Xn |(x)
)
= F̄|X|(x)− F̄θ

|X|(x), x ∈ RN
+ .

Meanwhile, from (4), we obtain

1
θ − 1

(
F̄|Xn |(x)− F̄θ

|Xn |(x)
)
≤ θ

θ
1−θ

1− p

N

∏
i=1

F̄
p
N
|Xni |

(xi)

≤ θ
θ

1−θ

1− p

N

∏
i=1

[
I[0,1](xi) + x−q

i I[1,∞)(xi)E(|Xni |
q)
] p

N ,

where Xni is the ith component of the random vector Xn and IA(x) is the indicator function,

i.e., IA(x) = 1, x ∈ A, IA(x) = 0, x /∈ A. Therefore, if q p
N > 1,

[
1

θ−1

(
F̄|Xn |(x)− F̄θ

|Xn |(x)
)]

is bounded by an integrable function. Meanwhile, for any q > N, we can choose p < 1
sufficiently close to one to satisfy pq

N > 1. The use of the dominated convergence theorem
completes the proof.

We show below that the measure CTθ(X) dominates the differential entropy (1), which
may exist when X has density.

Theorem 3. Suppose that X is a non-negative RV with CDF FX(x); then,

CTθ(X) ≥ C(θ)eS(X), 1 6= θ > 0,
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where C(θ) = e
∫ 1

0 log( 1
θ−1 (x−xθ))dx < ∞, and S(X) is the differential entropy defined in (1).

Proof. Utilizing the log-sum inequality, we obtain

∫ ∞

0
fX(x)log

(
fX(x)

1
θ−1
(

F̄X(x)−F̄θ
X(x)

))dx≥ log
1∫ ∞

0
1

θ−1
(

F̄X(x)−F̄θ
X(x)

)
dx

=− log CTθ(X). (6)

Furthermore, the left-hand side in (6) is derived as

∫ ∞

0
fX(x) log

(
fX(x)

1
θ−1
(

F̄X(x)− F̄θ
X(x)

))dx = −S(X)−
∫ 1

0
log
(

1
θ − 1

(
x− xθ

))
dx.

Thus,

log CTθ(X) ≥ S(X) +
∫ 1

0
log
(

1
θ − 1

(
x− xθ

))
dx. (7)

The result follows after exponentiating both sides of (7) and using (3), where C(θ) =

e
∫ 1

0 ln( 1
θ−1 (x−xθ))dx ≤ θ

θ
1−θ < 1 is finite. This completes the proof.

3. Further Theoretical Aspects and Test Statistic

To establish the test with a null hypothesis H0 of uniformity, we need the following
theorem.

Theorem 4. Let X be a non-negative RV with a continuous CDF F with a support [0, 1]. Then,
0 ≤ CTθ(F) ≤ θ

θ
1−θ . Moreover, the value 1

2(1+θ)
is uniquely attained by the uniform distribution

U(0, 1) for all 1 6= θ > 0.

Proof. The proof of inequality 0 ≤ CTθ(F) ≤ θ
θ

1−θ follows directly from (3). Meanwhile,
using the strict concavity of g(x; θ) = 1

θ−1 (x− xθ), we obtain CTθ(.) as a concave function
of distributions (with support [0, 1]). Thus, CTθ(F) = 1

2(1+θ)
is uniquely acquired by the

distribution U(0, 1). This completes the proof.

Let X1, X2, ..., Xn be a random sample with a continuous CDF F defined on [0, 1].
Furthermore, let X(1) ≤ X(2) ≤ ... ≤ X(n) be the corresponding order statistics. Clearly,
we can suggest an estimator of CTθ(F) by CTθ(Fn) =

∫ ∞
0 g(F̄n(x); θ)dx, 1 6= θ > 0, where

Fn(x) = 1− Fn(x) and Fn(x) is the empirical CDF, which is given by

Fn(x) =
n−1

∑
i=1

i
n

I[X(i),X(i+1))
(x) + I[X(n),∞)(x), x ∈ R.

