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Abstract: We analyze a set of explicit Runge–Kutta pairs of orders six and five that share no extra
properties, e.g., long intervals of periodicity or vanishing phase-lag etc. This family of pairs provides
five parameters from which one can freely pick. Here, we use a Neural Network-like approach where
these coefficients are trained on a couple of model periodic problems. The aim of this training is to
produce a pair that furnishes best results after using certain intervals and tolerance. Then we see that
this pair performs very well on a wide range of problems with periodic solutions.
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1. Introduction

The Initial Value problem (IVP) is

y′ = f (x, y), y(x0) = y0 (1)

with x0 a real number, y′, y ∈ Rm and f : R×Rm → Rm.
Runge–Kutta (RK) pairs are the most widely used numerical schemes for tackling

problems (1). Their coefficients are usually tabulated with Butcher tableaus [1,2], given
as follows.

c A
b
b̂

with b̂T , c, bT ∈ Rs and A ∈ Rs×s. The tableau above indicates that the method shares s
stages and A is a strictly lower triangular matrix. These stages are computed explicitly.
RK pairs produce two approximations for y(xn+1) in the point xn+1 = xn + hn after
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advancing each time from available data (xn, yn). These approximations yn+1 and ŷn+1 are
computed by

yn+1 = yn + hn

s

∑
j=1

bj f j

and

ŷn+1 = yn + hn

s

∑
j=1

b̂j f j

where

f j = f (xn + cjhn, yn + hn

j−1

∑
i=1

aji fi),

for j = 1, 2, · · ·, s. The two estimations of the true solution, namely ŷn+1 and yn+1 share
algebraic orders ql and qh > ql , respectively. Then we may have an estimation of the local
error as

εn = hqh−ql+1
n · ‖ŷn+1 − yn+1‖. (2)

Then we artificially force en = O(hqh), i.e., the same as the global error of the higher-
order formula (here qh = 6). Additionally, we expressed no reliability issues, e.g., tolerance
proportionality is attained. Estimate (2) here reduces to εn = ‖ŷn+1 − yn+1‖, which is
computed in every step and is used for guessing the next step size forward using the
formula [3]

hn+1 = 0.9 · hn ·
(

t
εn

)1/qh

, (3)

with tolerance t a low positive number set by the user. In case εn > t, we do not allow the
solution to be advanced. Then, we again use (3) but now we set hn+1 as a new value of the
current step hn. These pairs are named RKqh(ql) as an abbreviation.

Runge–Kutta procedures were first introduced in the late 19th century [4,5]. RK pairs
were introduced about 60 years ago. Erwin Fehlberg issued the first well-known pairs of
orders 8(7), 6(5) and 5(4), refs. [6,7]. Dormand and Prince continued in the early 1980s [8,9].

RK pairs are well-suited to efficiently solve any non-stiff problem of the type (1).
The precision of demand explains the wide range of pairings. As a result, the lower the
accuracy of demand, the more efficient the lowest RK pairings. A high-order pair, on the
other hand, should be chosen for demanding accuracies at quadruple precision.

In this work, we concentrate on RK6(5) pairings, which are chosen for intermediate
to high accuracies. Problems (1) with periodic/oscillatory solutions interest us here. As a
result, we shall offer a specific RK6(5) pair for dealing with such problems.

2. Theory of Runge–Kutta Pairs of Orders 6(5)

A Runge–Kutta method applied to a system of differential equations of the type (1) is
said to be of algebraic order q if and only if

X(τ) = 0 ∀τ ∈ Ti, for i = 1, 2, · · · , q (4)

where Ti is the set of i-th order rooted trees and

X(τ) =
1

σ(τ)

(
Φ(τ)− 1

γ(τ)

)
.

σ, γ are integral functions of τ (symmetry and density function respectively, in the ter-
minology introduced by Butcher [2]) and Φ is a certain composition of A, b, c. In the
following, the symbol T(i) denotes a vector with all the elements of the set X(Ti) in some
arbitrary order.

