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Abstract: This paper investigates the questions about the local dynamics in the neighborhood of the
equilibrium state for the spatially distributed delay logistic equation with diffusion. The critical cases
in the stability problem are singled out. The equations for their invariant manifolds that determine
the structure of the solutions in the equilibrium state neighborhood are constructed. The dominant
bulk of this paper is devoted to the consideration of the most interesting and important cases of either
the translation (advection) coefficient is large enough or the diffusion coefficient is small enough. Both
of this cases convert the original problem to a singularly perturbed one. It is shown that under these
conditions the critical cases are infinite–dimensional in the problems of the equilibrium state stability
for the singularly perturbed problems. This means that infinitely many roots of the characteristic
equations of the corresponding linearized boundary value problems tend to the imaginary axis as
the small parameter tends to zero. Thus, we are talking about infinite–dimensional bifurcations.
Standard approaches to the study of the local dynamics based on the application of the invariant
integral manifolds methods and normal forms methods are not applicable. Therefore, special methods
of infinite–dimensional normalization have been developed which allow one to construct special
nonlinear boundary value problems called quasinormal forms. Their nonlocal dynamics determine
the behavior of the initial boundary value problem solutions in the neighborhood of the equilibrium
state. The bifurcation features arising in the case of different boundary conditions are illustrated.

Keywords: nonlinear local dynamics; stability; asymptotic behavior; quasinormal form; bifurcations;
characteristic equation
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1. Introduction

We consider the spatially distributed delay logistic equation

∂u
∂t

= d
∂2u
∂x2 + b

∂u
∂x

+ r[1− u(t− T, x)]u (1)

with the periodic boundary conditions

u(t, x + 2π) ≡ u(t, x). (2)

The coefficient d > 0 is called the diffusion coefficient or the mobility coefficient when it
comes to a biological population. The coefficient r > 0 is called the Malthusian coefficient
and T > 0 is the delay time. The presence of the translation operator b∂u/∂x in the
boundary value problem (1), (2) differs from the logistic equation with diffusion. The
coefficient b in this operator can be considered positive. The function u(t, x) makes sense
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of the population density and therefore u(t, x) ≥ 0. The translation operator is irrelevant
for the boundary value problem without delay

∂

∂t
u = d

∂2u
∂x2 + b

∂u
∂x

+ r[1− u]u, u(t, x + 2π) ≡ u(t, x). (3)

It ‘disappears’ after the spatial variable replacement x → x + bt.
An equation of the (1) type arises in many applied problems of mathematical ecology

and mathematical biology (see, for example, [1–7]). The most complete research results are
presented in [8–10].

In this paper, we study the local dynamics of the boundary value problem (1), (2) in a
neighborhood of a positive equilibrium state, that is, the behavior of the (1), (2) solutions
with initial conditions from some sufficiently small neighborhood of the equilibrium state
u0 ≡ 1. We fix the space C[−T,0] ×W2

2 [0,2π] as the space of initial conditions. We pay special
attention to the study of cases when either the translation coefficient b is sufficiently large
or the diffusion coefficient is sufficiently small. It is in these cases that the boundary value
problem (1), (2) becomes singularly perturbed, which can lead to the appearance of new
interesting dynamic effects.

We recall the well-known (see, for example, [11,12]) results for the delay logistic equation

u̇ = r[1− u(t− T)]u. (4)

Under the condition rT ≤ π/2, the equilibrium state u0 ≡ 1 is asymptotically stable, and
it is unstable when rT > π/2 and there is a stable cycle in (4). The asymptotic behavior
of this cycle under the condition 0 < rT − π/2� 1 is given in [13]. Questions about the
global stability of Equation (4) are studied in [11,12,14].
Under the condition rT � 1, the asymptotic stability of the cycle is described in [15]. We
recall a well-known result of the Andronov–Hopf bifurcation in (4) under the conditions
rT ≈ π

2 . We fix the values r0 and T0 in (4) so that r0T0 = π
2 . Let

r = r0 + εr1, T = T0 + εT1 (5)

where ε is a small positive parameter:

0 < ε� 1.

Then in some sufficiently small and ε independent neighborhood of Equation (4) solution
u0 there exists [16–18] a stable local invariant integral two-dimensional manifold M(ε) on
which Equation (4) can be written in the form of a scalar complex ordinary differential equation

dξ

dτ
= αξ + σξ|ξ|2 (6)

to within O(ε). Here, τ = εt is a ‘slow’ time and

α =

(
1 +

π2

4

)−1[(π

2
+ i
)

r1 + λ2
0T1

(
1− i

π

2

)]
,

σ = −λ0[3π − 2 + i(π + 6)]
(

10(1 +
4

π2 )

)−1
, <σ < 0.

Equation (6) is called the normal form for (1), (2) in the neighborhood of u0. The solutions (6)
and (4) are related by the asymptotic equality

u = 1 + ε1/2
(

ξ(τ) exp
(

iπ(2T0)
−1t
)
+ ξ(τ) exp

(
−iπ(2T0)

−1t
))

+ O(ε). (7)

Accordingly, the cycle in (6) corresponds to the stable cycle in (4) (as <α > 0).
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Under the conditions (5) and for b = 0, the same manifold M(ε) is a stable invariant
manifold for the delay logistic equation with diffusion

∂u
∂t

= d
∂2u
∂x2 + r[1− u(t− T, x)]u, u(t, x + 2π) ≡ u(t, x). (8)

Therefore, the equilibrium state of u0 is stable as rT ≤ π
2 and is unstable as rT > π

2 for
this equation, and the same cycle as in Equation (4) exists. The cycle bifurcation for (4)
and (8) is of the Andronov–Hopf type [10,19]. There is only one pair of pure imaginary
roots, whereas other roots of the characteristic equations for the linearized on u0 equations
have negative real parts as ε = 0.

We get back to the boundary value problem (1), (2) consideration. Its local dynamics
in the equilibrium state of u0 neighborhood depend largely on the behavior of solutions of
the linearized on u0 boundary value problem

∂v
∂t

= d
∂2v
∂x2 + b

∂v
∂x
− rv(t− T, x), v(t, x + 2π) ≡ v(t, x). (9)

In turn, the behavior of Equation (9) solutions is related to the location of the roots of its
characteristic quasi-polynomial, which consists of the set of the equations

λ = −dk2 + ibk− r exp(−λT), k = 0,±1,±2, . . . . (10)

In the case when the roots of (10) have negative real parts, all the solutions of (9)
tend to zero as t → ∞ and the equilibrium state of u0 is asymptotically stable in (1), (2).
However, if a root with a positive real part exists in (10), then (9) has a solution that grows
exponentially as t→ ∞ and the solution of u0 in (1), (2) is unstable.The critical case in the
problem of u0 stability takes place under the condition that (10) has no roots with positive
real part, but a root with zero real part exists.

In this paper, we focus our attention on the determination of the parameters for which
critical cases take place and on the study of the (1), (2) solutions in near-critical situations.

Below we show that the bifurcation phenomena are much more complicated and
diverse for the boundary value problem (1), (2) than those that take place for the boundary
value problem (8). In the case of singular perturbations when b� 1 or d� 1 some inter-
esting situations may arise when infinitely many roots of the characteristic Equation (10)
tend to the imaginary axis as the small parameter tends to zero. Thus, the critical case of
infinite dimension is realized in the problem of the solutions stability. Note that singular
perturbations in a nonlocal setting were studied, for example, in [20–22].

Special nonlinear equations that do not contain small parameters are constructed
as the main results. Their nonlocal dynamics determine the behavior of the boundary
value problem (1), (2) solutions in the neighborhood of the equilibrium state of u0. These
equations are classical normal forms on invariant manifolds in finite-dimensional critical
cases. There are no invariant manifolds in infinite-dimensional critical cases, but the formal
method of normal forms allows us to construct special boundary value problems of the
parabolic type, the so-called quasinormal forms, which play the role of normal forms.
Asymptotic formulas that couple the solutions of the initial problem and the solutions of
the quasinormal forms are given.

In the next section, the critical cases are defined on the basis of the characteristic
Equation (10) roots analysis, and the bifurcations when the parameter b is changed are
studied. Moreover, main attention is paid to the singularly perturbed case when b � 1.
The most interesting situations that arise at asymptotically small values of the diffusion
coefficient d are considered in Section 3. The infinite-dimensional bifurcations for the
Dirichlet boundary conditions with sufficiently large values of the delay coefficient are
considered in Section 4. Finally, the conclusions are formulated in Section 5.
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2. Determined by Translation Coefficient b Bifurcations

In this section, we first focus on the analysis of the characteristic Equation (10) roots,
and then we consider the bifurcation problem of constructiong a normal form. In the final
part, we investigate the dynamics of the boundary value problem (1), (2) for large values
of b.

2.1. Linear Analysis

We assume λ = iω where ω > 0 to construct the boundaries of the stability domain in
the space of parameters of Equation (10) for some k = k0. We obtain from (10) that

iω = −dk2
0 + ibk0 − r exp(−iωT). (11)

This equation is equivalent to the system of two equations

r cos ωT = −dk2
0, (12)

r sin ωT = ω− bk0. (13)

2.1.1. Case of k0 = 0

From (10) we obtain the equation

λ = −r exp(−iλT) (14)

which is a well-known characteristic equation for the classical delay logistic equation.
Therefore, we conclude that there is a root with a positive real part in (14) and hence in (10)

under the condition rT >
π

2
.

Below we assume that the inequality

rT ≤ π

2
(15)

holds.

There is a pair of the complex conjugate roots λ1,2 = ±iπ(2T)−1 for rT =
π

2
and the

other roots of (14) have negative real parts.

2.1.2. Case of k0 = 1

We state one simple proposition first.

Lemma 1. Let the inequalities
rT <

π

2
, 0 < r < d (16)

hold. Then the roots of Equation (10) have negative real parts.