Moreover, in order to get a consistent test of the hypothesis of uniformity, we propose the
consistent statistic test

Rn(θ) =
1

θ − 1

n−1

∑
i=1

(
(1− i

n
)−

(
1− i

n

)θ
)
(X(i+1) − X(i)) =

n−1

∑
i=1

Ai∆i, (8)

where Ai =
1

θ−1

(
(1− i

n )−
(

1− i
n

)θ
)

, 1 6= θ > 0, and ∆i = (X(i+1) − X(i)), i = 1, 2, ...,

n− 1.

Theorem 5. The test based on the sample estimateRn(θ) is consistent.

Proof. From the Glivenko-Cantelli theorem, see Howard [35], we have supt |Fn(t) −
F(t)| a.s.−→n 0. Moreover, it is easily asserted that CTθ(Fn)

a.s.−→n CTθ(F), which proves the
theorem.
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Remark 2. Since CTθ(Fn)
p−→n CTθ(F), we obtainRn(θ)

p−→n
1

2(1+θ)
, under the null hypothe-

sis H0. On the other hand, under the alternative hypothesis (that F is any continuous CDF defined
on [0, 1], which is not the uniform) we haveRn(θ)

p−→n q, where q is a smaller or larger number

than 1
2(1+θ)

.

Theorem 6. Let the random sample X1, X2, ..., Xn be drawn from an unknown continuous CDF F
defined on [0, 1]. Then, 0 ≤ Rn(θ) ≤ θ

θ
1−θ , 1 6= θ > 0.

Proof. In view of (3), we obtain

0 ≤ Rn(θ) ≤
n−1

∑
i=1

θ
θ

1−θ ∆i = θ
θ

1−θ (X(n) − X(1)) ≤ θ
θ

1−θ .

This completes the proof.

Theorem 7. Under H0, the mean and variance ofRn(θ) are given, respectively, by

E(Rn(θ)) =
1

n + 1

n−1

∑
i=1

Ai, and Var(Rn(θ)) =
n

(n + 1)2(n + 2)

n−1

∑
i=1

A2
i .

Proof. Clearly, for any i = 1, 2, ..., n − 1, the RV ∆i, based on the uniform distribution
U(0, 1) has a beta distribution with parameter-vector (1, n), written ∆i ∼ Beta(.; 1, n)
(cf. [36]). This completes the proof.

Remark 3. Under H0, we have limn→∞ E(Rn(θ)) =
1

2(1+θ)
, and limn→∞ Var(Rn(θ)) = 0.

The critical region, which specifies the uniformity test, is defined by

CTθ(Fn) ≤ CT?
θ, α

2
:= lower, or CTθ(Fn) ≥ CT?

θ,1− α
2

:= upper, (9)

where α is the desired level of significance, and CT?
θ,α is the α−quantile of the asymptotic,

or approximated, CDF of the test statistic CTθ(Fn), under H0.

The Stability of CRTE

The stability of measures of information has been studied by several works of literature,
see [19,37–40]. Analogously, we define the stability of the CRTE as the following.

Definition 1. Let X1, X2, ..., Xn be a random sample with a continuous CDF F and X′1, X′2, ..., X′n
be any small deformation of X1, X2, ..., Xn. Then, the empirical CRTE is stable if ∀ε > 0, ∃δ > 0,
and ∀n ∈ Z+, we have ∑n

i=1 |Xi − X′i | < δ⇒ |CTθ(F̄n(X))− CTθ(F̄n(X′))| < ε.

The next theorem gives a sufficient condition of the stability of the empirical CRTE.

Theorem 8. For any continuous RV X, the empirical CRTE is stable if X is distributed on a finite
interval.