In the case of a 6(5) pair, Equation (4) is expanded in 37 nonlinear algebraic equations
that must be satisfied by its higher-order method and 17 equations by its lower-order
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method [2]. Meanwhile, we mention that all methods of order higher than five that have
been constructed so far, as well as those that we consider in this article, obey the simplifying
assumption

Ae = c, e = (1, 1, . . . , 1)T ∈ Rs. (5)

Otherwise, the number of conditions is 224; for details see [10].
All currently known pairs (except those derived by Sharp and Smart [11]) effectively

use eight stages (i.e., they use eight stages, with or without the first stage of the next step).
In such a case, the number of available free coefficients in A, b, b̂, c, is 44 or 45, depending
on whether the FSAL (First Stage As Last) device is employed or not.

The number of unknowns is less than the number of equations. Most of these equations
are strongly nonlinear with respect to the elements of A. It is common in Runge–Kutta
literature to apply for their solution some sort of simplifying assumptions. In the following,
we focus on a special kind of simplifying assumption that forms a family of solutions for
the order conditions. This family of solutions (and in consequence RK pairs) was proposed
simultaneously by Dormand et al. [12] and Verner [13]. The coefficients for pairs coming
from this family can be derived explicitly. Thus, we set initially

c1 = a42 = a52 = a62 = a72 = a82 = b2 = b3 = b̂2 = b̂3 = 0, c8 = c9 = 1, c3 =
2
3

c4 (6)

and assume the FSAL property a9j = bj, j = 1, 2, · · · 8.
In the following, whenever c is a vector, we denote by componentwise multiplication

ci = c ∗ · · · ∗ c ∗ c︸ ︷︷ ︸
i times

(we assume c0 = e). Here we set

A · c = c2

2
, A · c2 =

c2

3
and b · (A + C− I) = 0 (7)

where I is an identity matrix of suitable dimension and C = diag(c). Observe that the first
of the above simplifications (7) holds for indexes greater than 2. The second assumption
holds for indexes greater than 3, i.e., a32c2

2 6= c3
3/3.

After making the simplifying assumptions (6) and (7), the equations of order condi-
tion to be solved are less than the parameters of the method. See [14] for more details.
The remaining equations are

b · e = 1, b · c = 1/2, b · c2 = 1/3, b · c3 = 1/4, b · c4 = 1/5, b · c5 = 1/6, b · C · A · c3 = 1/24,

b̂ · e = 1, b̂ · c = 1/2, b̂ · c2 = 1/3, b̂ · c3 = 1/4, b̂ · c4 = 1/5, b̂ · A · c3 = 1/20.

The above order conditions along with (6) and (7) form a set of equations that are six
less than the parameters. Thus, we choose arbitrarily the parameters c2, c4, c5, c6, c7 best
in the interval (0, 1) and b̂9 6= 0. This family’s pairs have been shown to perform best in a
variety classes of problems [14].

We may proceed by evaluating successively the coefficients. Thus, we initially take (6).
Then we compute successively and explicitly

b8 =

{
3c6(−4 + 5c7)− 2(−5 + 6c7) + c5(−5c6(−3 + 4c7) + 3(−4 + 5c7))
+c4(−5c6(−3 + 4c7) + 3(−4 + 5c7) + 5c5(3− 4c7 + 2c6(−2 + 3c7)))

}
60(−1 + c4)(−1 + c5)(−1 + c6)(−1 + c7)

,

b7 =

{
−60b8(−1 + c4)(−1 + c5)(−1 + c6)− 5c5(−3 + 4c6) + 3(−4 + 5c6)

+5c4(3− 4c6 + 2c5(−2 + 3c6))

}
60(c4 − c7)(c5 − c7)(c6 − c7)c7

,
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b6 =
3− 12b8(−1 + c4)(−1 + c5)− 4c5 + 2c4(−2 + 3c5)− 12b7(c4 − c7)(c5 − c7)c7

12(c4 − c6)(c5 − c6)c6
,

b5 =
−2− 6b8(−1 + c4) + 3c4 − 6b6(c4 − c6)c6 − 6b7(c4 − c7)c7

6(c4 − c5)c5
,

b4 =
1− 2b8 − 2b5c5 − 2b6c6 − 2b7c7

2c4
,

b̂8 =


(−10 + 12c7 − 3c6(−4 + 5c7)− c5(−5c6(−3 + 4c7) + 3(−4 + 5c7))
−c4(−12 + 15c7 − 5c6(−3 + 4c7) + 5c5(3− 4c7 + 2c6(−2 + 3c7)))
(−3c6 − 10c2

