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Abstract: This work aims to identify techniques leading to a highly available request processing
service by using the natural decentralization and the dispersion power of the hash function involved
in a Distributed Hash Table (DHT). High availability is present mainly in systems that: scale well, are
balanced and are fault tolerant. These are essential features of the Distributed Hash Tables (DHTs),
which have been used mainly for storage purposes. The novelty of this paper’s approach is essentially
based on hash functions and decentralized Distributed Hash Tables (DHTs), which lead to highly
available data solutions, which a main building block to obtain an improved platform that offers high
availability for processing clients’ requests. It is achieved by using a database constructed also on a
DHT, which gives high availability to its data. Further, the model requires no changes in the interface,
that the request processing service already has towards its clients. Subsequently, the DHT layer is
added, for the service to run on top of it, and also a load balancing front end, in order to make it
highly available, towards its clients. The paper shows, via experimental validation, the good qualities
of the new request processing service, by arguing its improved scalability, load balancing and fault
tolerance model.

Keywords: Distributed Hash Table (DHT); high availability; decentralization; fault tolerance;
scalability; load balancing; highly available data

1. Introduction

The concept of high availability represents a key feature for today’s online services. It
has been addressed in numerous ways, but this work aims to obtain high availability in
the most transparent manner possible, by using the scalable, balanced and fault-tolerant
peer-to-peer based distributed hash tables. The idea of aggregating data resources and of
high availability through DHTs is not new, since they are a fundamental building block of
large-scale distributed filesystem, such as [1], but more recently also of blockchains [2,3]
and a detailed comparison with other works is provided in Section 5. The novelty of this
work’s approach resides in the fact that it aims to use the high availability for data, which
DHTs traditionally provide, in order to obtain a means for highly available processing.
Moreover, it seems that today’s trend to go from cloud computing to sky computing [4]
encompasses multiple abstractization layers, data aggregation [5] and some peer-to-peer
techniques, aspects the current work addresses too, in its specific novel manner oriented
towards high availability through DHTs, as is described in what follows.

Nowadays, it is very important for any widely spread application service to be always
able to answer and process correctly as many clients and client requests as it is needed,
without having downtime. In what follows, both the long name for the request processing
service is used, but also the short name: service. High availability is an important aspect
concerning software applications, which is synonymous with the combination of: fault
tolerance, scalability and load balancing among the system’s internal components, together
with data coherence and data persistence. Since most of these identified characteristics,

Mathematics 2022, 10, 831. https://doi.org/10.3390/math10050831 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10050831
https://doi.org/10.3390/math10050831
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math10050831
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10050831?type=check_update&version=3


Mathematics 2022, 10, 831 2 of 20

to influence a system’s high availability, are very much related to not losing the data
the system needs to process, and always obtaining the correct version of the data, this
paper argues and stresses the fact that, a very good and highly available database to store
the service’s data is a must for obtaining a highly available service. Such a database must
implicitly use good data replication mechanisms [6–8], for fault tolerance, which translates
into decentralization, too, and in the need to use a large-scale distributed architecture for
the physical infrastructure on which the data are stored.

The most representative model for decentralization is the peer-to-peer model [9–12],
which has evolved in recent years and is currently also applied for name lookup [3,13]
and for in-fashion Blockchain solutions [2,3,14], but peer-to-peer networks are also used
in highly decentralized and unstructured overlay networks, such as in [15]. The peer-
to-peer architecture is decentralized and offers a higher flexibility and a better tolerance
to individual components and node failures. The reason for this is that decentralization
automatically implies lack of dependencies and also the decoupling of the main components
of the system. This paper considers extending these types of capabilities to any type of
distributed request processing service that could be offered.

The outcome of the present work is a decentralization solution, based on DHT peer-to-
peer networks, for a request processing service, whose purpose is to improve substantially its
availability towards the service’s clients. For this reason, this work addresses the following
aspects that can influence availability:

1. The system’s tolerance to individual failures of any of its components, which can be
usually obtained by the DHT stabilization mechanisms and by data replication;

2. The system’s scalability, such that it is still functional if it is exposed to high external
stress;

3. Load balancing, in order to generate as seldom as possible overloading, which in turn
could lead to individual node failure.

This work does not aim to adapt a request processing service to the peer-to-peer
technology, but rather to use the important novel improvements described in what follows,
to personalize the request processing service in a way that does not imply the need of
changing its interface to its clients.

We introduce a new, generic solution to obtain improvements applicable to any request
processing service, which becomes highly available, by distribution and decentralization,
based on the novel idea to use the help of a DHT, in order to attain the purpose of highly
available request processing. At the same time, the hereby proposed improved solution
manages to keep the image of a unified system and service, thus providing a Single System
Image (SSI) to its clients; this is why the decentralization is performed in a manner that is
transparent to the service’s clients, thus not raising any issues for them. Throughout this
work, it was envisaged to define the minimum or no changes to the service’s interface,
but behind this interface the aim is to improve the generic service and make it a highly
available one. This is why, in Section 2.3, we describe the ways in which the internal
components of the newly decentralized service cooperate and interact, in order to truly
make the service highly available. We also point out how this work re-used aspects from
our team’s previous research in the field, namely the advantages of a peer-to-peer DHT-
based decentralized distributed database [7,16,17], with self-extending capabilities. We
also argue why such a decentralized distributed database is crucial if we want to obtain a
highly available decentralized distributed service. Last but not least, given the fact that we
have identified high availability to be obtained if we identify in the system a combination
of scalability, load balancing and fault tolerance, we show the existence of each of the three
latter system characteristics in Sections 2 and 3. Section 5 discusses and concludes the
improvements brought by this work.

1.1. State-of-the-Art

Any distributed service needs to process its clients’ data in some manner, and one
could conclude, by observing previous research results, that the clients’ data integrity and



Mathematics 2022, 10, 831 3 of 20

availability is crucial for the service’s integrity. In order for a distributed service to be
highly available, the data that it processes need to be stored in a persistent and, preferably,
consistent manner. This observation comes after a lot of study referring to distributed
services’ needs and requirements in order to offer high availability and this is the reason
why, in this section, a very strong focus falls on highly available storage for data, on how
peer-to-peer DHTs have been designed and used, besides studying other solutions for
highly available distributed services, too.