Proof. Suppose that the RV X is supported in the finite interval [a, b] such that a ≥ 0 and
b < ∞. In view of (8), the empirical CRTE can be derived as

CTθ(F̄n(X)) =


1− 1

n ∑n
j=1 Xj, θ = 0,

1
θ−1 ∑n−1

j=1 (F̄n(X(j))− F̄θ
n(X(j)))∆j, 1 6= θ > 0.
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For θ = 0, the stability of empirical CRTE is obvious. In brief, denote gj = g
(

F̄n(X(j)); θ
)

,

g′j = g
(

F̄n(X′(j)); θ
)

, and ∆′j = X′(j+1) − X′(j). Thus, when ∑n
j=1 |Xj − X′j| < δ, we obtain

∣∣CTθ(F̄n(X))− CTθ(F̄n(X′))
∣∣ = ∣∣∣∣∣n−1

∑
j=1

gj∆j −
n−1

∑
j=1

g′j∆
′
j

∣∣∣∣∣
=

∣∣∣∣∣n−1

∑
j=1

(gj − g′j)∆j +
n−1

∑
j=1

g′j
[
∆j − ∆′j

]∣∣∣∣∣ ≤ n−1

∑
j=1

∣∣∣gj − g′j
∣∣∣∆j

+
n−1

∑
j=1

g′j
[
|(X(j+1) − X′(j+1))|+ |(X(j) − X′(j))|

]
≤ ε

2(b− a)
(X(n) − X(1)) + 2δ, (10)

where the second term in the second inequality in (10) is legitimated in view of (3). On
the other hand, the first term in that inequality is legitimated from the fact that for any
x′, x′′, and arbitrary small ε? > 0, ∃δ? > 0, such that |F̄n(x′)− F̄n(x′′))| < ε?, whenever
|x′ − x′′| < δ? (cf. [19]), which implies

∣∣∣gj − g′j
∣∣∣ ≤ ε

2(b−a) , whenever, ∑n
j=1 |Xj − X′j| < δ.

Now, choose δ = ε
4 , we obtain ε

2(b−a) (X(n) − X(1)) + 2δ ≤ ε. This completes the proof.

4. Percentage Points of the Test Statistic

In this section, we obtain the asymptotic distribution of Rn(θ) under H0. From (8),
we can write Rn(θ) = ∑n−1

i=1 Ti, where Ti = Ai∆i, i = 1, 2, ..., n− 1, and ∆i ∼ Beta(.; 1, n).
Thus, the RV Ti has the PDF

fTi (t) =
n
Ai

(
1− t

Ai

)n−1
, i = 1, 2, ..., n− 1.

The mean and variance of Ti are µi = E(Ti) = AiE(∆i) = Ai
n+1 and σ2

i = Var(Ti) =

A2
i Var(∆i) =

nA2
i

(n+1)2(n+2) , respectively. By using the Lyapunov central limit theorem (cf.

Billingsley [41]), we obtain ∑n−1
i=1 (Ti−µi)√

∑n−1
i=1 σ2

i

= Rn(θ)−E(Rn(θ))√
Var(Rn(θ))

d−→n Z, where Z is the standard

normal RV. Therefore, under H0, the percentage point (α−quantile) CT?
θ,α is estimated for

large n by using the asymptotic normality ofRn(θ) as follows

ĈT
?
θ,α = E(Rn(θ)) +

√
Var(Rn(θ))Zα, (11)

where Zα is the quantile (α× 100) of the standard normal distribution ΦZ(.).
Johannesson and Giri [42] suggested an approximation of the CDF of the linear combi-

nation of the finite number of beta RVs. Noughabi [29] utilized this result to approximate the
percentage points of the CRE for finite n. By following a similar method, an approximation
ofRn(θ) for finite n can be obtained as follows:

Rn(θ) ≈
(

n−1

∑
i=1

Ai

)
η, (12)

where the RV η has the beta distribution Beta(.; a, b) with

a =
(n + 2)(∑n−1

i=1 Ai)
2

(n + 1)(∑n−1
i=1 A2

i )
− 1

n + 1
, and b =

n
n + 1

(
(n + 2)(∑n−1

i=1 Ai)
2

∑n−1
i=1 A2

i

− 1

)
. (13)
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According to (12), the mean and variance ofRn(θ) are given, respectively, by

E(Rn(θ)) =

(
n−1

∑
i=1

Ai

)
a

a + b
, and Var(Rn(θ)) =

(
n−1

∑
i=1

Ai

)2
a b

(a + b)2(a + b + 1)
.