Indeed, it follows from (16) that Equations (12) and (13) are unsolvable.
We consider the case where k = 1 and r = d. It then follows from (12) that the equality

ωT = π(2n + 1) holds for some integer n, and from (13) we obtain that π(2n + 1)T−1 = b.
Below, let Tk(r, b) (k = 0, 1, 2, . . .) stand for such a value of the parameter T that for
0 < T < Tk(r, b) the roots of (10) have negative real parts for the given k, and there is a
root on the imaginary axis as T = Tk(r, b). Thus, T0(r, b) = T0(r) = π(2r)−1, and under
the condition r = d the equality T1(d, b) = πb−1 holds.

Further, we consider the case where

d < r ≤ 4d.
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Under this condition and for all values of the parameters b and T, the roots of all of
Equation (10) have negative real parts as |k| > 1. From (12), (13) we conclude that

T1(r, b) = ϕ1

[
b +

√
r2 − d2

]−1
, cos ϕ1 = −dr−1, ϕ1 ∈

(π

2
, π
)

.

We note that T1(r, 0) > T0(r) and lim
b→∞

T1(r, b) = 0, therefore there is such b = b0 that

T1(r, b0) = T0(r). In this case, each element of Equation (10) has pure imaginary roots as
k = 0 and k = ±1. For example, the equality T1(d, b) = πb−1 = T0(d) = π(2d)−1 holds as
r = d. Thus, b0 = 2d, and T1(4d, b) = π(2b)−1 = π(8d)−1 as r = 4d, i.e., b0 = 4d.

2.1.3. Case of k0 > 1

Let k > 1 and the inequality
r > dk2

holds. Acting in accordance with the previous scheme, we obtain that

T1(r, b) = ϕk

(
bk +

(
r2 − dk2

)1/2
)−1

, cos ϕk = −dk2r−1,
π

2
< ϕk < π.

Let k0 stand for the largest integer k > 0 for which the inequality dk2
0 ≤ r holds.

We assume that

Tmin(r, b) = min
(
T0(r), T1(r, b), . . . , Tk0(r, b)

)
.

Lemma 2. Under the condition 0 < T < Tmin(r, b) the roots of the characteristic Equation (10)
have negative real parts, and Equation (10) has no roots with positive real part but the root on the
imaginary axis as T = Tmin(r, b).

It is important to note that the parameter T increment from Tmin(r, b) to T0(r) in the
boundary value problem (9) can lead to several alternations of stability and instability
of solutions.

The following statement is more interesting.

Lemma 3. Let the solutions of (9) be unstable for some value of the parameter b. Then stability
and instability of the (9) solutions alternate infinitely as b→ ∞.

Since
(
dk2

0
)2

+ (ω− bk0)
2 = r2

0, we obtain two values

ω1,2 = bk0 ±
√

r2
0 − (dk2

0)
2

for ω. We note that ω1 > |ω2|. Let T+
1 , T+

2 , . . . stand for the consecutive positive roots
(in relation to T) of the equation dk2

0 = −r0 cos ω1T. In addition, let T−1 , T−2 , . . . stand for
the consecutive positive roots of the equation dk2

0 = −r0 cos ω2T. We note that T+
2n+1 =

T+
1 + 2πnω−1

1 , T−2n+2 = T−2 + 2πω−1
2 and T+

1 < T−2 . It is evident that the values T+
2n−1

and T−2n (n = 1, 2, . . .) only are the roots of the system of Equation (10) for ω = ω1 and
ω = ω2, respectively. Let λ(T) stand for such a root of (10) that turns into iω1 and iω2 for
T = T+

2n−1 or T = T−2n, respectively. Then, for k = k0 we obtain from (10) that

dλ(T)
dT

∣∣∣∣ T=T+2n−1
T=T−2n

=
[
(1− r0T cos ωT)2 + r2

0T2 sin2 ωT
]−1

ω(ω− bk0)
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where ω = ω1 as T = T+
2n+1, and ω = ω2 as T = T−2n. From (10), it now follows that

dλ(T)
dT

∣∣∣∣
T=T+

2n−1

> 0, and for ω2 < 0 we obtain
dλ(T)

dT

∣∣∣∣
T=T−2n

> 0.

If ω2 > 0 then
dλ(T)

dT

∣∣∣∣
T=T−2n

< 0. From here we obtain the following statements:

1. If 0 ≤ T < T+
1 then the roots of (10) have negative real parts as k = k0;

2. If ω2 < 0 and T > T+
1 then Equation (10) has a root with positive real part as k = k0;

3. If ω2 > 0 and T+
1 < T < T−2 then Equation (10) has a root with positive real part as

k = k0;
4. If ω2 > 0 and T+

3 < T−2 then Equation (10) has a root with positive real part for all
T > T+

1 as k = k0;
5. If ω2 > 0 and T−2 < T < T+

3 then the roots of (10) have negative real parts as k = k0.
More generally, under the conditions T−2n < T < T+

2n+1 the roots of (10) have negative
real parts as k = k0.

The resulting domain of instability (in the space of parameters) of the characteristic
Equation (10) is an union of the instability domains of each of the equations that make
up (10). Thus, a situation is possible when this domain consists of one or several (because
their number is finite) intervals.

2.2. Andronov–Hopf Bifurcation

Let for some T = T0 and k = k0 (the case of k = 0 is studied in [19]) the characteristic
Equation (10) has one pure imaginary root λ = iω, whereas all the other roots have negative
real parts (as k ≥ 0). We assume ω = ω1,2 and let the equalities (5) hold. We consider the
behavior of the (8) solutions with initial conditions from some rather small (ε–independent)
neighborhood of the equilibrium state N ≡ 1. According to the general theory (see, for
example, [16–18]) in this neighborhood there is a local invariant two-dimensional stable
integral manifold on which (8) can be presented as a normal form

dξ

dτ
= α1ξ + β1|ξ|2ξn (τ = εt) (17)

to within O(ε). We put z = ωt + k0x to obtain explicit expressions for the coefficients α1
and β1, and introduce the formal series

N = 1 + ε
1
2
[
ξ(τ) exp(iz) + ξ(τ) exp(−iz)

]
+

+ ε
[
u20(τ)

∣∣∣ξ2(τ)
∣∣∣ + u21(τ)ξ

2(τ) exp(2iz) + u21(τ)ξ
−2(τ) exp(−2iz)

]
+

+ε
3
2 [u31(τ) exp(iz)+u31(τ) exp(−iz)+u33(τ) exp(3iz)+u33(τ) exp(−3iz)] + . . . . (18)

Substituting (18) into (1) and collecting the coefficients at the equal powers of ε we
obtain in the second step that

u20 = 2r−1
0 cos ωT0,

u21 = −r0

(
2iω + 4dk2

0 − 2ibk0 + r0 exp(−2T0ω)
)−1

exp(−iωT0).

From the solvability condition of the resulting equation with respect to u31 (and u31),
we arrive at a relation for the unknown value ξ(τ), which has the form of (17) in which

α1 = ir0ωT1(1− r0T0 exp(−iωT0))
−1,

β1 = −r0(1− r0T0 exp(−iωT0))
−1 ×

× [u20(1 + exp(−iωT0)) + u21(exp(iωT0) + exp(−2iωT0))].
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We note that the sign of the value <(α1) coincides with the sign of the expression ω(ω− b).
The stability of the equialibrium state of u0 of the boundary value problem (1), (2)

for small values of ε is obviously determined by the sign of <(α1), and the existence and
stability of the cycle in (1), (2) are related to the existence of the cycle in (17), i.e., to the
signs of the values <(α1) and <(β1).

2.3. Local Dynamics in the Case of Large Translation Coefficient

Here we assume that the parameter b is large enough:

b = ε−1, 0 < ε ≤ 1. (19)

It then follows from equality (13) that the quantity ω is of the order of ε−1, and the cor-
responding values of T at which the stability of the equilibrium state can change are of
the order of ε. In this regard, it is natural to set T = εT1 and change the time t = εt1 in (1).
Below, it is convenient to replace u with u− 1 in (1). Then the corresponding boundary
value problem with respect to u1 = u− 1 after multiplying by ε of the left and right parts
can be written in the form

∂u
∂t1

= ε

[
d

∂2u
∂x2 − r0u(t1 − T1, x)(1 + u)

]
+

∂u
∂x

, (20)

u(t1, x + 2π) ≡ u(t, x). (21)

Formally assuming ε = 0, we arrive at a linear equation whose entire stability spectrum is
pure imaginary. Thus, the critical case of infinite dimension is realized in the problem of
the equilibrium state of (20), (21) stability. An algorithm for studying the dynamic prop-
erties of solutions in such situations is developed in [23,24]. We apply the corresponding
constructions for (20), (21). We introduce the formal expression

u =
∞

∑
n=−∞

ξn(τ) exp ik(t1 + x) + εv(τ, y) + . . . = ξ(τ, y) + εv(τ, y) + . . . ,

y = t1 + x, τ = εt1.

Substituting this expression into (20), (21) and performing standard operations, we obtain
the boundary value problem with respect to ξ(τ, y)

∂ξ

∂τ
= d

∂2ξ

∂y2 − r0ξ(τ, y− T1)[1 + ξ], (22)

ξ(τ, y + 2π) = ξ(τ, y). (23)

Theorem 1. Let the boundary value problem (22), (23) have a bounded solution ξ0(τ, y) as τ → ∞,
y ∈ [0, 2π]. Then the function

u(t1, x) = ξ(εt1, t1 + x)

satisfies the boundary value problem (20), (21) to within O(ε).

We note that the boundary value problem (22), (23) plays the role of a quasinormal
form for (20), (21) and does not contain time delay but contains a deviation of the spatial
variable.

Further, we consider the issue of the (22), (23) local dynamics in the equilibrium state
of ξ ≡ 0 neighborhood. The characteristic equation of the linearized at zero problem has
the form

λ = −dk2 − r0 exp(−ikT1), k = 0,±1,±2, . . . . (24)

In the case when the roots of this equation have negative real parts, the equilibrium
states of ξ0 = 0 in (22), (23) and of u0 ≡ 0 in (20), (21) are asymptotically stable for small ε,
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and the solutions from some ε independent neighborhood of these equilibrium states tend
to zero as t→ ∞. If (24) has a value of λ with positive real part, then ξ0 and u0 are unstable,
and the problem of dynamic behavior in the equilibrium state neighborhood becomes
nonlocal. Below, we assume that for some integer k0 > 0 and T1 = T10, Equation (24) has
the pure imaginary root λ = iσ. All the other roots of (24) have negative real parts as
k 6= ±k0.