1.1.1. Distributing Systems Using Highly Available Data

Nowadays, there is a high demand to process large amounts of data, coming both from
the industry (domain led by companies such as Google, Facebook, Microsoft, Amazon,
etc.) and from science (e.g., the CERN cluster), this is why, any popular distributed service,
which aims to serve its clients impeccably, should also focus on how to improve the process,
in any type of external condition, the entire large amount of data, related to the large set of
its clients.

Classically, DHTs have been invented and used only in order to help storing highly
available data [1,18,19]. Recently, there is a trend to use them for other purposes, too, such
as to improve Blockchain models, e.g., the Lightchain [2], or to offer an alternative to the
classical DNS lookup system [3]. Since we have not identified another model to address and
solve exactly the request processing availability problem, by means of DHTs, despite DHTs
being one of the most appropriate systems to offer availability, this novel approach and the
main contribution of this paper is to go even further when using DHTs and to offer highly
available service request processing. For this purpose, the naturally good dispersion of the
DHT’s hash function, which should be applied to each client’s name, is of much help. Note
that to process client’s requests by application servers is a much harder task than the data
mining Map-Reduce techniques used in Spark [20] or Hadoop [21].

1.1.2. the Aspect of Storing Data in Decentralized Systems

The field of storing and retrieving big data is already a mature domain, and represents
a step forward from the classical SQL database solutions. In order to store and process ever
larger amounts of data, the first step was to build clusters, such as the MySQL cluster [22],
and some subsequent steps were the NoSQL databases [8], one of which is based on
the Google Map-Reduce model [23]. Other popular solutions based on the Map-Reduce
model have been implemented in the Apache projects Hadoop [21] and, more recently,
Spark [20]. At almost the same time with the evolution of these solutions, distributed
filesystems have evolved, such as NFS (Network Filesystem) [24], CFS [1] (the peer-to-peer
Chord [9]-based distributed filesystem) and later also Blobseer [25,26], aiming to store
the files in such a manner that makes them persistent, coherent and more efficiently to be
retrieved in a large-scale distributed system. The NoSQL storage solutions, including the
peer-to-peer-based distributed filesystems, have been used for applications that run on
top of high and medium-volatile infrastructure. A common characteristic of most of these
solutions is the fact that they are not based on the client–server model, but they are mostly
decentralized.

Aside from using the novel peer-to-peer distributed hash table (DHT) techniques, in
order to benefit from their flexibility and elegance of data retrieval, an interesting idea is
to also solve the scheduling of resource allocation [27]. More recently, in the field of data
mining, there are solutions for bringing the data needed by a node closer to it, so as to mask
the data transfer latency, in a manner similar to how it is performed by the hardware cache,
standing between the processor (i.e., in a distributed system, a processing node) and the
main memory (i.e., in a distributed system, a data source node) [28–31].

To summarize, work in the field of large-scale distributed systems data storage and
manipulation ranges from:

1. Storing the data in distributed filesystems [24,25,32], in classical SQL databases [22]
and more recently in No-SQL distributed databases [8];
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2. Smart distribution and retrieval techniques for geographically distributed data, a field
in which the P2P DHTs [9] have been of great help and have become very popular;

3. Search engines and large scale distributed applications for collecting and mining huge
amounts of data [20,21,23].

1.1.3. Existing Solutions for High Availability of Distributed Services

Load balancing must be addressed, when aiming to transform a request processing
service into a highly available one, because simply distributing the service among more
nodes does not guarantee that it will also balance the load of the involved nodes, in order
to yield high availability. A classical and wide spread, but not so flexible solution, for load
balancing at the network or at MAC/data link level is the Virtual Router Redundancy Pro-
tocol (VRRP), which is a solution to provide redundancy in a network, in the same virtual
entity. The VRRP technique’s drawback is that it is not so flexible, this being the reason
why self organizing peer-to-peer networks, including DHTs, seem more appealing to the
current study.

Thus, the existing load balancing techniques that could be used are DHT-based tech-
niques [9,11,12,33], but also the VRRP protocol [34], which has an active copy and a backup
copy of the running service, or components of the DNS (Domain Name System), such as
the DNS NAPTR records [35] combined with the DNS SRV records [36]. These techniques
are based on the existence of more physical machines behind a DNS name. In case any
of these machines experiences heavy load, its task can be taken over by another machine.
Even if these techniques offer a means for load balancing and availability increase, they are
static. This is why the described DNS method used only by itself is not scalable and, just by
itself, cannot be used to process requests in a highly available manner, within large scale
distributed systems.

Distributed Hash Tables (DHTs) on the other hand, are by their nature extremely
scalable and resilient to failure. This is something that should be adapted and used, in
order to make an existing distributed request processing service to be highly available, with
no changes of its external interface towards its clients.

2. Materials and Methods

This section describes the improved novel solution for a highly available distributed
service for processing its clients’ requests, which maintains the same interface to its clients,
while the changes to make it highly available are unnoticeable to the clients. It focuses on
introducing as little new communication as possible, in order to maintain the Single System
Image (SSI), despite the novel decentralization method, based on DHTs and highly available
data. In terms of generic components that should be used to decentralize any distributed
service, we enumerate: (1) a load-balancing dispatcher, which transparently distributes the
load among nodes; (2) a DHT peer-to-peer network based on Chord [9]; (3) a reliable
decentralized distributed database, also based on DHTs.