Using this approximation ofRn(θ), the quantiles of order α
2 and 1− α

2 of the approximated
CDF of the test statistic CTθ(Fn) under H0 are given, respectively, by

lower :=

(
n−1

∑
i=1

Ai

)
Beta−1

(α

2
; a, b

)
, and upper :=

(
n−1

∑
i=1

Ai

)
Beta−1

(
1− α

2
; a, b

)
, (14)

where Beta−1(.; a, b) is the quantile function of the beta distribution, Beta(.; a, b), and the
parameter-vector (a, b) is defined in (13).

Percentage Points

We generated 50,000 samples of sizes n =10, 20, 30, 40, 50, 70, and 100 from U(0, 1).
Utilizing (8), the test statisticRn(θ) was estimated by the empirical CRTE for each sample.
Moreover, we can see that CT0.1(U) = 0.4545, CT0.5(U) = 0.3333, CT0.9(U) = 0.2631,
CT2(U) = 1

6 , CT5(U) = 1
12 , and CT10(U) = 1

22 , where CTθ(U) is the CRTE of the CDF
U(0, 1). Consequently, for Rn(θ), we present the percentage points of the Monte Carlo
method, asymptotic normality, and beta approximation by using (9), (11), and (14), re-
spectively. Table 1 shows that as n increased, the difference between percentage points
(upper–lower) decreased. Furthermore, the Monte Carlo approach was more accurate than
the other two methods for Rn(θ), because it had almost minimum differences between
percentage points.

Figures 2 and 3 depict the empirical PDFs of the test statistics via Monte Carlo samples
for n =10, 20, 30, 50, and 100, θ = 0.1, 0.5, and 0.9, and n =10, 20, 30, 50, and 100,
θ = 2, 5, and 10, respectively. It is noted that the means of the empirical PDFs of Rn(θ)
became nearer to the exact values (CTθ(U)) as n increased, which indicates that the bias
and variance decreased with an increase in n. Moreover, the six corresponding figures to
θ = 0.1, 0.5, 0.9, 2, 5, and 10 in Figures 2 and 3 reveal that the improvement in the bias and
variance does not depend almost on θ.
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Figure 2. The estimated PDFs ofRn(θ) under U(0, 1), for 0 < θ < 1.

Figure 3. The estimated PDFs ofRn(θ) under U(0, 1), for θ > 1.
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Table 1. Percentage points of the suggested test statisticRn(θ) at level α = 0.05.

n θ

Rn(θ)

Normal Approximation Beta Approximation Monte Carlo Method

Lower Upper Lower Upper Lower Upper

10 0.1 0.1285 0.6311 0.1682 0.6655 0.2261 0.5302
0.5 0.1059 0.4777 0.1341 0.5023 0.1809 0.3872
0.9 0.0873 0.3815 0.1093 0.4007 0.1486 0.3056
2 0.05609 0.2439 0.07006 0.2561 0.0966 0.1956
5 0.0269 0.1226 0.0342 0.12902 0.0468 0.1002
10 0.01407 0.066908 0.01818 0.0704 0.0247 0.0554

20 0.1 0.2163 0.6167 0.2399 0.6381 0.3059 0.5228
0.5 0.1683 0.4581 0.1847 0.4731 0.2381 0.3781
0.9 0.1351 0.3631 0.1479 0.3748 0.1919 0.2976
2 0.0856 0.2309 0.0938 0.2384 0.12201 0.19017
5 0.04208 0.11614 0.04633 0.12001 0.0599 0.0967
10 0.022602 0.0635 0.0249 0.0657 0.0321 0.0534

30 0.1 0.2591 0.5993 0.2757 0.6147 0.3391 0.5145
0.5 0.1979 0.4425 0.2094 0.4532 0.2608 0.3723
0.9 0.1578 0.35001 0.1668 0.3583 0.2088 0.2933
2 0.0998 0.2223 0.1056 0.2276 0.1321 0.1868
5 0.0493 0.1117 0.0523 0.1145 0.06506 0.09504
10 0.02664 0.06113 0.02831 0.0626 0.03505 0.0524