We introduce another small parameter µ, which characterizes the T1 deviation from
T10: T1 = T10 + µT11, 0 < µ� 1. In this case, a two–dimensional local invariant integral
stable manifold exists in a small neighborhood of zero in (20), (21) and in (22), (23), on
which the boundary value problem (22), (23) can be presented as a normal form

∂η

∂s
= α2η + β2|η|2η, s = µτ (25)

to within O(µ).
Repeating the constructions of the previous section, we introduce into consideration a

formal expression of the form (18):

ξ = µ
1
2 [η(s) exp iz + η(s) exp(−iz)] +

+ µ
[
|η(s)|2W20 + η2(s)W21 exp(2iz) + η2(s)W21 exp(−2iz)

]
+

+µ
3
2
[
W31(s) exp iz+W31(s) exp(−iz)+W31(s) exp(3iz)+W31(s) exp(−3iz)

]
+. . . (26)

where z = στ + k0y. We substitute (26) into (22), (23) and consecutively find that

W20 = −2 cos(k0T10), W21 =
[
2iσ + 4k2

0d + r0 exp(−2ikt10)
]−1

exp(−iT10k0),

α2 = −ik0T11(iσ + dk2
0),

β2 = −r0[W20(1 + exp(−ik0T10)) + W21(exp(iT10k0) + exp(−2iT10k0))].

We summarize what has been said.

Theorem 2. Let Equation (25) have the bounded solution η(s) as s→ ∞. Then the function

ξ(τ, y) = µ1/2[η(s) exp(iz) + η(s) exp(−iz)] +

+ µ
[
|η(s)|2W20 + η2(s)W21 exp(2iz) + η 2(s)W21 exp(−2iz)

]
satisfies the boundary value problem (22), (23) to within O(µ3/2).

It remains to be noted that the stability of the zero equilibrium state in (22), (23) is
determined by the sign of the quantity <(α2), and the existence and stability of the nonzero
cycle in (25) and in (20), (21) are determined by the signs of the quantities <(α2) and <(β2).

We dwell on some of the conclusions. The presence of advection in the distributed
logistic equation with diffusion significantly complicates the dynamic properties of the
solutions. Bifurcation phenomena (which are based on the Andronov–Hopf bifurcation)
begin to occur at lower values of the delay coefficient. The possibility of stabilization
of the equilibrium state as delay increases is shown. In the problem of the stability of a
positive equilibrium state an infinite-dimensional critical case can be realized for sufficiently
large values of the advection (translation) coefficient. This critical case can occur even at
asymptotically small values of delay. It is shown that the corresponding bifurcations occur
at high frequencies and on asymptotically large modes. Thus, rapid oscillations arise both
with respect to the spatial variable and with respect to time. A special nonlinear parabolic
equation with the deviation of the spatial variable that does not contain large and small
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parameters is constructed. Its nonlocal dynamics determine the behavior of the initial
equation solutions in a small neighborhood of the equilibrium state.

3. Equations with Small Diffusion Coefficient

The dynamic features of equations with low diffusion are even more interesting and
varied. The assumption that the values of the diffusion coefficient are small is natural. In
mathematical ecology, it is the mobility coefficient divided by the length of the habitat,
which often has relatively large dimensions. In many problems of physics and mechanics,
the values of the diffusion coefficient are also quite small in normalized units.

Therefore, we consider the delay logistic equation with diffusion

∂u
∂t

= ε2 ∂2u
∂x2 + b

∂u
∂x

+ r[1− u(t− T, x)]u (27)

with the periodic boundary conditions

u(t, x + 2π) ≡ u(t, x). (28)

We assume
0 < ε� 1 (29)

i.e., the diffusion coefficient is small enough. We investigate the dynamic properties of these
boundary value problem solutions in some small enough and ε independent neighborhood
of the equilibrium state of u0 ≡ 1.

The structure of the solutions may differ significantly depending on the value of
the translation coefficient. Four cases are considered separately. In the first of them, the
coefficient b is of the same order as the diffusion coefficient, i.e., for some fixed value b0 > 0
we obtain

b = ε2b0. (30)

This case is covered in Section 3.1. A much more complicated situation is considered next in
Section 3.2 when the parameter b is sufficiently small again but is greater that the diffusion
coefficient with respect to the ε order, i.e.,

b = εb0. (31)

We note at once that under this condition, the biffurcations occur on the modes with
asymptotically large numbers.

Section 3.3 considers the case when the parameter b does not depend on ε. The
peculiarity of this case is that bifurcations occur at high modes as well as in Section 3.2, but
the delay coefficient is asymptotically small in this case. Section 3.4 reveals the features of
the case when the condition

b� 1 (32)

holds together with condition (29).
In each of these cases, the bifurcation values of the parameters are determined and

quasinormal forms are constructed to analyze the dynamics of solutions.

3.1. Quasinormal Forms Construction under Condition b = ε2b0

Let T = T0 + ε2T1. The set of the equations

λ = −ε2k2 + iε2bk− r exp
(
−λ(T0 + ε2T1)

)
, k = 0,±1,±2, . . . (33)

plays the role of the characteristic equation for the linearized in u0 boundary value problem

∂v
∂τ

= ε2 ∂2v
∂x2 + ε2b

∂v
∂x
− rv(t− T0 − ε2T1, x), v(t, x + 2π) ≡ v(t, x). (34)
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We formulate several simple statements regarding the roots of (33). We omit their
simple but cumbersome proofs.

Lemma 4. Let the condition 0 < rT0 < π
2 hold. Then, for all sufficiently small ε, the real parts of

the (33) roots are negative and separated from zero as ε→ 0.

Lemma 5. Let the condition rT0 > π
2 hold. Then, for all sufficiently small ε, there exists a root

with positive real part separated from zero as ε→ 0.

Lemma 6. Let
rT0 =

π

2
.

Then, there are no roots with positive real part separated from zero in (33) as ε→ 0, but there are
infinitely many roots λ±k (ε) (k = 0,±1,±2, . . .), the real parts of which tend to zero for each k,
and the asymptotic representations

λ+
k (ε) = iω0 + ελk1 + . . . , λ+

k (ε) = λ
−
k (ε), (35)

λk1 =
[
−k2 + ib0k + iω0T1 exp(−iω0T0)

]
(1 + iω0)

−1,

take place as ω0 = π
2T .

We note that for rT0 < π
2 and for rT0 > π

2 the situation for (33) is the same as for the
characteristic equation

λ = −r exp(−λT0) (36)

of the linearized Equation (4)
v̇ = −rv(t− T0).

Only one pair of (36) roots lies on the imaginary axis as rT0 = π
2 , and for (33) infinitely

many (35) roots tend to the imaginary axis as ε→ 0. Thus, the critical case is realized in the
problem of the stability of solutions of (34) of infinite dimension.

The solutions
v±k (t, x, ε) = exp(ikx + λ±k (ε)t)

of the boundary value problem (34) correspond to the roots λ±k (ε). Therefore, the boundary
value problem (34) has the set of solutions

v(t, x, ε) =
∞

∑
k=−∞

ξk exp(ikx + λk(ε)t)

where ξk are the arbitrary constants. This expression can be written as

v(t, x, ε) =
∞

∑
k=−∞

ξk(τ) exp(ikx + iω0t) = ξ(τ, x).

Here, τ = ε2t is a slow time, ω0 = π
2T , ξk(τ) = ξk exp((λk1 + O(ε))τ) are the Fourier

coefficients of the function ξ(τ, x).
Applying the methodology from [23], we find the solutions of (27), (28) in the form

u(t, x, ε) = 1 + ε(ξ(τ, x) exp(iω0t) + cc) + ε2u2(t, τ, x) + ε3u3(t, τ, x) + . . . . (37)

The function ξ(τ, x) is the unknown amplitude, uj(t, τ, x) are 2π/ω0–periodic with respect
to t and 2π–periodic with respect to x.
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We substitute the formal expression (37) into (27) and sequentially equate the coeffi-
cients at equal powers of ε in the resulting formal identity. We obtain the correct equality
for ε1. Collecting the coefficients at ε2 we obtain the equation

∂u2

∂t
= −ru2(t− T, τ, x)− r

[
ξ2(τ, x) exp(2iω0t)+

+ ξ
2
(τ, x) exp(−2iω0t)

]
, u2(t, τ, x + 2π) ≡ u2(t, τ, x)

for u2 determining. From here

u2 = Aξ2 exp(2iω0t) + A ξ
2

exp(−2iω0t) (38)

where
A = −r(2iω0 + r exp(−2iω0T))−1.

At the next step, we collect the coefficients at ε3 and obtain the equation for u3. From
the condition of its solvability in the indicated class of functions, we obtain the boundary
value problem for ξ(τ, x) determining:

∂ξ

∂τ
= (1 + iω0)

−1
[

∂2ξ

∂x2 + b0
∂ξ

∂x
− rω0T1 exp(−iω0T0)ξ

]
++σξ|ξ|2,

ξ(τ, x + 2π) ≡ ξ(τ, x).
(39)

The formula
σ = A(1 + iω0)

−1(exp(iω0T) + exp(−2iω0T))

holds for the Lyapunov quantity σ, and <σ < 0.
We state the basic result of this section.

Theorem 3. Let the conditions (29), (30), rT0 = π
2 hold and the boundary value problem (39) has

the bounded solution ξ(τ, x) as τ → ∞, x ∈ [0, 2π]. Then, for τ = ε2t the function

u(t, x, ε) = 1 + ε(ξ(τ, x) exp(iω0t) + cc) + ε2
(

Aξ2 exp(2iω0t) + cc
)

satisfies the boundary value problem (27), (28) to within O(ε3).

Remark 1. It can be shown that if the boundary value problem (39) has a periodic with respect
to τ solution and certain conditions of nonsingularity type hold, then the initial boundary value
problem has an almost periodic solution of the same stability with the asymptotic behavior indicated
in Theorem 3.