The physical testbed on which the solution was deployed

The improved solution for high availability was deployed and tested in our team’s
datacenter, designed for high performance computing on large-scale distributed systems. It
contains more than 3500 CPU cores and 12 TB of dedicated RAM, together with 30,000 GPU
cores and 220 TB of distributed storage, interconnected by GluInfiniband. The CPU core
ensemble comprises hybrid architectures such as Intel Xeon, AMD Opteron, Power7 and
CellBE, interconnected by means of very-high-speed networks, such as 10Gigabit and Giga-
bit Ethernet. The various node architectures and the high-speed interconnections among
them, together with the extended storage, make this infrastructure a good candidate for
validating new findings regarding highly available decentralized distributed processing of
clients’ requests, with minimum communication delays. All of these are features envisaged
by the improved software architecture for high availability, presented in the following
subsections.
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The novel contributions of this paper and the design of the experimental system are
mainly driven by the features of the hash function within the Chord DHT. Note that in
Chord all peers are equal, and the destination of a message is identified by collaboration
among the peer nodes, with high probability in no more than O(log2(Nopeers)) steps,
according to the dimensions and organization of the per node routing finger tables [9].

The hash function of the DHT

The hash function of the DHT is essential in this work’s vision for an improved model
of obtaining a highly available service, since it guarantees, with high probability, both: (1)
the uniqueness of the hash ID, which has been obtained by computing a hash of the data;
(2) the large distance, i.e., difference, within the space of the hash IDs of the hash values that
correspond to very similar pieces of data. This second property means that related pieces
of data are stored or handled on different nodes, a property which is good at obtaining a
balanced distributed system. In other words, pieces of similar data are stored, with a high
probability, on totally independent nodes, a thing that is very useful when storing similar
and thus correlated data, which often can be derived from one another, thus yielding
fault tolerance, too. Note that this exact property is also important when replicating within
a world-wide distributed Chord DHT: it is very likely for a peer that is responsible for
some data, and its clock-wise successor peer on the ring, which backs that same piece of
data, to find themselves very distant, geographically, thus physically independent from one
another. This allows the distributed ensemble of nodes to behave as a fault tolerant system,
thus offering a persistent data storage. This last property is essential to a reliable storage
system based on DHTs, such as a decentralized highly available database [7,16,17], which can
reliably store the data needed by any request processing service. Moreover, for a more
“dispersed” storage of the data in the DHT network, one can successively apply more hash
functions [37].

2.1. System Load Balancing Based on the Intrinsic Properties of the Chord DHT

This section points out, mathematically, using the dispersion properties of the hash
function, that these features within the DHT are the ones that implicitly yield load balancing
among the nodes, that provide the service of processing their clients’ requests.

The dispersion or hash functions, such as SHA-1 [38] and MD-5 [39], which are also
used in DHTs such as Chord [9], are functions that map a very large domain of values into
a much smaller one, while needing a very short time to retrieve the hashed value, based on
its hash identifier.

So, if the hash function is denoted by f , we have:

f : LargeDataSet− > IDSet

and it is known that any hash function f has the following important property:

cardinal(LargeDataSet) ≫ cardinal(IDSet).

Moreover, if f is a good hash function, the input values that yield the same value
y ∈ IDset, are very different, i.e., the difference between them is very large:

∀yi, yj ∈ LargeDataSet, f (yi) = f (yj) :

|yi − yj| → ∞.

Besides that, the property of having almost equal number of input values that yield
each hash identifier also stands:

∀yi, yj ∈ LargeDataSet, 1 ≤ i, j ≤ n, yi 6= yj :

|cardinal( f−1(yi))− cardinal( f−1(yj))| < ε,
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where ε→ 0 and N are a large number, N ≤ cardinal(IDSet). For the hash function used
in the Chord DHT, N is a power of 2, i.e., N = 2M.

This actually means that each “bucket” of data, which is each entry in the hash table,
“contains” almost the same amount of data and that each pair of pieces of input data that
reaches the same “hash bucket” is extremely different. It also follows that the probability
for a piece of data to find itself in a hash entry is equal for any hash entry, which gives an
even distribution of data in a classical hash table and also in a Distributed Hash Table (DHT).

From the improved highly available system’s point of view, if many peers have
been launched, each DHT peer k would handle cardinal( f−1(yk)) values, thus, from the
equations above, each peer would have almost the same load as the other peers in the DHT.
This mathematically argues the load balancing introduced by the Chord DHT in the hereby
presented improved solution for high availability.

2.2. System Scalability Based on the Intrinsic Properties of the Chord DHT

To explain mathematically the scalability of the system based on distributed hashing,
one needs to show that its performance degrades very slowly, with respect to the number
of peers participating in the DHT.

If examining the Chord routing protocol in [9], note that, each peer p, having Chord ID
IDp, which has a routing table composed of the so-called finger nodes, the system has an
interesting property. If the considered maximum dimension of the Chord ring is N = 2M,
i.e., cardinal(IDSet) = N = 2M, that is, the binary representation of each peer’s ID contains
M bits, the following is true for the maximum M entries in the Chord finger table, used for
routing messages via the DHT from source to destination:

∀k, 0 ≤ k ≤ M− 1 :

Fingerk ≈ IDp + 2k,

where the approximation means that Fingerk points to the peer which has the closest peer
ID to IDp + 2k. Of course, the finger table also contains the clockwise successor node of
peer p on the Chord ring, but also its predecessor on the Chord ring. For small values of
the deployed number of peers, i.e., Nopeers ≪ N, there might be situations where more
finger peers are identical, i.e.,

0 ≤ i, j ≤ M− 1, i 6= j : Fingeri = Fingerj.

In most of these cases, the number of hops to route a message from the current
peer p towards its destination is less than its maximum possible value. Note that in the
Chord DHT [9], with high probability, the maximum possible number of DHT routing hops
for a message to move from source to destination is in practice ≈ log2(Nopeers).

Based on the FingerTable, which is actually the Chord decentralized routing table,
which is a sorted list with respect to the fingers’ Chord IDs, the distributed algorithm which
describes how the routing is performed is described in Algorithm 1, below:
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Algorithm 1 ChordImplicitLoadBalancing.