5c6 + c5(1 + 10c6)− 5c2
4(2c6 + 10c2

5c6 − c5(1 + 8c6))
+c4(1 + 10c6 − 5c5(2 + 7c6) + 5c2

5(1 + 8c6)) + 10(3c6 + 8c2
5c6 − c5(1 + 9c6)

+2c2
4(4c6 + 15c2

5c6 − 2c5(1 + 7c6))− c4(1 + 9c6 + 4c2
5(1 + 7c6)− c5(9 + 28c6)))b̂9)


60(−1 + c4)(−1 + c5)(−1 + c6)·

(3c6 + 10c2
5c6 − c5(1 + 10c6) + 5c2

4(2c6 + 10c2
5c6 − c5(1 + 8c6))

−c4(1 + 10c6 − 5c5(2 + 7c6) + 5c2
5(1 + 8c6)))(−1 + c7)


,

b̂7 =

{
−60b̂8(−1 + c4)(−1 + c5)(−1 + c6)− 60b̂9(−1 + c4)(−1 + c5)(−1 + c6)
−5c5(−3 + 4c6) + 3(−4 + 5c6) + 5c4(3− 4c6 + 2c5(−2 + 3c6))

}
60(c4 − c7)(c5 − c7)(c6 − c7)c7

,

b̂6 =

{
3− 12b̂8(−1 + c4)(−1 + c5)− 12b̂9(−1 + c4)(−1 + c5)− 4c5

+2c4(−2 + 3c5)− 12b̂7(c4 − c7)(c5 − c7)c7

}
12(c4 − c6)(c5 − c6)c6

,

b̂5 =
−2− 6b̂8(−1 + c4)− 6b̂9(−1 + c4) + 3c4 − 6b̂6(c4 − c6)c6 − 6b̂7(c4 − c7)c7

6(c4 − c5)c5
,

b̂4 =
1− 2b̂8 − 2b̂9 − 2b̂5c5 − 2b̂6c6 − 2b̂7c7

2c4
,

a87 =
−2 + c5(3− 5c6) + 3c6 + c4(3− 5c6 + 5c5(−1 + 2c6))

60b8(c4 − c7)(c5 − c7)(c6 − c7)c7
,

a76 =
−1 + 2c5 − c4(−2 + 5c5)

120b7(c4 − c6)(c5 − c6)c6(−1 + c7)
,

a86 =
2− c5(3− 5c7)− 60a76b7(c4 − c6)(c5 − c6)c6(c6 − c7)− 3c7 − c4(3− 5c7 + 5c5(−1 + 2c7))

60b8(c4 − c6)(c5 − c6)c6(c6 − c7)
,

a32 =
c2

3
2c2

, a43 =
c2

4
2c3

, a54 = −
(c4 − c5)c2

5
c2

4
, a53 = −

3(2a54c4 − c2
5)

4c4
,

a83 =

{
−a43(b̂4b6b7(c6 − c7) + b4(b̂7b6(c4 − c6) + b7b̂6(−c4 + c7)))

−a53(b̂5b6b7(c6 − c7) + b5(b̂7b6(c5 − c6) + b̂6b7(−c5 + c7)))

}
b6(b7b8(1− c6) + b8b7(c6 − c7)) + b6b7b8(−1 + c7)

a73 =
a83b8(1− c6) + a43b4(c4 − c6) + a53b5(c5 − c6)

b7(c6 − c7)
,

a63 =
−a43b4(−1 + c4)− a53b5(−1 + c5)− a73b7(−1 + c7)

b6(−1 + c6)
,

a65 =
−4a63c2

4 + 3(3c4 − 2c6)c2
6

18(c4 − c5)c5
, a64 =

−4a63c4 − 6a65c5 + 3c2
6

6c4
,

a75 =
−4a73c2

4 − 3(6a76(c4 − c6)c6 − (3c4 − 2c7)c2
7)

18(c4 − c5)c5
,
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a74 =
−4a73c4 − 6a75c5 − 6a76c6 + 3c2

7
6c4

,

a85 =
−4a83c2

4 − 3(2− 3c4 + 6a86(c4 − c6)c6 + 6a87(c4 − c7)c7)

18(c4 − c5)c5
,

a84 =
3− 4a83c4 − 6a85c5 − 6a86c6 − 6a87c7

6c4
,

b1 = 1− b4 − b5 − b6 − b7 − b8,

b̂1 = 1− b4 − b5 − b6 − b7 − b8 − b9,

a21 = c2, a31 = c3 − a32, a41 = c4 − a42 − a43,

a51 = c5 − a52 − a53 − a54, a61 = c6 − a62 − a63 − a64 − a65,

a71 = c7 − a72 − a73 − a74 − a75 − a76, a81 = c8 − a82 − a83 − a84 − a85 − a86 − a87,

and lastly the FSAL device holds

a9j = bj, j = 1, 2, · · ·, 8.