3.2. Construction of Quasinormal Forms under Condition b = εb0

The results of this section are the most complicated and interesting. First, we dwell on
the linear analysis.

3.2.1. Linear Analysis

In this section, we fix arbitrarily the positive values b0 and r and write out the charac-
teristic Equation (33) in the form

λ = −z2 + ib0z− r exp(−λT) (40)

where z = εk, k = 0,±1,±2, . . . . Let λ(z) stand for the root of this equation with the largest
real part. We recall that the equality <λ(z) = −z2 − r holds as T = 0, therefore <λ(z) < 0
for all z ∈ (−∞, ∞). At the first step, we find the smallest positive value T0 of the parameter
T for which <λ(z) ≤ 0 (z ∈ (−∞, ∞)), and there exists z0 > 0 that <λ(z0) = 0. We show
below that z0 is uniquely defined. We put ω = =λ(z0). Further, we write out the system of
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equations for the unknown quantities z0, ω and T0. Initially, from the condition λ(z0) = iω
and from Equation (40) we obtain that

r cos ωT0 = −z2
0, r sin ωT0 = ω− b0z0. (41)

From the condition

<dλ(z)
dz

∣∣∣∣
z=z0

= 0

we arrive at the equality

ω− b0z0 = −(b0T0)
−12z0(1 + T0z2

0)
2. (42)

Taking this into consideration, we obtain from (42) that

r2 = z4
0 + (b0T0)

−24z2
0(1 + T0z2

0)
2. (43)

Then, from here we obtain the equation with respect to the quantity T0:

T2
[
(r2 − z4

0)b
2
0 − 4z4

0

]
− 8z4

0T0 − 4z2
0 = 0.

Now, we find that the equality

T0(z0) = 2z0

(
2z3

0 +
(

4z6
0 + ((r2 − z4

0)b
2
0 − 4z4

0)
))1/2

(44)

holds for the positive root T0 = T0(z0) of the equation above. Finally, taking into ac-
count (42) and the first of the equalities (41), we obtain the equation to determine z0:

r cos
(

T(z0)
(

b0z0 − (b0T0(z0))
−12z0

(
1 + T0(z0)z2

0

)))2
= −z2

0. (45)

After the roots of this equation have been found for those r and b0 for which they exist, we
obtain the desired value T0 = T0(z0). Figure 1 shows the graphs of the left and right sides
of Equation (45).

The main difference between the results of this and the previos sections is that T0 < π
2r

here, and the value z0 = εkε, at which the critical case is realized, is positive.
We consider a set of integers

kε = z0ε−1 + Θ + m; m = 0,±1,±2, . . .

where the quantity Θ = Θ(ε) ∈ [0, 1) complements the expression z0ε−1 to an integer
value. We assume in (40) that z = z0 + ε(Θ + m) and let λ+

m(ε) and λ−m(ε) = λ
+
m(ε) stand

for those roots of (40), the real parts of which tend to zero as ε→ 0. The following simple
statement holds.

Lemma 7. For λ+
m(ε) the asymptotic equalities

λ+
m(ε) = iω + ελm1(Θ + m) + ε2λm2(Θ + m)2 + . . .

hold where

λm1 = iω1 = λ′(z0),

λm2 =
1
2

λ′′(z0) =

[
1− 1

2
T2

0 ω2
1(ib0z0 − z2

0 − iω)

]
· [1− rT0 exp(−iωT0)]

−1,

ω1 = i(2z0 + ib0)
[
1 + T0(iω + z2

0 − ib0z0)
]−1

, =ω1 = 0.



Mathematics 2022, 10, 775 13 of 32

It is important to note that infinitely many roots of the characteristic Equation (40)
tend to imaginary axis as ε → 0. This gives grounds to say that the critical case under
consideration has an infinite dimension in the stability problem.

The root λ+
m(ε) corresponds to the solution vm(t, x, ε) of the linearized equation and

vm(t, x, ε) = exp
(

i(z0ε−1 + Θ + m)x + λ+
m(ε)t

)
which means that the same equation has a set of solutions

v(t, x, ε) =
∞

∑
m=−∞

ξm exp
(

i(z0ε−1 + Θ + m)x + λ+
m(ε)t

)
(46)

where ξm are arbitrary complex constants. Let τ = ε2t0. Then (46) can be presented in
the form

v(t, x, ε) = exp
(

i(z0ε−1 + Θ)x + i(ω + εω1Θ)t
)
·

∞

∑
m=−∞

ξm(τ) exp(im(x + εω1t))

= exp
(

i(z0ε−1 + Θ)x + i(ω + εω1Θ)t
)

ξ(τ, y), y = x + εω1t. (47)

Here, we have the equality

ξm(τ) = ξm exp((λm2 + O(ε))τ)

for the Fourier coefficients of the function ξ(t, y).
Further constructions are based on the representation (47).

3.2.2. Construction of Quasinormal Form

For fixed r and b0 and under the conditions (29), (31) we define ω, ω1, z0, and T0. We
assume that

T = T0 + ε2T1

in (27), (28) and let E = E(t, x, ε) stand for the function

E = exp
(

i(z0ε−1 + Θ)x + i(ω + εΘω1)t
)

.

We introduce into consideration the formal asymptotical series

u(t, x, ε) = ε
(
Eξ(τ, y) + E ξ(τ, y)

)
+ ε2u2 + ε3u3 + . . . . (48)

Here, ξ(τ, y) are the unknown complex amplitudes. The functions uj = uj(t, τ, y) are
2πω−1–periodic with respect to t and 2π–periodic with respect to y. We search for solutions
of the nonlinear boundary value problem (27), (28) in the form of (48). For this purpose we
substitute (48) into (27) and equate the coefficients at the same powers ε in the resulting
formal identity. At the first step, we obtain the correct equality by collecting the coefficients
at the first power of ε. Collecting the coefficients at ε2 we obtain the equation for u2. We
search for u2 in the form

u2 = u20|ξ(τ, y)|2 + u21ξ2(τ, y)E2 + u21ξ
2
(τ, y)E2.

Then, we immediately get that

u20 = −2z2
0r−1,

u21 = −r exp(−iωT0)
[
2iω + 4z2

0 + 2ib0z0

]−1
.
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(a) (b)

(c) (d)

(e)

Figure 1. Graph of the function y = −x2, graph of the function y = r cos(T(x)(b0x−
−(b0T0(x))−12x

(
1 + T0(x)x2)))2

with parameter values: (a) b = 0.5, r = 0.5, (b) b = 0.5, r = 1,
(c) b = 1, r = 1, (d) b = 2, r = 1, (e) b = 0.5, r = 1.5.
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At the next step, we obtain the equation for u3:

∂u3

∂t
= ε2 ∂2u3

∂x2 + εb0
∂u3

∂x
− ru3

∣∣∣∣
t−T,x

= A0(τ, y) + A1(τ, y)E + cc + A2(τ, y)E2 + cc + A3(τ, y)E3 + cc,

y = x + 2ω1t. The explicit form of the functions A0,2,3(τ, x) is inessential, so we do not
write them out. We obtain the formula

A1(τ, x) = − ∂ξ

∂τ
+

1
2

λ′′(z0)

(
Θ +

∂

∂y

)2
ξ + irωT1 exp(−iωT0)ξ

+ σξ|ξ|2(1− rT0 exp(−iωT0))

for the function A1(τ, x) where

σ = −r[u20 + u21(exp(iωT0) + exp(−2iωT0))](1− rT0 exp(−iωT0))
−1.

The satisfaction of the equality

A1(τ, y) ≡ 0

is the condition of the solution of the equation for u3 existence in the indicated class of
functions, i.e.,

∂ξ

∂τ
=

1
2

λ′′(z0)
∂2ξ

∂y2 + λ′′(z0)Θ
∂ξ

∂y

+

(
1
2

λ′′(z0)Θ2 + irωT1 exp(−iωT0)

)
+ σξ|ξ|2, ξ(τ, y + 2π) ≡ ξ(τ, y). (49)

In order to formulate the basic result of this section, we introduce one more notation.
Let εn(Θ0) > 0 stand for the sequence that tend to zero as n→ ∞, and the equality

Θ(εn(Θ0)) = Θ0

holds for all n.

Theorem 4. Let the conditions (29) and (31) be satisfied. Let Θ = Θ0, and let ξ(τ, y) be the
bounded solution of the boundary value problem (49) as τ → ∞, y ∈ [0, 2π]. Then for ε = εn(Θ0)
the function

u(t, x, ε) = ε
(
Eξ(τ, y) + E ξ(τ, y)

)
+ ε2(u20|ξ(τ, y)|2 + u21ξ2(τ, y)E2

+ u21ξ
2
(τ, y)E2

), τ = ε2t, y = x + 2εω1t

satisfies the boundary value problem (27), (28) to within O(ε3).

This statement means that in the considered infinite dimensional critical case, the local
dynamics of the initial boundary value problem (27), (28) for small ε is determined by the
nonlocal behavior of the quasinormal form (49) solutions.

We note that the dynamic properties of (49) may vary for different values of Θ. This
means that an infinite alteration of straight and reverse bifurcations can occur in the initial
boundary value problem (27), (28) as ε→ 0.

3.3. Quasinormal Forms for Fixed Value b 6= 0 and for Sufficiently Small ε

In this section, we first define the smallest positive value of the delay coefficient T̃
such that the zero equilibrium state in (27), (28) is asymptotically stable for T ∈ (0, T̃),
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but unstable for T > T̃. At the next stage, in the critical case of T ≈ T̃, we construct a
quasinormal form for the local dynamics study.

It is convenient to perform a change

x = y + bt (50)

in (27), (28). As a result, we obtain the boundary value problem with delay and deviation
of the spatial variable

∂u
∂t

= ε2 ∂2u
∂y2 − ru(t− T, y− bT)(1 + u), (51)

u(t, y + 2π) ≡ y(t, y). (52)

3.3.1. Linear Analysis

Here, we put
T = εT0 (53)

and show that there exists a value T0 such that for small ε the zero equilibrium state
in (51), (52) is asymptotically stable under the condition 0 < T < εT0, but unstable for
T > εT0.