1: for iteration = 1, 2, . . . ∞ do
2: if received new routing request towards ChordID(destination) then
3: if (ChordID(predecessor) < ChordID(destination)) and

(ChordID(destination) ≤ ChordID(sel f )) then
4: Reply directly to the (new) client; this peer handles its processing request
5: else
6: for k = 0, 1, 2, . . . , log2(MAX(ChordID))− 1 do
7: if ChordFingerk ≤ ChordID(destination) and ChordID(destination) ≤

ChordFingerk+1 then
8: Route message to ChordFinger_k
9: end if

10: end for
11: end if
12: end if
13: end for

This algorithm is distributed and independently run on each DHT peer, which means
that the routing is performed as follows: each peer compares the Chord ID of the destination
with the peers in its finger table, and finds the closest finger to that destination ID, i.e.,

IDFingerTable[closest] ≤ IDdestination ∧ IDFingerTable[closest+1] > IDdestination.

The decentralized distributed routing stops when the current peer, that needs to route
the message, realizes that it is the peer responsible for the Chord ID IDdestination.

In order to identify the theoretical maximum possible number of hops needed to route
a message from current peer p to its destination, one needs to know that when routing a
message, the peer compares the entries in its finger table with the ID of the destination,
and chooses the closest finger ID as the next hop to route the message. In the best case, the
destination is in the finger table of the current peer, which means that there is only one
more hop towards the destination. In the worst case, each finger that becomes the next hop
towards the destination should perform the steps described here, in a distributed recursive
manner, until the destination is reached. Note that, in many cases, the ID towards which a
message is routed is not the ID of any peer in the network, and each peer is aware that it is
responsible for the Chord IDs also called data keys between its predecessor and itself:

ChordIDpredecessor(p) < ChordIDkey(p) ≤ ChordIDp.

If analyzing the maximum number of steps needed by the DHT routing algorithm for
Chord [9], one concludes that, with high probability, for a sufficiently large deployed DHT,
at each step s the Chord routing algorithm most likely identifies a finger node having the
digit in position M− s from its binary representation to be identical to its corresponding
binary digit of the base 2 representation of its Chord ID (IDdestination), i.e.,

∀s, 0 ≤ s : log2(|IDdestination − Fingers|) < M− s.

However, we know that:

∀IDdestination ∈ IDSet : 0 ≤ IDdestination < 2M,

i.e.,
∀s : 0 ≤ s < M.

This means that the fact that the number of hops between each source and desti-
nation node, when routed via the Chord DHT, is, with high probability, no more than
log2(DimensionO f ChordRing) [9]. This is in practice, from the performed experiments, no
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more than [log2(Nopeers)], with high probability, where [X] represents the integer part of
the real number X.

2.3. The Novel Improved Model of Splitting the Work Around the Nodes

The improved model for highly available request processing is to split the work around
the nodes providing the service. The solution is based on a front-end load balancer, which
interacts with a set of nodes, each of which being also a DHT peer, and each of which
being also a simple node providing the actual service of processing clients requests. In
order to avoid a single point of failure, the load balancer chooses the server node to currently
handle and process a client’s request, by computing a hash of the client’s name, and by
then forwarding the client request to the service layer running of the DHT Chord peer,
that is responsible for the computed hash key of that client, as is detailed in [9]. Then the
client–server conversation between that client and the chosen server happens in a classical
manner. As explained in Section 2.1, this is an important load balancing step, which also
allows the system to be transparently scalable, since if peers become overloaded, new
peers running the service can be added to the DHT. The Chord DHT is actually used as a
transport communication layer in the solution for improving the service’s availability when
processing the clients’ requests. In order to address fault tolerance, besides the DHT, the
load balancer is also of help. If the communication line between a client and the server, that
the client already communicates with, falls, the load balancer re-catches the client’s attempt
to reconnect to the service. Consequently, it redirects the client to another, functional peer,
providing the service of processing clients’ requests, thus finally fulfilling this client’s
processing request.

The load balancer will actually control the access to the Chord network using DNS
node configurations, as will be described in what follows.

2.3.1. The Load Balancing Component

The purpose of the load balancer is to offer its clients a single entry point to the system,
by defining a robust interface, which is also easy to use by the clients. It has a double role,
since the load balancer is also responsible to hide the nodes that form the Chord ring, nodes
which collaborate to offer together the desired service. The idea of a load balancer in front
of a Chord network is not new, because the bootstrapping mechanism described in [9], for
new nodes to join the DHT, is based on links with the DNS layer of the node. This way, if a
node wishes to join the Chord network, if the node knows only the name of the service, it
will perform an A record DNS interrogation [40], to find out the IP of a machine that contains
a Chord peer for sure. The choice for the current implementation was to introduce in the
DNS entry of the node that offers the highly available service, an A type record, which
will solve the load balancer’s IP (or set of IPs), namely the entry point to the distributed
service. This approach does not restrain the decentralization and availability hypothesis,
since the improved solution presented here strongly resides on the one used for Chord
bootstrapping, and Chord is considered to be one of the most decentralized and available
distributed networks. In order to obtain further decentralization of the service, such as
not to introduce a single point of failure in the load balancer, while also not overloading
it, we can also use, besides the DNS A records, DNS NAPTR and SRV records, as can
be seen in Figure 1. With these entries, it is possible to specify more IPs of machines on
which instances of the load balancer is running, being also able to establish preferences
and priorities for contacting these nodes, and also relative load percentages for requests
addressed to each of the load balancing nodes.
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Figure 1. Single entry point for the DNS configuration.

To summarize the idea, we have a pre-fixed group of nodes, called load balancers,
among which at least one is always active, nodes that are registered under the same
DNS name and offer the load balancing function by acting as a team of equals. This
implementation for a service with high availability improvements defines weights in DNS
records, for each of these load balancers, to specify maximum admissible loads and usage
priorities, all of which being computed based on the processing capacity of the machine,
the network quality and, last but not least, on the probability that the node is functional
at a given moment. Note that the load balancing nodes do not offer the effective service
functionality, but they redirect the clients to active nodes that effectively offer the service,
and which are members of a Chord ring, which are also logically connected via the clients’
data saved in the highly available database [7] involved in the solution presented here.