This means that even though s = 9, the family only spends eight stages every step,
since the ninth stage is employed as the initial stage of the following step.

The next question is how to choose the free parameters. We have traditionally at-
tempted to reduce the norm of the primary term of the local truncation error, i.e., the h7

coefficients in the residual of Taylor error expansions corresponding to the underlying
RK pair’s sixth-order method [14]. Another choice is to reduce the phase-lag. This means
that we strive to narrow the angle between the numerical and analytical solutions in a
free oscillator [15]. Methods with small phase-lag are ideal for use in situations with
periodic solutions.

3. Training the Coefficients

We intend to extract a specific RK6(5) pair from the above-mentioned family. The pair
to be constructed must outperform existing methods on harmonic oscillators and other
problems with oscillatory solutions. Thus, we concentrate on the following couple of
harmonic oscillators

y′′ = −y, y(0) = 1, y′(0) = 0, x ∈ [0, 10π],

y′′ = −100y, y(0) = 1, y′(0) = 0, x ∈ [0, 10π],

with analytical solutions being y(x) = cos x and y(x) = cos 10x, respectively. These
problems can be transformed to the following first-order systems,[

y′1
y′2

]
=

[
0 1
−1 0

][
y1
y2

]
, y1(0) = 1, y2(0) = 0, x ∈ [0, 10π], (8)

and [
y′1
y′2

]
=

[
0 1
−10 0

][
y1
y2

]
, y1(0) = 1, y2(0) = 0, x ∈ [0, 10π], (9)

respectively.
Let us approximate their solutions by an arbitrary RK6(5) pair taken from the family

in question. After solving (8) with tolerance t = 10−10, we record the number f ev1 of stages
(i.e., function evaluations) needed and the global error ge1 observed over the grid (mesh) in
the integration interval. As partially noticed in [16], a single-step efficiency may be given as

efficiency = (stages per step)× (norm principal truncation error coefficients)1/order.
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Here, we intend to run the methods over a whole interval and record the function
evaluations spent and the global error observed. Thus, in [17] the efficiency of a method
run for a certain problem is defined

efficiency = stages× (global error)1/order,

i.e., for problem (8) the efficiency is f ev1 · ge1/6
1 . Ideally this number remains constant for all

tolerances. Thus, for more stages, we obtain smaller global error and the efficiency measure
remains the same.

Analogously, we solved (9) using as tolerance t = 10−9 and recorded the correspond-
ing values f ev2 and ge2. Then we define the efficiency metric

u = u1 + u2 = f ev1 · ge1/6
1 + f ev2 · ge1/6

2 , (10)

as fitness function and try to minimize it. Thus, the fitness function is two whole runs of an
Initial Value Problem. The value u varies with respect to the free coefficients c2, c4, c5, c6, c7

and b̂9. We now fix b̂9 = 1
20 , since this coefficient mainly influences tolerance. Indeed, we

may set
b̃9 = λ · b̂9, λ 6= 0,

and obtain a new b̃ = λb̂ + (1− λ)b. Since b̃− b = λ(b̂− b), this is equivalent of tolerance
becoming λt (see [16] for details in the issue).

The idea applied here originates in the work on neural networks done in [17]. For the
minimization process, we used the Differential Evolution technique [18,19]. We have
already tried this approach and obtained some interesting results in producing pairs from
the family of interest here for integrating orbits [20]. In this latter work we trained the
coefficients of a RK6(5) pair on a couple of Kepler orbits. Then we observed very pleasant
results over a set of Kepler orbits as well as other known orbital problems.

The optimization furnished five values for the parameters. The result is rather robust,
i.e., we obtain almost the same optimal value for u even for neighboring parameters. Thus,
we present the selected parameters in 6 significant decimal digits below:

c2 =
13

1410
, c4 =

117
838

, c5 =
807

1937
, c6 =

305
553

, c7 =
1046
1489

.