Under the condition (53), we consider the characteristic equation for the linearized
boundary value problem (51), (52):

λ = −z2 − r exp(−εT0λ− ibT0z) (54)

where z = εk, k = 0,±1,±2, . . . . For small ε, it is natural to start the study with a simpler
equation (for εT0 = 0)

λ = −z2 − r exp(−ibT0z). (55)

Let λ(z0) = iω for some z = z0 and <λ(z) ≤ 0 for all z ∈ (−∞, ∞). Then,

−z2
0 = r cos(bT0z0), ω = r sin(bT0z0),

<λ′z(z0) = −2z0 + rbT0 sin(bT0z0) = 0.

Hence we obtain that for s = bT0z0

ω = r sin s, cos s = −
z2

0
r

, sin s =
2z0

rbT0
.

Therefore, tan s = − 2
s . Let s0 stand for the smallest positive root of this equation. Then

the equality

z0 = s0(bT0)
−1; z0 =

1
2

rbT0 sin s0 (56)

holds, which means

T0 = b−1
(

2s0(r sin s0)
−1
)1/2

, z0 = (−r cos s0)
1/2. (57)

Figure 2 shows the graphs of the functions w = z2 and w = −r cos(bT0z). It is shown
that these graphs have tangency at z = z0, i.e., <λ(z0) = <λ′(z0) = 0.
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z0
h

w

Figure 2. The dotted line is the graph of the function w = z2, the solid line is the graph of the function
w = −r cos(bT0z), andz0 is the point of contact.

At the next stage, we return to the consideration of the characteristic Equation (54).
We look for such a value of T(ε) to within O(ε) for which the root λ(z, ε) of this equation
(with the largest real part) satisfies the conditions λ(z0(ε), ε) = iω(ε), <λ(z, ε) ≤ 0 (∀z)

and < dλ(z,ε)
dz

∣∣∣∣
z=z0(ε)

= 0. Let T(ε) = T0 + εT1, ω(ε) = ω + εω01 + . . . , z0(ε) = z0 + εz1. We

write out the values T1, ω01, and z1. For this purpose, we introduce the 2× 2 matrix

B =

(
bT0r cos s0 − rz−1

0 sin s0 br sin s0
1− bT0(2z0)

−1r sin s0 −bz0

)
.

We assume (a1
a2
) = B−1( 0

T0ω). Then T1 = a2, ω01 = ra1 cos s0, z1 = (ra sin s0)(2z0)
−1.

Let Θ = Θ(ε) complement the expression z0ε−1 + z1 to an integer value. Under this
condition and for z = z0 + ε(z1 + Θ + m), we consider the asymptotics of all those roots
λ+

m(ε) (m = 0,±1,±2, . . .) of Equation (54), whose real parts tend to zero as ε→ 0.
We fix arbitrarily the value T2. Let

T = T0 + εT1 + ε2T2.

Lemma 8. The asymptotic equalities

λ+
m(ε) = iω + ελm1 + ε2λm2 + . . .

hold where

λm1 = λ′(z0)(z1 + Θ + m) = iω1(z1 + Θ + m),

λm2 = −d0(z1 + Θ + m)2 + d1(z1 + Θ + m) + d2,

d0 = 1− 1
2

rb2T2
0 exp(−ibT0z0), <d0 > 0,

d1 = i(bT1 + T0ω1), d2 = ir exp(ibT0z0)(bT2z0 + ωT1).

The set of corresponding to the roots λ+
m(ε) solutions of the linearized at zero boundary

value problem (27), (28) we write out in the form

v(t, x, ε) =
∞

∑
m=−∞

ξm exp
[
i
(
(z0 + εz1)ε

−1 + Θ + m
)

x + λ+
m(ε)t

]
= Eξ(τ, y) (58)

where τ = ε2t, and y = x + εω1t, ξm(τ) = ξm exp((λm2 + O(ε))τ) are the Fourier coeffi-
cients of the function ξ(τ, y).
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3.3.2. Nonlinear Analysis

In the case under consideration, the formal representation of the nonlinear boundary
value problem (27), (28) solutions is based on formula (58) for the linearized problem
solutions. Therefore, we introduce into consideration the asymptotic expression

u(t, x, ε) = ε
(
Eξ(τ, y) + E ξ(τ, y)

)
+ ε2u2 + ε3u3 + . . . (59)

to construct a quasinormal form.
As in Section 3.2.2, we obtain here

u2 = u20|ξ(τ, y)|2 + u21ξ2(τ, y)E2 + u21ξ
2
(τ, y)E2,

u3 = u30(τ, y) + u31(τ, y)E + cc + u32(τ, y)E2 + cc + u33(τ, y)E3 + cc.

Substituting (59) into (27) and performing standard operations, we obtain the equalities

u20 = −2 cos(bT0z0)|ξ(τ, y)|2,

u21 = r
[
2iω + 4z2

0 + r exp(−2ibT0z0)
]−1

ξ2(τ, y)

first. At the next step, we get the equation for u3. Expressions for u30, u32, and u33 are
simply defined, and the condition of solvability of the equation for u31 leads to the relations

∂ξ

∂τ
= d0

∂2ξ

∂y2 − i(2d0 + d1)(z1 + Θ)
∂ξ

∂y
+
(

d2 + d1(z1 + Θ)− d2(z1 + Θ)2
)

ξ + δξ|ξ|3, (60)

ξ(τ, y + 2π) ≡ ξ(τ, y). (61)

For the value δ the equality

δ = −ru20(1 + exp(−ibT0z0))− ru21(exp(−2ibT0z0) + exp(ibT0z0))

holds. The next statement follows from the above constructions.

Theorem 5. Let the parameters b 6= 0 and Θ0 be fixed, and the values z0 and T0 are defined. Let
ξ(τ, y) be the bounded for τ → ∞, y ∈ [0, 2π] solution of the boundary value problem (60), (61) as
Θ = Θ0. Then for ε = εn(Θ0) the function

u(t, x, ε) = ε
(
Eξ(τ, y) + E ξ(τ, y)

)
+ ε2

(
u20|ξ(τ, y)|2 + u21ξ2(τ, y)E2 + u21ξ

2
(τ, y)E2

)
satisfies the boundary value problem (27), (28) to within O(ε3) as τ = ε2t, y = x + εω1t.

Due to the parabolicity condition <d0 > 0, the boundary value problem (60), (61) is
the Ginzburg–Landau equation.

3.4. Quasinormal Form in the Case of Low Diffusion and Large Translation Coefficient

This case is simpler than the one discussed in the previous section.
Let b� 1, i.e., the parameter µ = b−1 satisfies the condition

0 < µ� 1.

In this case, the threshold value of the parameter T is determined by the condition

T = εµT0. (62)

This means that it is an order of magnitude less than in (53). Then, the characteristic
equation has the form

λ = −z2 − r exp[−εµT0λ− iT0z]. (63)
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The equation of first approximation

λ = −z2 − r exp[−iT0z]

defines the behavior of the roots (63) with higher precision (compared to (54)) near the
imaginary axis. The formulas (56) and (57) in which the parameter b should be replaced by 1
are correct. The resulting quasinormal form coincides with (60), (61) for b = 1, T1 = z1 = 0.

3.5. On Dynamics of Delay Logistic Equation with Small Diffusion and Classical Boundary
Conditions of General Form

We consider the problem of the local dynamics of the delay logistic equation with
small coefficients of diffusion and advection

∂u
∂t

= ε2 ∂2u
∂x2 + ε2b

∂u
∂x
− ru(t− T, x)[1 + u], x ∈ [0, 1] (64)

with the boundary conditions

∂u
∂x

∣∣∣∣
x=0

= γ1u
∣∣∣∣
x=0

,
∂u
∂x

∣∣∣∣
x=1

= γ2u
∣∣∣∣
x=1

. (65)

All coefficients in (64), (65) are real, r > 0, T > 0, and ε is a small positive parameter:

0 < ε� 1. (66)

The construction of the characteristic equation for the linearized at zero boundary
value problem

∂v
∂t

= ε2 ∂2v
∂x2 + ε2b

∂v
∂x
− rv(t− 1, x), (67)

∂v
∂x

∣∣∣∣
x=0

= γ1v
∣∣∣∣
x=0

,
∂v
∂x

∣∣∣∣
x=1

= γ2v
∣∣∣∣
x=1

(68)

is related to the eigenvalues of the stationary boundary value problem

d2 ϕ

dx2 + b
dϕ

dx
= µϕ, ϕ′(0) = γ1 ϕ(0), ϕ′(1) = γ2 ϕ(1). (69)

All eigenvalues µj (j = 0, 1, . . .) of this boundary value problem are real and can be
arranged in descending order. The corresponding to µj eigenfunctions ϕj(x) are also real.
We note that they form a complete set in the corresponding space.

We consider the question of the roots of the quasipolynomial

λ + r exp(−λT) = ε2µj (70)

for each number j. Here are some standard statements.

Lemma 9. Let 0 < r < π
2 . Then, for all sufficiently small ε, the real parts of Equation (70) roots

are negative and separated from zero as ε→ 0.

Lemma 10. Let r > π
2 . Then, for all sufficiently small ε, Equation (70) has a root with positive

and separated from zero real part as ε→ 0.

Lemma 11. Equation (70) has a pair of complex roots λ±j (ε)
(

λ−j (ε) = λ
+
j (ε)

)
for each j =

0, 1, 2, . . . and

λ+
j (ε) = iπ(2T)−1 + ε2λj1 + . . . , λj1 = T−1

(
1− i

π

2
µj

)
.
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All other roots of this equation have negative real parts and are separated from zero as ε→ 0.

Below we assume that the equality

r =
π

2
+ ε2r1 (71)

holds for an arbitrarily fixed value r1.
The linear boundary value problem (67), (68) has a set of solutions

v =

(
∞

∑
j=0

cj ϕj(x) exp
(
(λj1 + o(ε))τ

))
exp

(
iπ(2T)−1t

)
= ξ(τ, x) exp

(
iπ(2T)−1t

)
where cj are arbitrary, and the Fourier coefficients cj(τ, x) of the function ξ(τ, x) have the
form cj(τ, x) = cj exp

(
(λj1 + o(ε))τ

)
.