From an architectural point of view, the load balancer contains the following compo-
nents, which can be viewed in Figure 2: (1) a component representing a link with the DNS
configuration; (2) a component to map the clients’ requests, and thus the clients, to the
nodes belonging to the Chord network; (3) a component that is able to “speak” to the Chord
network, being able to ask the designated service node to serve the client, by routing the
client’s request to that service node. This is the way in which the client–server connection is
finally being established in this session. Note that, even if during a certain session the client
should be handled by the same DHT peer running the service, at a new session initiation
request from the same client, it could be transparently handled by another service node, the
persistence of the client’s data being assured by the decentralized highly available database
involved in this solution. In case of a failure from a service node, the situation is treated as
a timeout situation and the load balancer will help in initiating a new session of the client
with an active peer providing the service.
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Figure 2. Individual architecture of a load balancing node.

The dispatcher performs the following steps, described by Algorithm 2, when trying to
map a new client request onto a DHT peer running the service. Note that in the algorithm
HA stand for “high availability”.

Algorithm 2 DispatcherLoadBalancing.

1: for iteration = 1, 2, . . . ∞ do
2: Wait for a new client having a request to be processed by the HA service;
3: client⇒ uniqueChordID(NewClient);
4: Send a message to the DHT Chord ring with destination ChordID(NewClient);
5: end for

Each Chord peer by default waits in an infinite loop for new communication messages
via the DHT layer. As soon as it receives a message towards a destination, based on its
routing table whose entries are called fingers, each Chord node sends the received message
to its next hop, until the messages reaches its destination, i.e., either the destination specifies
exactly the peer’s Chord ID, or the range of Chord IDs, called keys, that do not denominate
any other Chord peer, but are the Chord IDs that the current peer is in charge of, as already
described in Section 2.2. Given that the peers are placed on the Chord logical ring in the
increasing numerical order of their Chord IDs, the range of the keys that a Chord peer is in
charge of starts from its predecessor’s ID on the ring plus 1, i.e., IDPredecessor(IDPeercrt) + 1,
and ends with the current peer’s Chord ID, itself, i.e., IDPeercrt.

The link with the DNS configuration for the load balancer renders the “single
system image” (SSI) for the distributed service. It defines a standard and easy to use
interface, in order to be able to access the service, without overloading the system
entry point.
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The component that maps clients onto service nodes has the unique role of com-
puting the Chord key of each client, by using the hash function used within the
Chord DHT. Further, this component is the one responsible to construct, from the
client’s original message to the service, the message that will be sent to the service
node, in the “language” understood by Chord, i.e., to route the message to its destina-
tion via the DHT transport layer.
The Chord component of the load balancer knows that, based on the message the
component that maps the clients onto service nodes provides, it should send a request
using Chord mechanisms, towards the peer that will have to serve that client. The
identification of the service node responsible for the client is made using Chord keys,
by computing a hash of the client’s name.

2.3.2. The Peer-To-Peer Chord Network

As already presented in Section 1.1, a Chord network is a totally decentralized DHT-
like network. In any Distributed Hash Table (DHT), the nodes’ tasks are split based on the
nodes’ and task’s unique identifiers, generated by the hash function, and this implicitly
provides a load balancing among the nodes’ responsibilities, i.e., the number of data keys the
node needs to handle [9], as already explained in Section 2.1. In fact, it is exactly this special
feature of the Chord DHT to implicitly balance the load by itself, that this novel solution
aims to use, together with the previously mentioned load balancer, in order to obtain a
uniform distribution of the load among the nodes providing the service and to finally make
the request processing service highly available.

From an architectural point of view, a node from the Chord network has two parts:
(1) an self-extending enhanced Chord component, for better persistence and integrity of
the data that it holds; (2) an instance of the distributed service, since this novel solution
implies that each member of the Chord ring also runs an identical, unaltered instance of
the request processing service. In other words, in the current novel approach for high
availability, the exact application that provides the request processing service is instantiated
on every node of the Chord ring and, by using the Chord hash function, the clients are
mapped onto different peers in a balanced manner. The good dispersion properties of the
DHT’s hash function will enable an equitable partition of the distributed network service’s
clients among the Chord peers that offer the service, so that none of the peers will be
stressed with too much load. In the current improved approach, in case the load of peers
becomes too high, the system should launch a new peer in the overloaded area of the Chord
ring, as described in our team’s previous work [41,42].

The partitioning of the clients is performed considering the following logical mapping:
knowing that each peer p is responsible for a set of keys, for which it should also store
the corresponding data, the responsibility of a peer for a key is redefined and extended, as
being the responsibility of that peer to handle the service client that is associated to that
key. This way, once a client has been handled by a peer, as it is described in Figure 3, we
impose the rule that the client will be always handled by that peer, throughout the session.
An exception is in the case that at a certain moment that peer fails, in which situation its
entire functionality will be taken by another previously designated backup peer, according
to the DHT rules of replication on neighbors. The backup peer will also have to possess the
up-to-date journal of the current client’s session and data.

Note that the keys that peer p is responsible for are also Chord IDs and each peer is
responsible for the Chord IDs that are situated between its predecessor and himself, i.e.,
the keys that a peer p is responsible for are:

ChordIDpredecessor(p) < ChordIDkey(p) ≤ ChordIDp.

Given the way of serving clients involving the load balancer from our improved
solution, whenever it is possible, for each client’s request to the service, except for the
initiating request, the client is able contact directly the peer that is responsible for it. That
peer will also ensure to store the data related to that client such that it is persistent and
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reliable, in case the peer itself should fail and thus disappear from the network. In case
a peer disappears from the network, the clients that used to contact it directly, without
using the load balancer any more, will notice that the peer’s IP address can no longer be
reached, and will thus naturally try to contact the service again, via its DNS name. This
DNS interrogation will lead the client again to a load balancing node, which is a part of the
load balancer. The load balancer will hand over each client to the new peer responsible
for that client, by computing the hash of the client’s name again, and by transparently
routing again towards the peer that is responsible for the client’s key, i.e., the Chord ID
obtained by hashing that client’s name. The currently identified peer will know, from the
persistent and journalized data that were kept in the highly available database, how to
continue the dialogue with that client, without affecting too much its quality of experience.
A very important aspect here is that, for the service’s clients, the entire Chord layer from the
decentralized service, that processes requests, is totally transparent. Each service instance
running Chord peers treats the improved decentralized service’s clients identically to the
situation when the service was centralized. By decentralization, the service’s availability
to more, old and new, clients is highly improved, since we have removed the single points
of failure.