The resulting pair is presented in Table 1.

Table 1. Coefficients of the proposed here NEW6(5) pair, accurate for double precision computations.

0

13
1410

13
1410

39
419 − 66144

175561
82485

175561

117
838

117
3352 0 351

3352

807
1937

182399006
254216277 0 − 834008851

301365113
726863017
294686356

305
553 − 192573977

188294557 0 843555739
201956463 − 954154360

311813429
62139841
135865633

1046
1489 − 684308041

262041343 0 1205833115
116540586 − 1221262584

155418209
164203890
298486487

137546497
500475746

1 3799235791
453585141 0 − 41832103729

1359941217
7357737644
319864551

1775888279
626994813 − 654624079

142553731
753296961
351796097

1 8706739
153881380 0 0 9103187

54995811
80867320
138768129 − 79387865

165284773
39876782
67239903

9456952
114768929

8706739
153881380 0 0 9103187

54995811
80867320
138768129 − 79387865

165284773
39876782
67239903

9456952
114768929

28808587
168165902 0 0 − 59921183

353264845
489766367
310258909 − 676222302

391676407
395611908
358854617 − 1070837

172441250
1
20



Mathematics 2022, 10, 827 7 of 10

The norm of the principal truncation error coefficients is (see [21] for details on order
conditions of Runge–Kutta methods and their truncation error coefficients)

‖T(7)‖2 ≈ 3.24 · 10−4

which is much greater than the corresponding value ‖T(7)‖2 ≈ 4.37 · 10−5 for DLMP6(5)
presented in [13]. The interval of absolute stability is (−4.31, 0] which is rather small. No
extra phase-lag order is observed since bA5c 6= 1

5040 [15].
In conclusion, no extra attribute appears to exist. The pair in Table 1 does not have

anything noteworthy. After observing its usual traits, it is difficult to expect a particular per-
formance.

4. Numerical Tests

We tested the following pairs chosen from the family studied above.

1. DLMP6(5) pair appeared in [13].
2. PTP6(5) pair given in [15].
3. NEW6(5) presented here.

All the pairs were run for tolerances 10−5, 10−6, · · ·, 10−11, and the efficiency mea-
sures (10) were recorded.

The problems we tested are the following.

1–5. The model problem

y′′ = −µ2y, y(0) = 1, y′(0) = 0, x ∈ [0, 10π],

with analytical solution y(x) = cos(µx). This problem was run for five different selections
of µ, namely µ = 1, 3, 5, 7, 10. Thus, we obtain five problems 1–5.

6. The inhomogeneous problem

y′′ = −100y + 99 sin x, y(0) = 1, y′(0) = 11, x ∈ [0, 10π],

with theoretical solution y(x) = cos(10x) + sin(10x) + sin x.

7. The Bessel equation
The well-known Bessel equation

y′′ = −y(x) · 1 + 400x2

4x2 ,

is verified by an analytical solution of the form [15],

y(x) = J0(10x) ·
√

x,

with J0 the zeroth-order Bessel function of the first kind. This equation also integrated in
the interval [0, 10π].

8. The Duffing equation
Next, we choose the equation

y′′(x) =
1

500
· cos(1.01x)− y(x)− y(x)3,

y(0) = 0.2004267280699011, y′(0) = 0,

with an approximate analytical solution shown in [22,23],

y(x) ≈


6 · 10−16 cos(11.11x) + 4.609 · 10−13 cos(9.09x)
+3.743495 · 10−10 cos(7.07x) + 3.040149839 · 10−7 cos(5.05x)
+2.469461432611 · 10−4 cos(3.03x) + 0.2001794775368452 cos(1.01x)


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We again solved the above equation in the interval [0, 10π].

9. semi-Linear system
The nonlinear problem proposed by Franco and Gomez [24] is as follows.

y′′(t) =

(
−199 −198

99 98

)
· y(x) +

(
(y1 + y2)

2 + sin2(10x)− 1

(y1 + 2y2)
2 − 10−6 sin 2(x)

)
,

x ∈ [0, 10π],

with analytical solution

y(t) =
(

2 cos(10x)− 10−3 sin(x)
− cos(10x) + 10−3 sin(x)

)
.