Based on this representation of ‘critical’ solutions of the linear problem (67), (68), we
look for the nonlinear boundary value problem (64), (65) solutions in the form

u = ε
(

ξ(τ, x) exp
(

iπ(2T)−1t
)
+ cc

)
+ ε2u2(t, τ, x) + . . . . (72)

Here and below, let cc stand for the expression that is a complex conjugate to the previous
term. The unknown function ξ(τ, x) is sufficiently smooth and satisfies the boundary
conditions (65). The dependence on the argument t on the right-hand side of (72) is
4T–periodic.

We substitute expression (72) into (64) and collect the coefficients at the same powers
of ε. We obtain the correct equality for the first degree of ε. At the next step, we obtain the
equation

∂u2

∂t
= −ru2(t− T, x)− r exp

(
−i

π

2

)
ξ2(τ, x) exp

(
iπT−1t

)
+ cc

for u2. From this we find that

u2 = u20ξ2 exp
(

iπT−1t
)

, u20 = ir
[
iπT−1 − r

]−1
. (73)

However, the boundary conditions (65) for the function u2, generally speaking, are
not satisfied. In order to satisfy these boundary conditions for the terms of ε2 order, we
look for the expression for ε3 in (72) in the form

u3 = u3(t, τ, x) + w31(t, τ, y1) + w32(t, τ, y2) (74)

where y1 = xε−1, y2 = (1 − x)ε−1. All functions are 4T–periodic with respect to the
variable t, and each of the functions w31 and w32 is exponentially decreasing with respect
to its third argument: for some p0 > 0 and c0 > 0 the evaluations∣∣w3j(t, τ, yj)

∣∣ ≤ c0 exp(−p0yj), (j = 1, 2) (75)

are satisfied. We substitute

u = ε
(

ξ exp
(

iπ(2T)−1t
)
+ cc

)
+ ε2u2 + ε3(u3 + w31 + w32) (76)

into (64), (65). Then, we obtain the relations

∂u2

∂x

∣∣∣∣
x=0

+
∂w31

∂y1

∣∣∣∣
y1=0

= γ1u2

∣∣∣∣
x=0

,
∂u2

∂x

∣∣∣∣
x=1

+
∂w32

∂y2

∣∣∣∣
y2=0

= γ2u2

∣∣∣∣
x=1

(77)
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for the degree ε2 in the boundary conditions (65). Taking into account equality (73) here,
we find that

∂w31

∂y1

∣∣∣∣
y1=0

= u20 exp
(

iπT−1t
)[

γ1ξ2
∣∣∣∣
x=0
− 2ξ

∣∣∣∣
x=0

∂ξ

∂x

∣∣∣∣
x=0

]
+ cc, (78)

∂w32

∂y2

∣∣∣∣
y2=0

= u20 exp
(

iπT−1t
)[

γ2ξ2
∣∣∣∣
x=1
− 2ξ

∣∣∣∣
x=1

∂ξ

∂x

∣∣∣∣
x=1

]
+ cc. (79)

We take one more step. We write down the relation for the coefficients of ε3 that is
obtained after substituting (74) into (64):

∂u3

∂t
+

∂w31

∂t
+

∂w32

∂t
+ r(u3(t− 1, x) + w31(t− 1, τ, y1) + w32(t− 1, τ, y2))

= B1 exp
(

iπ(2T)−1t
)
+ cc + B3 exp

(
3iπ(2T)−1t

)
+ cc. (80)

Here the following notation is adopted:

B1 = −(1− ir)
∂ξ

∂τ
+

∂2ξ

∂x2 + b
∂ξ

∂x
+ ir1ξ + r(1− i)u20ξ|ξ|2,

B3 = r(1 + i)u20ξ3.

It is natural to look for the functions appearing in (80) in the form

u3 = u31 exp
(

iπ(2T)−1t
)
+ cc + u33 exp

(
3iπ(2T)−1t

)
+ cc, (81)

w31 = w◦31 exp
(

2iπ(2T)−1t
)
+ cc, (82)

w32 = w◦32 exp
(

2iπ(2T)−1t
)
+ cc. (83)

Then, from the Equation (80) we arrive at the system of four equations

B1 = 0, (84)[
3iπ(2T)−1 + r exp

(
−3iπ(2T)−1

)]
u33 = B3, (85)

[
iπT−1 + r exp

(
−iπT−1

)]
w◦3j +

∂2w◦31
∂y2

j
= 0, (j = 1, 2). (86)

We conclude from (81) that

∂ξ

∂τ
= (1− ir)−1

[
∂2ξ

∂x2 + b
∂ξ

∂x
+ ir1ξ + σ0ξ|ξ|2

]
, (87)

∂ξ

∂x

∣∣∣∣
x=0

= γ1ξ

∣∣∣∣
x=0

,
∂ξ

∂x

∣∣∣∣
x=1

= γ2ξ

∣∣∣∣
x=1

. (88)

We obtain from (82) that
u33 = Cξ3 (89)

and
C =

[
3iπ(2T)−1 + r exp

(
−3iπ(2T)−1

)]−1
· r(1 + i)u20. (90)

From (83) and conditions (75), (78), (79) we obtain that

w◦3j = Cj exp(δ0yj), (j = 1, 2), (91)
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C1 = u20

[
γ1ξ2

∣∣∣∣
x=0
− 2ξ

∣∣∣∣
x=0

∂ξ

∂x x=0

]
, (92)

C2 = u20

[
γ1ξ2

∣∣∣∣
x=1
− 2ξ

∣∣∣∣
x=1

∂ξ

∂x x=1

]
. (93)

We denote by δ0 one of
(
iπT−1 + r exp

(
−iπT−1))1/2 roots, whose real part is negative.

We summarize with the following statement.

Theorem 6. Let the condition (71) be satisfied, and let ξ(τ, x) be a bounded for τ → ∞, x ∈ [0, 1]
solution of the boundary value problem (87), (88). Let τ = ε2t, y1 = xε−1, y2 = (1− x)ε−1, and
the function u2 is defined in (73), the function u3 is defined in (81)–(83) and in (90)–(93). Then,
the function (76) satisfies Equation (64) to within O(ε4), and satisfies the boundary conditions (65)
to within O(ε3).

We make one remark. The algorithm presented here for constructing the asymptotics
of the boundary value problem (64), (65) solution can be continued indefinitely.

4. About Infinite-Dimensional Bifurcations in the Case of Large Delay and Dirichlet
Boundary Conditions

We note that the zero solution of the boundary value problem (1), (2) is unstable
for sufficiently large values of the delay parameter T. However, the relaxation cycle is
stable [15] in this case. Its asymptotic behavior is given in [15].

The local behavior of the (1), (2) solutions under other classical boundary conditions
is determined by the roots of its characteristic equation for the linearized at zero boundary
value problem. Some results for such cases are presented in [25].

4.1. Case of b = 0

First, we dwell on the simplest case of b = 0. We replace u by u− 1 and consider
Equation (1) with the Dirichlet boundary conditions

∂u
∂t

= d
∂2u
∂x2 − ru(t− T, x)[1 + u], u(t, 0) = u(t, 1) = 0. (94)

Its characteristic equation coincides with (10) but the values of the integers k are only the
following: k = 1, 2, . . . :

λ = −dπ2k2 − r exp(−λT).

We analyse its roots. The roots of this equation have negative real parts for T > 0 as
0 < r < d. Let the condition r = r0 be satisfied where

r0 = dπ2.

The basic assumption of this section is that T � 1, i.e.,

ε = T−1, 0 < ε� 1. (95)

The dynamics of the solutions of the delay equations under the condition T � 1 was
studied in [26,27].

It is convenient to make the substitution t = Tt1 in (94). Consequently, we obtain the
singularly perturbed boundary value problem:

ε
∂u
∂t

= d
∂2u
∂x2 − ru(t− 1, x)[1 + u], u(t, 0) = u(t, 1) = 0. (96)
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Here, we omit the index 1 for t1, and the characteristic equation for the boundary value
problem (96), which is linearized on u0 ≡ 1 takes the form

ελ = −dπ2k2 − r exp(−λ). (97)

We investigate the behavior of the boundary value problem (96) solutions in the zero
equilibrium neighborhood under the condition (95) as

r = r0 + ε2r1 (98)

where r1 is arbitrarily fixed.
The next statement shows that the critical case of infinite dimension is realized in the

boundary value problem (96).

Lemma 12. Under the conditions (95), (98), the characteristic Equation (97) has no roots with positive
and separated from zero real part but has infinitely many roots λ±m(ε)

(
λ−m(ε) = λ

+
m(ε)

)
m = 0,

±1,±2, . . . which tend to the imaginary axis for each m as ε→ 0, and the asymptotic equalities

λ+
m(ε) = iπ(2m + 1) + ελm1 + ε2λm2 + . . . ,

λm1 = −id−1π(2m + 1),

λm2 = −d−2π2(2m + 1)2 + id−2π(2m + 1) + r1

hold.

We note that the solutions of (94) are unstable for r > dπ2 and for sufficiently large T.
The solution of the linearized equation

vm(t, x, ε) = sin πx · exp(λm(ε)t)

corresponds to the root λ+
m(ε). The set of the solutions v(t, x, ε) =

∞
∑

m=−∞
ξmvm(t, x, ε) can

be represented as
v(t, x, ε) = sin πx · ξ(τ, y).

Here τ = ε2t, y = (1− ε(dr0)
−1)t, the function ξ(τ, y) is 1–antiperiodic with respect to

y: ξ(τ, y + 1) ≡ −ξ(τ, y). Its Fourier coefficients with respect to the variable y satisfy the
formula

ξm(τ) = ξm exp((λm2 + o(ε))τ).

According to the technique from the previous sections, we seek the solutions of the
nonlinear boundary value problem (97) in the neighborhood of u0 ≡ 0 in the form

u(t, x, ε) = ε
1
2 sin πx · ξ(τ, y) + εu2(τ, x, y) + ε

5
2 u3(τ, x, y) + . . . . (99)

For the sequential finding of the elements of the formal series (99), we substitute (99)
into (96) and perform standard actions.