Figure 3. Generic handling of a client by the decentralized distributed service.

Since another peer is able to take an unavailable or failing peer’s clients, to continue
to offer them the service, there exists the strong need to keep any client’s data persistent
within the entire decentralized distributed system of service processing nodes. For this,
a decentralized highly available database is used, also based on the Chord DHT, which, in
the improved vision of a solution for highly available services, represents a necessary basic
condition. This database, previously designed by our team, which is also based on the DHT,
handles persistence, scalability and integrity aspects for the data.

The novel method presented in this section, which can be schematically observed in
Figure 4, should be generic enough to make any service highly available, with minimal
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modifications, by using the deployed load balancing nodes, contained in the deployed
service-aware Chord layer.

Figure 4. Generic method for distributing and decentralizing a service, in order to make it highly
available.

2.4. The Pre-Existent DHT-Based Distributed Database to Reliably and Persistently Store the Data
Belonging to a Highly Available Service’s Clients

Our team’s previously published contribution to the field of distributed databases,
which this solution relies on, resides in the fact of having identified a way to solve the
problem of data loss, and more importantly of critical data loss, by storing the data on
newly added nodes to the underlying DHT infrastructure, which is shared by the service
and the database described in [7,16,17]. Even if the obtained infrastructure is not 100%
secure, it offers a safety level for the data that is significantly improved from a classical
DHT, since it is able to identify and exclude malicious peers from the DHT. The extra safety
is also based on another important aspect of this previous work, i.e., the possibility to
have a variable replication degree for the data, which allows the system to integrate new
storage nodes only when this is necessary. This fact is governed by the internal dynamics of
the request processing service, with which the storage layer is in constant dialogue and
interaction via the DHT communication layer.

Note that the keys of data that a storage peer p, belonging to the highly available
database, is responsible for are also Chord IDs and each peer is responsible for the Chord IDs
that are situated between its predecessor and himself, i.e., the keys that a peer p is responsi-
ble for are:

ChordIDpredecessor(p) < ChordIDkey(p) ≤ ChordIDp.

The DHT’s hash function ensures that each storage node is loaded equally and partici-
pates evenly to the task of storing the entire highly available service’s data.

The extra time introduced by this database solution, for a group of nodes connected
by a local network, is pretty low, especially when also taking into consideration the benefits
that the enhanced replication mechanism brings. All this allows us to consider that this
decentralized distributed database prototype, based also on the Chord DHT, is a good
candidate to reliably store the data for a competitive highly available service that needs to
process its clients requests.

3. Results

As detailed in Section 2, the key to a good service decentralization is a good, flexi-
ble, balanced and scalable distribution of the data, which most importantly needs to be
persistent. This is why a very important part of this improved solution for decentralizing
and distributing a service, in order to make it highly available, is to use a very efficient
decentralized distributed database [7,16,17]. For the entire improved solution of a highly
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available service, we are most interested in not introducing too much overhead by adding
this solution’s extra components, which yield high availability for the service.

The elements that this novel solution aimed to improve, in order to make the service
highly available, are: (1) static or dynamic load balancing, in order to maintain a high
availability for the service, even in the context of increased load, due to a larger number of
clients; (2) fault tolerance, by proving complete functionality even in the presence of failing
nodes; (3) scalability, by DHT self-extension described and evaluated also in [41,42], in order
to be able to cover a higher number of clients and the increased needs of persistence, that
critical sensitive data have, in order to obtain a generic method for making a previously
centralized service to be highly available, with minimum changes at the service level.

Note that the load balancing feature of the novel solution presented in this paper has
been explained theoretically, in Section 3.1. The experimental evaluations performed are
orthogonal to each other, since it is easier to follow if the evaluation is performed separately,
for each important feature of this novel approach for improving the service’s availability.

The testbed used to evaluate the improved solution, for a highly available service
processing requests, involves nodes in our team’s datacenter, which has a front end and a
large collection of working nodes behind it. We have focused on proving the functionality
of the model for a highly available service described in Section 2. This is why we have
launched the load balancing nodes on the datacenter’s front end and the effective service
peers on heterogeneous working nodes that we usually contact only via the front end.
Note that, in order to obtain the best performance, the current novel solution for high
availability was tested by running it on nodes that were fully loaded by the service. Each
load balancing node has an equal probability to be contacted. We have gradually deployed
a Chord network, having a maximum of 128 peers, and on top of each peer there is also
the application service that is running. The network that interconnects the peers, and the
network that connects each of the peers with the load balancers representing the front end
of the service, is a high speed network. The observed ping delay when contacting one node
from another node in the datacenter does not exceed 2 ms, and is usually around 1 ms if
the nodes are not in the same rack, and around 0.3 ms if the nodes are in the same rack.
The decision to stop at 128 nodes is based on the observation that, in practice, this number
of nodes is eloquent for showing system scalability, since, to the author’s knowledge, most
of the common highly available applications are deployed on a few nodes, certainly no
more than 100.

From the performed experiments, notice that the extra delay for fully processing the
client’s requests by the service, introduced by deploying it on a DHT of about 128 peers in
our datacenter, has a mean value no larger than 15 ms, which makes it negligible and thus
validated the fact that this improved novel solution for high availability is transparent to
the service’s clients.

3.1. Practical Evaluating of the System’s Scalability

Indeed, from the evaluation experiments performed in our datacenter, which involved
a maximum of 128 nodes, the results show that the number of messages exchanged by the
peers in order to find the destination of a message routed via Chord, i.e., to find the Chord
node that is responsible for handling and processing a particular client’s request, was no
larger than 7 hops. It is obvious that 7 = log2(128), meaning that our experimental findings
are in accordance with [9]. If extrapolating the measurements performed for 128 peers to
about 1024 peers, we obtain no more than 10 hops, or inter-peer messages, to reach a Chord
ID destination, which means that for a number of peers that is 10x greater than the number
of peers that we have launched, the number of exchanged Chord messages remains almost
the same, since the integer part of the logarithm function grows very slowly.