40 0.1 0.2853 0.5859 0.2982 0.5979 0.3581 0.5098
0.5 0.2159 0.4313 0.2248 0.4396 0.2733 0.3688
0.9 0.1717 0.3408 0.1786 0.3473 0.2178 0.2904
2 0.10863 0.2163 0.11305 0.2205 0.1378 0.1847
5 0.0537 0.10869 0.05608 0.1108 0.0679 0.0938
10 0.0291 0.0594 0.0304 0.0606 0.0367 0.0516

50 0.1 0.3034 0.5755 0.3139 0.5853 0.3704 0.5052
0.5 0.2284 0.4229 0.2356 0.4297 0.2811 0.3661
0.9 0.1813 0.33405 0.1869 0.3393 0.2239 0.2883
2 0.1146 0.2119 0.1182 0.2153 0.1411 0.1834
5 0.0568 0.1064 0.0587 0.1082 0.0697 0.0929
10 0.03082 0.0582 0.0318 0.0592 0.0377 0.05111

70 0.1 0.3273 0.5604 0.3349 0.5676 0.3853 0.4993
0.5 0.2448 0.41109 0.25005 0.41608 0.2907 0.3617
0.9 0.19403 0.3245 0.1981 0.3284 0.2309 0.28504
2 0.1227 0.2058 0.1253 0.2083 0.1459 0.1811
5 0.06094 0.1033 0.0623 0.1046 0.0722 0.0916
10 0.03308 0.056509 0.0338 0.0572 0.03908 0.0503

100 0.1 0.3486 0.5456 0.35404 0.5508 0.3982 0.4943
0.5 0.2594 0.3997 0.2631 0.4033 0.29883 0.3581
0.9 0.2054 0.3155 0.2083 0.3183 0.2373 0.2822
2 0.1299 0.20008 0.1317 0.2018 0.1497 0.1792
5 0.0646 0.1003 0.0655 0.1013 0.0741 0.0904
10 0.0351 0.0548 0.0356 0.0553 0.04018 0.0496

5. Power Analysis

In this section, we examine the power test of the Monte Carlo method under alternative
distributions. The power ofRn(θ) is estimated by the proportion of the generated samples
that are in the critical region. Under seven alternative distributions, the power of Rn(θ)
is calculated by the Monte Carlo method for the generated 50,000 samples each of size
n = 10, 20, and 40. The alternative CDFs introduced by Stephens [27] in the power study of
uniformity tests are
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Al : F(y) = 1− (1− y)l , 0 ≤ y ≤ 1, l = 1.5, 2,

Bl : F(y) =

{
2l−1yl , 0 ≤ y ≤ 0.5,
1− 2l−1(1− y)l , 0.5 ≤ y ≤ 1, l = 1.5, 2, 3,

Cl : F(y) =

{
0.5− 2l−1(0.5− y)l , 0 ≤ y ≤ 0.5,
0.5 + 2l−1(y− 0.5)l , 0.5 ≤ y ≤ 1, l = 1.5, 2.

(15)

On the report of Stephens [27], the family Al gives points nearer to zero than predictable
under the hypothesis of uniformity and is interpreted as a change in the mean, the family
Bl gives points near 0.5 and is interpreted as a change toward a smaller variance, and the
family Cl shows two clusters close to 0, 1 and is interpreted as a change toward a larger
variance.

In Table 2, we recorded the power values of the proposed test statistics Rn(θ),
Kolmogorov–Smirnov (K-S), Kuiper (V), Cramer-von Mises (W2), Watson (U2), and
Anderson-Darling (A2), for n = 10, 20, and 40, and α = 0.05. From Table 2, we can draw
the following conclusions:

1. For a fixed θ and as n increases, we see that the power ofRn(θ) increases.
2. For the alternatives Bl and Cl , the power ofRn(θ) increases and gives better perfor-

mance against the other tests when θ tends to 1 (θ → 1).
3. For the alternative Al , when n and θ increases, the power ofRn(θ) increases and gives

a better performance than the other tests.