We estimated 63 (i.e., 9 problems times 7 tolerances) efficiency measures for each pair.
We set NEW65 as reference pair. Then we divided each efficiency measure of DLMP6(5)
with the corresponding efficiency measure of NEW6(5). The results can be found in Table 2.

For the above selection of free parameters, we obtained u1,NEW65 = 19.30 while for
DLMP6(5) pair found in [13] we observe u1,DLMP65 = 71.09, i.e.,

u1,DLMP65

u1,NEW65
≈ 3.68,

meaning that the latter pair is about 268% more expensive than delivering the same accuracy.
By contrast, we experience about log10(

71.09
19.30 )

6 ≈ 3.4 digits of accuracy less for the same
costs. The figure underlined in the first row of results is the number we found at the original
training with problem-1 and tolerance 10−10. In the same sense

u2,DLMP65

u2,NEW65
≈ 3.35,

and it is represented in Table 2 with an underlined figure also.
It is obvious that positive results are in favor of the second pair. On average, we

observed a ratio of 2.34, meaning that DLMP6(5) is about 134% more expensive. This is
quite remarkable since much effort has been made over the years for achieving 10–20%
efficiency [21,25]. By contrast, this means that about log10 2.346 ≈ 2.22 digits were gained
on average at the same costs.

Table 2. Efficiency measures ratios of DLMP6(5) vs. NEW6(5).

Tolerances

Problem 10−5 10−6 10−7 10−8 10−9 10−10 10−11

1 1.48 1.65 1.92 2.25 2.74 3.68 2.81
2 1.62 1.75 2.11 2.32 2.90 3.33 2.58
3 1.61 1.94 2.10 2.42 3.04 3.24 2.57
4 1.72 1.75 2.20 2.56 3.13 3.17 2.53
5 1.63 1.89 2.15 2.56 3.35 3.11 2.45
6 1.91 1.91 2.21 2.61 3.53 3.02 2.44
7 1.56 1.78 2.01 2.21 2.78 3.72 2.78
8 1.51 1.72 2.18 2.75 1.69 1.60 1.61
9 1.79 2.00 2.23 2.47 2.57 2.42 2.26

In Table 3, we present the ratios in efficiency measures of PTP6(5) with the correspond-
ing efficiency measures of NEW6(5). On average we observed a ratio of 1.36, meaning that
PTP6(5) is about 36% more expensive. By contrast, this means that about log10 1.366 ≈ 0.81
digits were gained on average at the same costs. The result is also remarkable. In [15],
a high phase-lag order pair named PTP6(5) was designed for addressing problems with
periodic solutions. This required the satisfaction of two extra conditions for the coefficients.
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NEW6(5) outperformed other pairs even in the clearly nonlinear problems. Finally, we
mention that we obtained more or less similar results for longer integrations.

Table 3. Efficiency measures ratios of PTP6(5) vs. NEW6(5).

Tolerances

Problem 10−5 10−6 10−7 10−8 10−9 10−10 10−11

1 1.06 1.10 1.19 1.29 1.49 1.94 1.63
2 1.03 1.01 1.21 1.33 1.56 1.77 1.58
3 1.06 1.12 1.21 1.33 1.60 1.74 1.62
4 1.08 1.07 1.21 1.35 1.64 1.71 1.63
5 1.06 1.15 1.25 1.35 1.70 1.68 1.60
6 1.09 1.09 1.26 1.40 1.84 1.67 1.61
7 1.08 1.12 1.19 1.29 1.44 1.93 1.60
8 1.20 1.09 1.05 1.56 1.15 1.15 1.13
9 1.15 1.29 1.33 1.38 1.41 1.43 1.56

The results are very promising. Some future research may use optimization on a wider
range of tolerances and model problems. Perhaps a pair spending two parameters for
fulfilling the phase-lag property and then trained for periodic problems would furnish
even more interesting results. Of course application of this technique on other classes of
problems is also possible, e.g., orbits.

5. Conclusions

Training the coefficients of a Runge–Kutta pair for addressing problems with oscilla-
tory solutions. We concentrated on an extensively studied family of Runge–Kutta pairs of
orders six and five. All the coefficients of this pair are expressed with respect to a set of
free parameters. We optimized the results of this pair in a couple of runs of a harmonic
oscillator changing the free parameters. Thus, we concluded that a certain pair is found to
outperform other representatives from this family in a wide range of relevant problems.
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