Moreover, if identifying a very loaded peer by the requests of the clients it must
serve, there exists the means to decide deploying a new peer, in order to re-balance the
load. Thus, the extended network, integrating this new peer, will have almost the same
system inter-peer routing communication delay, since the maximum number of routing
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hops for messages among peers is represented by the graphic representation of the function
[log2(K)], where [X] takes the integer part of the real value X.

The performed experiment to show the novel solution’s improved scalability was the
following: the load balancing node was deployed and then, gradually, 1, 2, . . ., 127 and
128 improved Chord peers were deployed to help handle the already loaded service that
needs to process its clients’ requests, as described in Section 2. This was actually the way to
gradually instantiate an infrastructure that is able to provide improved high availability via
scalability for the request processing service. Each time, we waited for the infrastructure to
converge to a fully connected DHT. On this logical and physical infrastructure, messages
were sent via the DHT communication layer towards various nodes in order to see an
increasing number of DHT routing hops and the time needed to traverse those hops. As can
be seen from Figure 5, the number of messages was no larger than 7, i.e., as expected, the
base 2 logarithm of the maximum number of deployed peers: log2(Nopeers). From Figure 5,
too, note that the maximum routing time needed to send any message via the Chord DHT
distributed routing infrastructure was no larger than 8 ms, which represents a reasonable
overhead for the benefit of increased scalability. The obtained results are according to the
authors’ expectations, since, when measuring the maximum inter-node communication
delay within our cluster, it was of no more than 2 ms per node pair.

Figure 5. The extra time needed by the system to reply to the client, via the DHT.

The almost stair shape of the plotted curve in this work’s experimental results is in
tight correlation with the shape of the integer part of the logarithm of the number of DHT
deployed nodes, i.e., [log2(Nopeers)].

3.2. Practical Evaluating of the System’s Fault Tolerance

This section evaluates the fault tolerance of the system by means of experimental
validation. The following experimental steps were performed: a number of peers ranging
from 0 to 128 was deployed, clustered in three different groups of nodes of our datacenter.
For each of the DHT dimensions ranging from 1 to 128, we considered both: (1) the case
when a new peer joined the network, and have evaluated the time until that peer or the
data keys it must handle could be reached, by routing via the DHT; (2) the case when a
peer left the network, and evaluated the time until its backup peer took over for the IDs
that belonged to the failing peer, as was also described in the replication mechanism of
Chord [9]. Note that, as already explained in Section 2, the keys that a peer p is responsible
for are also Chord IDs. Moreover, each peer is responsible for the Chord IDs that are
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situated between its predecessor and himself, i.e., the keys that a peer p is responsible for
are: ChordIDpredecessor(p) < ChordIDkey(p) ≤ ChordIDp.

Note, from Figure 6, that the time intervals needed for the DHT infrastructure to
stabilize, i.e., to be entirely aware of the topology changes, are clustered around three
centers. Remember that the DHT had been deployed in three areas of our datacenter,
on heterogeneous types of nodes. It has already been mentioned in this section, that the
inter-node communication delay within a single area is very low, i.e., 0.30 ms, while the
communication delay between each pair of different areas of the cluster is of between 1–2
ms. If three areas in the datacenter are considered, besides the pairs of nodes that belong to
the same area and thus communicate extremely fast, we can form only three other types
of pairs (peersource, peerdestination), i.e., C3

2 types of pairs, where the area for each source
peer is different from the area of each destination peer. These three areas in the plot, that
can be seen in Figure 6, correspond to the total stabilization time needed by peers of one
datacenter area to learn about the infrastructure changes in each other datacenter area. The
infrastructure changes involve, with equal probability, both new peers joining the DHT
and failing peers, leaving the DHT.

The explanation for the slight spikes in the obtained plots is the fact that not all peers
have been deployed within the same rack, and the communication delay within a rack is of
about 300 microseconds, while the inter-rack communication delays experienced in our
experiments is between 1–2 ms.

Figure 6. The extra time needed by the DHT to re-stabilize after a peer join or a peer leave.

3.2.1. The Improvement in Fault Tolerance

The proposed new model based on DHT enables the entire system, running on a
collection of peers, to become aware rather fast of the changes in the peer topology, i.e.,
either peer join or peer fail/leave, which is extremely difficult without a DHT. From Figure 6,
in the worst case scenario, the model needs no more than 2 s for every peer to update their
DHT routing tables, thus becoming aware of the new topology. Note that the maximum of
2 s, which has been measured, is needed only for peers that find themselves far from each
other on the Chord ring, but for neighbor nodes, which are also backups for each other in
Chord, the time is far lower. The delay for any peer to find out that the peer for which it
was the backup has left the network is most often around the value of the sum between
the configured stabilization time within the Chord network and the time needed to route a
message one hop away via the DHT, which is between 1–2 ms, as can be seen from Figure 5.
Moreover, note that the Chord stabilization time interval, which is a time interval when
periodically each peer pings the peers in its finger table, is a value that can be configured in
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each peer, according to the system’s best balance and needs. Since this solution is, to its
authors’ knowledge, the first to use the DHT for reliable request processing and not just for
reliable data storage, it is the first to benefit of the DHT derived features of topology update
awareness, in a time interval that can be configured to be sufficiently low, if this is vital to
the request processing service.

3.2.2. The Improvement in Load Balancing

The current solution balances the load of the entire set of peers transparently and fast,
based on the powerful properties of the distributed hash, which have been described into
detail in Section 2.1. Any hash table classically gives a fast and constant means to access
various data, while a good distributed hash table, such as Chord, succeeds to fulfill this
purpose by evenly distributing the keys among more peers belonging to the DHT. The even
distribution of the keys on peers, which actually directly translates into peer load balancing,
is a direct consequence of: (1) the features of a good hash, such as SHA-1 [38] and (2) the
smart idea behind the DHT such as Chord, to have a unified space for the peer IDs and
the data keys. Moreover, since it relies on both of them to function well, load balancing
finds itself at the confluence of fault tolerance and scalability, both having been evaluated
experimentally in this section.