First, we obtain the equation

d
∂2u2

∂x2 − dπ2u2 = dπ2ξ2(τ, y) sin2 πx, u2|x=0 = u2|x=1 = 0

for u2. It follows that

u2(τ, x, y) = dπ2ξ2(τ, y)p(x),

p(x) =

[
−1

2
+

1
10

cos 2πx +
2
5

coth πx− 2
5
(1− coth π)(sinh π)−1

]
.
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At the next step, we obtain the boundary value problem

d
∂2u3

∂x2 − dπ2u3 =

[
∂ξ

∂τ
− r1ξ

− 1
2d2

∂2ξ

∂y2 − dp(x)ξ2 ∂ξ

∂y

]
sin2 πx, u3|x=0 = u3|x=1 = 0 (100)

for u3. For the existence of this boundary value problem solution, it is necessary and
sufficient that

∂ξ

∂τ
=
(

2d2
)−1 ∂2ξ

∂y2 + r1ξ + γξ2 ∂ξ

∂y
, ξ(τ, y + 1) ≡ −ξ(τ, y) (101)

where γ = d
1∫

0
p(x) sin2 πxdx. We do not present an explicit formula for γ due to its

inconvenience. We only note that γ < 0. Hence the statement follows.

Theorem 7. Let the conditions (95), (98) be satisfied and the boundary value problem (101) has the
bounded for τ → ∞, y ∈ [0, 2] solution ξ(τ, y). Then for τ = ε2t, y = (1− εd−1)t the function

u(t, x, ε) = ε
1
2 ξ(τ, y) sin πx + εξ2(τ, y)p(x)

satisfies the boundary value problem (96) to within O(ε2).

Thus, the boundary value problem (101) is a quasinormal form for the boundary value
problem (96). In contrast to the previously presented quasinormal forms, its coefficients
here are real.

4.2. Case of b 6= 0

After the replacement (95) in the boundary value problem

∂u
∂t

= d
∂2u
∂x2 + b

∂u
∂x

= ru(t− T, x)[1 + u], u(t, 0) = u(t, 1) = 0

we obtain the following boundary value problem

ε
∂u
∂t

= d
∂2u
∂x2 + b

∂u
∂x
− ru(t− 1, x)[1 + u], u(t, 0) = u(t, 1) = 0. (102)

To obtain the characteristic equation, we first linearize this boundary value problem at
zero and then set u = v exp λt. Then we obtain the equation

d
d2v
dx2 + b

dv
dx
− (ελ + r exp(−λ))v = 0 (103)

with the boundary conditions
v(0) = v(1) = 0. (104)

After the replacement

v = exp
(
− b

2
x
)

W

in (103) we obtain the equation with the Dirichlet boundary conditions

d
d2W
dx2 −

[
b2(4d)−1 + ελ + r exp(−λ)

]
W = 0, W(0) = W(1) = 0.
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Hence, we conclude that

ελ + r exp(−λ) = −π2dk2 − b2(4d)−1, k = 1, 2, . . . . (105)

Now we formulate an assertion about the roots of this equation.

Lemma 13. Under the condition 0 < r < dπ2 + b2(4d)−1 and for sufficiently small ε, the roots
of (105) have negative and separated from zero real parts as ε → 0. If r > dπ2 + b2(4d)−1 then
Equation (105) has a root with a positive real part separated from zero as ε→ 0.

The critical case is realized for r = r0 where

r0 = dπ2 + b2(4d)−1.

Under this condition and (98), infinitely many roots λ±m(ε) in (103) tend to the imaginary
axis as ε→ 0, and the asymptotic equalities

λ+
m(ε) = iπ(2m + 1) + ελm1 + ε2λm2 + . . .

hold. Here m = 0,±1,±2, . . . ,

λm1 = −π(2m + 1)ir−1
0 ,

λm2 = −π2(2m + 1)2(2r0)
−1 − iπ(2m + 1)(r2

0)
−1 + r1r−1

0 .

The root λ+
m(ε) corresponds to the solution of the linearized equation

vm(t, x, ε) = sin(πx) · exp
(
− b

2d
x
)

exp(λm(ε)t).

Repeating the scheme from Section 4.1, we consider the formal series

u(t, x, ε) = ε
1
2 sin(πx) exp

(
− b

2d
x
)

ξ(τ, y) + εu2(τ, x, y) + ε
5
2 u3(τ, x, y) + . . . (106)

where τ = ε2t, y =
(
1− ε(dr0)

−1)t. The function ξ(τ, y) is 1–antiperiodic with respect to y:

ξ(τ, y + 1) ≡ −ξ(τ, y). (107)

The functions u2,3(τ, x, y) are periodic with respect to x and y. We substitute (106) into (102).
Performing standard actions, we obtain the boundary value problem

d
∂2u2

∂x2
+ b

∂u2

∂x
+ r0u2 = r0ξ2(τ, y) sin2 πx · exp

(
− b

d
x
)

, (108)

u2(τ, 0, y) = u2(τ, 1, y) = 0 (109)

for u2. For simplicity, we assume that 4dr0 6= b. It follows that the equation dλ2 + bλ + r0 = 0
has simple roots λ1 and λ2. From (108), (109) we obtain that

u2(τ, x, y) = r0ξ2(τ, y)P(x)

where

P(x) = (exp λ1 − exp λ2)
−1

x∫
0

K(x− s) sin2 πs · exp
(
− b

d
s
)

ds,

K(x) = (λ1 − λ2)
−1(exp(λ1x)− exp(λ2x)).
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At the next step, we obtain the boundary value problem

d
∂2u3

∂x2 + b
∂u3

∂x
− r0u3 =

[
(1 + r0)

∂ξ

∂τ
− 1

2
(dr0)

−2 ∂2ξ

∂y2 − r1ξ+

+ dp(x)ξ2 ∂ξ

∂y

]
sin πx · exp

(
− b

2d
x
)

, u3|x=0 = u3|x=1 = 0

to find u3.
The equality to zero of the integral with respect to x from 0 to 1 from the right-hand

side is the condition for the existence of a solution of this boundary value problem with
respect to u3. Hence, we conclude that the function ξ(τ, y) is a solution of the boundary
value problem

(1 + r0)
∂ξ

∂τ
=

1
2
(dr0)

−2 ∂2ξ

∂y2 + r1ξ + γ0ξ2 ∂ξ

∂y
, ξ(τ, y + 1) ≡ −ξ(τ, y)

where γ0 = d
1∫

0
p(x) sin2 πx dx. Theorem 7 holds for this boundary value problem.

4.3. Extending the Results to Other Boundary Conditions

As an example, we consider the boundary value problem

ε
∂u
∂t

= d
∂2u
∂x2 + b

∂u
∂x
− ru(t− 1, x)[1 + u] (110)

with the boundary conditions

∂u
∂x

∣∣∣∣
x=0

= γ1u
∣∣∣∣
x=0

,
∂u
∂x

∣∣∣∣
x=1

= γ2u
∣∣∣∣
x=1

. (111)

Here all the coefficients are real. We agree to assume that the notation γ1 = ∞ corresponds
to the boundary condition u|x=0 = 0, and the notation γ2 = ∞ corresponds to the condition
u|x=1 = 0.

We note that the eigenvalues δj (j = 0, 1, . . .) of the linear boundary value problem

d
∂2u
∂x2 + b

∂u
∂x

= δu (112)

with the boundary conditions (111) are real. They can be numbered in descending order
δ0 > δ1 > δ2 > . . . , and the eigenvalue δ0 corresponds to the eigenfunction ϕ0(x), which is
positive on the interval (0, 1).

Let r = r0 + ε2r1 in (110). We consider the equation

ελ + (r0 + εr1) exp(−λ) = δ0. (113)

Here are some simple statements.

Lemma 14. Let 0 < r0 < |δ0|. Then, for all sufficiently small ε, Equation (113) roots have negative
real parts separated from zero as ε→ 0.

Lemma 15. Let r0 > |δ0|. Then, for all sufficiently small ε, Equation (113) has a root with a
positive real part separated from zero as ε→ 0.

The behavior of the roots of (113) in the critical case is described by the following statement.
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Lemma 16. Let r0 = |δ0|. Then Equation (113) has no roots with positive and separated from
zero real parts as ε → 0, but has infinitely many roots λ±m(ε)

(
m = 0, 1, . . . , λ+(ε) = λ

−
m (ε)

)
for which the following asymptotic equalities hold:

1◦. For δ0 > 0 (114)

λ+
m(ε) = i2πm + ελm1 + ε2λm2 + . . . ,

λm1 = 2πimδ−1
0 , λm2 =

(
−2π2m2 + 2πim

)
δ−2

0 + r1

∣∣∣δ−1
0

∣∣∣.
2◦. For δ0 < 0 (115)

λ+
m(ε) = iπ(2m + 1) + ελm1 + ε2λm2 + . . . ,

λm1 = −iπ(2m + 1)|δ0|−1,

λm2 =

(
−1

2
π2(2m + 1)2 − iπ(2m + 1)

)
δ−2

0 + r1

∣∣∣δ−1
0

∣∣∣.
The construction of quasinormal forms in each of the cases (114) and (115) is based on

the formal asymptotic equality

u = εξ(τ, y)ϕ0(x) + ε3u3(τ, x, y) + . . . (116)

where τ = ε2t, y =
(

1 + εδ−1
0

)
t. The function ξ(τ, y) is 1–periodic with respect to y in the

case of (114), and is 1–antiperiodic with respect to y in the case of (115). The functions u3
are 1–periodic with respect to y in the case of (114). The function u3 is 1–antiperiodic with
respect to y in the case of (115).

We introduce several notations before formulating the resulting statements. Let ψ0(x)
stand for the solution of the conjugate to Equation (112)

d
∂2v
∂x2 − b

∂v
∂x

= δ0v

for δ = δ0 with the boundary conditions

∂v
∂x

∣∣∣∣
x=0

= (γ1 + b)v
∣∣∣∣
x=0

,
∂v
∂x

∣∣∣∣
x=1

= (γ2 + b)v
∣∣∣∣
x=1

.