Table 2. Power estimates of the tests at the level α = 0.05.

n Alternative
Rn(θ)

K-S V W2 U2 A2
θ = 0.1 θ = 0.9 θ = 2 θ = 10

10 A1.5 0.079 0.06656 0.08072 0.10558 0.12616 0.0756 0.1456 0.07776 0.1877
A2 0.11404 0.12564 0.18706 0.27216 0.30298 0.1631 0.3551 0.16308 0.4761
B1.5 0.095 0.11868 0.13762 0.10504 0.07352 0.0971 0.0741 0.1017 0.1349
B2 0.22202 0.30572 0.3577 0.25458 0.1184 0.2307 0.1104 0.2481 0.3269
B3 0.5349 0.72444 0.7997 0.61728 0.2424 0.5394 0.2154 0.5699 0.72308

C1.5 0.0804 0.11834 0.13002 0.1076 0.0342 0.0974 0.0239 0.1031 0.0222
C2 0.12666 0.24366 0.27896 0.18578 0.0402 0.2333 0.01114 0.2475 0.00924

20 A1.5 0.10758 0.07272 0.13104 0.24056 0.2179 0.1226 0.25208 0.1225 0.3235
A2 0.15218 0.1876 0.39546 0.63934 0.5616 0.3486 0.6241 0.3358 0.7538
B1.5 0.13084 0.25316 0.30462 0.18358 0.0869 0.1634 0.0781 0.1786 0.1774
B2 0.3462 0.66858 0.75146 0.50604 0.1849 0.4647 0.162 0.5067 0.52802
B3 0.76144 0.9852 0.99594 0.9319 0.4588 0.8711 0.4615 0.8978 0.93998

C1.5 0.0897 0.19596 0.2244 0.14142 0.0509 0.1621 0.02406 0.1791 0.0213
C2 0.1361 0.42338 0.53846 0.2519 0.1162 0.4633 0.0462 0.5048 0.0338

40 A1.5 0.20048 0.08398 0.24962 0.51094 0.3144 0.18002 0.366 0.1721 0.4498
A2 0.2663 0.29604 0.72538 0.94942 0.7522 0.5447 0.8105 0.5071 0.8973
B1.5 0.1668 0.5149 0.61588 0.34912 0.1021 0.2477 0.0873 0.2667 0.2281
B2 0.4824 0.95894 0.98322 0.8408 0.2706 0.6695 0.25108 0.7076 0.7002
B3 0.90634 1 1 0.99952 0.6701 0.97506 0.7237 0.9819 0.99104

C1.5 0.10134 0.32746 0.4469 0.18216 0.07 0.2492 0.0303 0.2678 0.0271
C2 0.1511 0.64696 0.87082 0.32854 0.2077 0.6711 0.1258 0.7111 0.1105

6. Conclusions

Some novel properties of the CRTE quantity were presented such as sufficient condi-
tions for the CRTE to be finite, the weak convergence of the CRTE, the connections between
the CRTE, the CRE, and classic differential entropy, and the stability of the empirical CRTE.
Furthermore, for the CDFs with support [0, 1], we exhibited that the value of CTθ was

within [0, θ
θ

1−θ ]. Moreover, the test of uniformity was proposed by calculating the percent-
age points and power analysis of CTθ . In addition, for CTθ , we obtained the percentage
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points by using the Monte Carlo method via simulation and normality asymptotic, as well
as the beta approximation. A power comparison was performed between the CRTE and
other tests, where, by changing the value of θ, we indicated when the test had higher and
lower power compared with the other tests.

When we talk about the prospects for future research, we consider here two problems.
The first one is to extend the result of this work to a multivariate version of the entropy
measures; see, for example, the Formulas (4), (5), and (6) of [43], as a starting point for
that future work. The second future research goal is to apply the proposed test to a recent
real-world dataset to help solve one of society’s practical concerns.
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