3.3. Evaluation Conclusions

In conclusion, seen as a whole, the extra time that the decentralization solution for a
highly available service running in our datacenter introduces, in comparison to the single
node server, is not very high. The extra time experienced by the client when it receives the
reply to its first message to the request processing service, is actually the time needed to
route a message in the Chord ring of about 128 peers. This translates in the fact that there is
a certain cost for the benefits of load balancing and decentralization, fault tolerance and
scalability that Chord brings with it, but this time cost is perceived only for the first message
of the session initiated by the client, and also in cases of re-connection. For the rest of the
session, there is no extra delay introduced by the new layers of the decentralized distributed
service. The enhanced Chord ring is actually the main component for decentralizing the
distributed service, via its intrinsic unique mechanisms [9], also previously evaluated
in [42].

The authors wish to point out the fact that, from the current implementation and
experiments for improving high availability, the DHT is essential in the observed increase
in availability for the distributed service. In itself, any DHT is a scalable system, balanced
and fault tolerant, also allowing many improvements and extensions, some of which also
being new contributions described in this paper and evaluated in this section. During the
measurements that have been performed in this work, the aim was to minimize the time
impact of the components and the algorithms that maintain a highly available infrastructure
for the request processing service, throughout the entire evaluation process.

4. Discussion

Before this work, DHTs have only been used to enable data storage that is fault tolerant,
balanced and scalable, not addressing the data processing aspect at all. By analyzing the
existing bibliography and the benefits that the DHT brings to a decentralized distributed
database, this paper reaches the conclusion that one could exploit and use the same DHT
data storage benefits, for handling data processing requests in a highly available manner.
The idea behind this is to use the dispersion function, i.e., the hash, in order to equally
spread the client requests among DHT Chord peers, that also run the service on top of them.
The next step was to adapt the system’s architecture in order to “squeeze out” of the DHT
and extrapolate to the entire service, the features of scalability, load balancing and fault
tolerance. This way, with high probability, if the mathematical hash function is well-designed,
each Chord node would handle about the same number of clients; moreover, if we use a
self-extending enhanced Chord infrastructure, in case any Chord node becomes overloaded,
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by processing its clients’ requests, the DHT is able to self-extend exactly in the point where
it is needed, thus providing both load balancing and scalability. Given that, in the hereby
proposed novel solution, scalability comes with a small cost of extra communication, and
knowing that in Chord, with high probability, the number of communication hops has a
logarithmic growth with respect to the number of peers: [log2(Nopeers)], Section 2 explains
and Section 3 experimentally confirms that the novel solution described by this paper
is indeed a scalable, fault tolerant and balanced system, with negligible communication
overhead. Last but not least, if any of the Chord nodes suddenly becomes unavailable, the
improved availability solution handles this situation by having its clients’ data replicated on
neighbors. Consequently, by using the stabilization mechanism within Chord, the clients,
for whom the failing node was responsible, experienced only something similar to a packet
loss, a problem that can always be fixed by a retransmission. This retransmission will be
taken over by the new responsible peer for that client, via the load balancing dispatcher,
which is the front end of the service.

5. Conclusions

The current work introduces a novel method to decentralize not just storage, that is
classically addressed by DHTs, but also processing, thus making services highly available,
based on the fact that the data they use are already stored in a fault tolerant, balanced and
scalable manner. This work originated from our team’s past experience with highly avail-
able storage and DHTs, which this work aims to put into a new light, in a hot, up-to-date
context, the one of rendering a single system image for a group of nodes collaborating
in order to provide a common service. In the previous sections, we have identified and
analyzed the problems that can impact the availability of a distributed service. The iden-
tified and analyzed aspects are: fault tolerance, scalability and load balancing. For all
of these, throughout this work, we offered unified novel solutions that offer availability
improvements when applied to any request processing server; these improvements were
based on a decentralized DHT architecture.

The objective of this work had been from the very beginning to explore and extend
the capabilities of the Distributed Hash Tables (DHTs), since the authors have felt that
there can be more to them than just storage. The peer-to-peer systems and especially the
DHTs, such as [9,11,12,33] have been introduced for quite some time, and have been the
starting point for data sharing in distributed filesystems [1,19], but also for file sharing in
home networks [43,44] or even in early IP telephony solutions [45]. Very recently, the DHTs
have come into focus again, in storage and replication [6], in name resolution and resource
lookup [2,3,13], but also in routing [15], and even in blockchain [2,3] design. Nevertheless,
despite their very good quality to balance loads, a feature which derives from the properties
of the hash function, the authors have not identified DHTs and peer-to-peer networks to
be used in order to simplify and make more available services of data processing. On
the other hand, there is a growing need on the market for high availability in request
processing services, such as for example in IP telephony and conferencing, during a time
when people have been forced to used more virtual meeting means than physical ones. This
is where the current original solution, for highly available processing of requests can be
very useful and applicable, could become useful, while keeping in mind that the obtained
high availability introduces a small but manageable delay, due to the DHT extra layer that
is found between the transport layer and the application layer from the TCP/IP protocol
stack. Using peer-to-peer networks as an overlay network, i.e., abstract network, is not
new, this concept being often connected today also with virtualization [46]. The authors
have used the DHT layer similar to how VRRP (Virtual Router Redundancy Protocol) is
classically used in order to transparently provide redundancy and finally high availability
in a network [47] the enormous plus of DHTs being that they are far more flexible.

In the future, we would like to evaluate the improved model introduced by this paper
also on a more geographically distributed architecture, in order to have even less functional
dependencies among some sets of nodes, but also to see the overhead that this novel
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DHT-based improved solution introduces in such a deployment. Moreover, we would like
to apply this recipe for a set of popular distributed request processing services, to turn
each of them into highly available services, with minimum or no changes to the interface to
their clients.
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