Let the normalization requirement

1∫
0

ϕ0(x)ψ0(x)dx = 1

holds. We note that the satisfaction of the equality

1∫
0

p(x)ψ0(x)dx = 0

is the condition for the existence of the boundary value problem

d
∂2 ϕ

∂x2 + b
∂ϕ

∂x
− δ0 ϕ = p(x),

∂ϕ

∂x

∣∣∣∣
x=0

= γ1 ϕ

∣∣∣∣
x=0

,
∂ϕ

∂x

∣∣∣∣
x=1

= γ2 ϕ

∣∣∣∣
x=1

solution. Let K(p(x)) stand for this solution. An explicit formula for this expression is not
given here.
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We put σ01 =
1∫

0
ϕ2

0(x)ψ0(x)ds, σ02 =
1∫

0
ϕ3

0(x)ψ0(x)dx.

Theorem 8. Let the condition (114) be satisfied and let ξ(τ, y) be the bounded solution of the
boundary value problem

∂ξ

∂τ
=
(

2δ2
0

)−1 ∂2ξ

∂y2 + (δ0)
−2 ∂ξ

∂y
+ r1δ−1

0 ξ + σ01ξ2, (117)

ξ(τ, y + 1) ≡ ξ(τ, y) (118)

as τ → ∞, y ∈ [0, 1]. Then the function

u(t, x, ε) = ε2ξ(τ, y)ϕ0(x) + ε4K
((

∂ξ

∂τ
−
(

2δ2
0

)−1 ∂2ξ

∂y2 − r1δ−1
0 ξ

)
ϕ0(x)− σ01ξ2 ϕ2

0(x)
)

satisfies the boundary value problem (110), (111) to within O(ε5).

The dynamic properties of the boundary value problem (117), (118) are rather simple:
as τ → ∞, its solutions tend to one of the equilibrium states ξ0 ≡ 0 or ξ0 ≡ −r1(δ0σ01)

−1

or have an infinite limit.
The case of δ0 < 0 is more interesting. Here, let f0(x) stand for the (unique) solution

of the boundary value problem

d
∂2 f
∂x2 + b

∂ f
∂x

+ δ0 f = ϕ2
0(x),

∂ f
∂x

∣∣∣∣
x=0

= γ1 f
∣∣∣∣
x=0

,
∂ f
∂x

∣∣∣∣
x=1

= γ2 f
∣∣∣∣
x=1

.

Theorem 9. Let δ0 < 0 and let the function ξ(τ, y) be the bounded solution of the boundary
value problem

∂ξ

∂τ
=
(

2δ2
0

)−1 ∂2ξ

∂y2 + δ−2
0

∂ξ

∂y
+ r1δ−1

0 ξ + δ−1
0 σ02 · ξ2 ∂ξ

∂y
, (119)

ξ(τ, y + 1) ≡ −ξ(τ, y) (120)

as τ → ∞, y ∈ [0, 2]. Then the function u(t, x, ε) = ε
1
2 ξ(τ, y)ϕ0(x)− εδ0ξ2 f0(x) satisfies the

boundary value problem (110), (111) to within O
(

ε
5
2

)
.

The boundary value problem (112), (111) is self-adjoint (see, for example, [28]). The
situation can be much more complicated for not self-adjoint boundary value problems. We
briefly demonstrate it with one example.

We consider the question of local dynamics of the boundary value problem with
cubic nonlinearity

ε
∂u
∂t

= d
∂2u
∂x2 + b

∂u
∂x
− ru(t− 1, x)[1 + u2], (121)

u(t, x + 1) ≡ −u(t, x). (122)

The characteristic equation for the boundary value problem linearized at zero has
the form

ελ + r exp(−λ) = −dk2 + ibk (123)

where k takes all odd values k = (2m + 1), m = 0,±1,±2, . . . .
For k = 1 we obtain the equation

ελ + r exp(−λ) = −d + ib. (124)

We formulate several simple statements.
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Lemma 17. Let 0 < r < d.Then, for sufficiently small ε, the roots of Equations (124) and (123)
have negative real parts separated from zero as ε→ 0.

Lemma 18. Let r > d. Then, for sufficiently small ε, Equations (124) and (123) have a root with
positive real part separated from zero as ε→ 0.

Lemma 19. Let
r = d + ε2r1. (125)

Then Equation (124) has no root with positive real part separated from zero as ε → 0, but has
infinitely many roots

λ±m(ε)
(

λ−m(ε) = λ
+
m(ε), m = 0,±1,±2, . . .

)
whose real parts tend to zero as ε→ 0. For each m the asymptotic equalities

λ+
m(ε) = i

(
bε−1 + Θ + π(2m + 1)

)
+ ελm1 + ε2λm2 + . . .

hold where m = 0,±1,±2, . . .. Θ = Θ(ε) ∈ [0, 2π) complements the expression bε−1 to an
integer multiple of 2π.

λm1 = −i(Θ + π(2m + 1)),

λm2 = −1
2
(Θ + π(2m + 1))2 + i(Θ + π(2m + 1)) + r1d−1.

According to the above technique, we look for the asymptotics of the nonlinear
boundary value problem (121), (122) solutions in the form

u = ε
(

ξ(τ, y) sin πx · exp
[
i
(

bε−1 + Θ− εΘ
)

t
]
+

+ ξ(τ, y) sin πx · exp
(
−i
(

bε−1 + Θ− εΘ
)

t
))

+

+ ε2u2(t, τ, x, y) + ε3u3(t, τ, x, y) + . . . (126)

where τ = ε2t, y = (1− ε)t, and the functions uj(t, τ, x, y) are periodic with respect to t, x,
and y. We substitute (126) into (121) and perform standard actions to find the amplitude
ξ(τ, y). We obtain the boundary value problem

∂ξ

∂τ
=

1
2

∂2ξ

∂y2 +
∂ξ

∂y
(1− iΘ) + ξ

[
−1

2
Θ2 + iΘ

]
− 3

2
dξ|ξ|2, (127)

ξ(τ, y + 1) ≡ −ξ(τ, y). (128)

This boundary value problem plays the role of a normal form for (121), (122). Thus,
the leading terms of the asymptotics of the solutions of (121), (122) with small enough
initial conditions with respect to the norm (in the space C[−1,0] ×W2

2 [0,1]) are reconstructed
from its solutions with the help of the formula (126).

Remark 2. In Sections 4.1 and 4.2, the ‘critical’ values of the parameter r are determined by the
equality r = |δ0|. In this section, the role of the eigenvalue δ0 is played by the quantity δ0 = −d+ ib.
Here, the critical value of the parameter r is determined by the equality r = |<δ0| = d. If in
Sections 4.1 and 4.2 the solutions of the initial boundary value problem (110), (111) are formed
according to the formula (116) at relatively low frequencies, then in this section the corresponding
frequencies are relatively large of the order of bε−1.
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We note also that if we have the periodicity condition instead of antiperiodic boundary
conditions, then δ0 = 0. Therefore, for each r > 0, the solutions of (110) are unstable for
small ε.

5. Conclusions

The bifurcation problems for the delay logistic equation with diffusion and advection
are considered. The most important results relate to the cases of singular perturbations
when either the diffusion coefficient is small enough, the translation coefficient is large
enough, or the delay coefficient is large enough. A distinctive feature of these situations is
that the critical cases in the problem of the stability of the equilibrium state have infinite di-
mension. This leads to the fact that the constructed quasinormal forms (infinite-dimensional
analogs of classical normal forms) are the distributed equations with an infinite-dimensional
phase space.

For example, in a problem with a large translation coefficient, such equations are
the equations with diffusion and with deviation of the spatial variable. In the problems
with small diffusion or in problems with large delay, they are parabolic equations of the
Ginzburg–Landau type.

The algorithm for constructing the asymptotics of solutions developed is related to the
algorithm for the quasinormal form construction. It is possible to pose a question of finding
exact solutions of the initial boundary value problem that have the pointed asymptotics. If
the quasinormal form has a periodic with respect to τ solution and certain conditions like
nondegeneracy type are satisfied, we can justify the result about the existence of an exact
almost periodic solution with the constructed asymptotics and answer the question of its
stability.

The threshold values T0 of the delay coefficient at which the bifurcation phenomena
occur are found. In the case when the translation coefficient is b� 1, this threshold value
is of the order T0 = O(b−1), i.e., the bifurcations occur even at small values of the delay.

The cases of a small diffusion coefficient are considered. Table 1 illustrates the changes
of the T0 values depending on the coefficient b. We consider the diffusion coefficient is
equal to ε2 (0 < ε� 1).

Table 1. The dependence of the value of T0 on the parameter b.

No. The Change Order of the Value of b Order Magnitude T0

1 b ≈ ε2 T0 = π
2r + O(E)

2 b ≈ ε T0 < π
r

3 b ≈ Const T0 = O(ε)
4 b� 1 T0 � ε

Thus, as the coefficient b increases, the values of T0 decrease. Moreover, we can conclude
that the parameter b increase leads to a complication of the problem dynamic properties.

It is important to note that if b ≈ ε2, then bifurcations occur on small modes of the
order of 1. In other cases they occur on asymptotically large modes of the order of ε−1.

There is the parameter Θ in many quasinormal forms that infinitely many times runs
through all values from 0 to 1 as ε→ 0. The sequences εn → 0 are eliminated on which the
coefficient Θ does not change. An unlimited process of straight and reverse bifurcations
alternation can occur [29] as ε→ 0.

In the infinite-dimensional critical case, the quasinormal form of parabolic type is
constructed for the Dirichlet boundary conditions in the case of a large delay.

Because the quasinormal forms are complex evolutionary equations of the Ginzburg–
Landau type, we can formulate a general conclusion that complex dynamic behavior is
typical for the infinite-dimensional bifurcation problems under consideration [30]. For
example, irregular dynamic processes and multistability phenomena can be observed.
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The solutions of quasinormal forms allow one to determine the leading terms of
asymptotic expansions of the initial boundary value problem solutions. Among them,
one can differ the situations when these expansions contain rapidly and slowly oscillating
components with respect to spatial and time variables.

The influence of various boundary conditions on the dynamic properties of the initial
problem is illustrated.
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