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Abstract: The quantum model has been considered to be advantageous over the Markov model
in explaining irrational behaviors (e.g., the disjunction effect) during decision making. Here, we
reviewed and re-examined the ability of the quantum belief–action entanglement (BAE) model
and the Markov belief–action (BA) model in explaining the disjunction effect considering a more
realistic setting. The results indicate that neither of the two models can truly represent the underlying
cognitive mechanism. Thus, we proposed a more realistic Markov model to explain the disjunction
effect in the prisoner’s dilemma game. In this model, the probability transition pattern of a decision
maker (DM) is dependent on the information about the opponent’s action, Also, the relationship
between the cognitive components in the evolution dynamics is moderated by the DM’s degree
of subjective uncertainty (DSN). The results show that the disjunction effect can be well predicted
by a more realistic Markov model. Model comparison suggests the superiority of the proposed
Markov model over the quantum BAE model in terms of absolute model performance, relative model
performance, and model flexibility. Therefore, we suggest that the key to successfully explaining the
disjunction effect is to consider the underlying cognitive mechanism properly.

Keywords: decision making; disjunction effect; prisoner’s dilemma; quantum model; Markov model

MSC: 91B06

1. Introduction

WON? CHEERS!
LOST? CHEER UP!
What time is it? It’s football time!
These lines are taken from a beer advertising campaign conducted during the English

Premier League season (see Today, 2 September 2002; p. 42). The advertisement tries to tell
soccer fans that it is always a good choice to drink a beer regardless of the outcome. This
advertisement raises a question: if the fans do not know whether their team has won or
lost, would they choose to drink? Savage suggested that if the fans choose to drink a beer
when their team wins and when it loses, they will also choose to drink a beer if the outcome
is uncertain [1]. This is referred to as the ‘sure-thing principle’. It states that if one prefers
action A over action B under the state of the world X, and if one would also prefer action
A over action B under the opposite state of the world ~X, then one should prefer action
A over action B even if the state of the world is unknown [1]. The sure-thing principle is
consistent with basic rational choice. However, researchers showed that people occasionally
violate the sure-thing principle (e.g., [2,3]). Tversky and Shafir called such violation of
the sure-thing principle the ‘disjunction effect’ [3]. One of the well-known examples is
the disjunction effect in the one-shot prisoner’s dilemma (PD) [2]. In a PD game with a
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typical payoff matrix (as displayed in Table 1), the payoff entries satisfy the inequalities
x3 > x4 > x1 > x2 [4] so that defection is the dominant choice. Shafir and Tversky [2] made a
key innovation by including trials that informed a player of the opponent’s action before
they made a decision, in order to test the sure-thing principle. Their results were quite
surprising. Many players defected when their opponent’s action was known: the defection
rate was about 97% and 84% when the opponent was known to defect or to cooperate,
respectively. However, they changed their decision to cooperation when their opponent’s
choice was unknown, with a defection rate of about 63%. This presents a clear violation of
the sure-thing principle in that the defection rate should not fall below 84% according to
this principle.

Table 1. Payoff matrix of a typical PD game: in a typical PD game, the payoff matrix is set up in the
way that no matter what move your opponent makes, you are better off to defect; the same is true for
your opponent. The following table shows an example.

The Opponent Defects The Opponent Cooperates

You defect You and your opponent each
get 30 (x1)

You get 85 (x3) and your
opponent gets 25 (x2)

You cooperate You get 25 (x2) and your
opponent gets 85 (x3)

You and your opponent each
get 75 (x4)

Ever since the disjunction effect was found, it has attracted considerable interest.
Several psychological theories, such as reluctance-to-think [2] and equate-to-differentiate [5]
assumptions were originally proposed to qualitatively explain the disjunction effect. Later,
as quantum models of cognition and decision making have become a popular new approach
to psychology [6], one influential type of quantum model for decision making, the quantum
belief–action entanglement (BAE) model, which is derived from quantum probability
theory [7] and the Markov process model [8,9], was proposed to quantitatively account
for the disjunction effect. A series of studies have suggested that the quantum probability
based quantum BAE model can explain the disjunction effect, while the classical probability-
based Markov process model (Markov BA model), with the identical cognitive setting,
cannot (e.g., [10–13]). However, recent empirical studies suggest that the socio-economic
decision making process can be regarded as a result of dual processes (one deliberate
process and one intuitive process) (e.g., [14,15]), which can be well modelled by a drift
diffusion model [16,17]. It should be noted that the drift diffusion model is also a Markov
process model [18], and the mathematical difference between the Markov BA model and the
diffusion model is that the Markov BA model is a discrete state Markov model, while the
diffusion model is a continuous state model [19]. Given the validity of the Markov process
model in explaining the socio-economic decision making process, it is worth investigating
the failure of the Markov BA model in explaining the disjunction effect in the one-shot
PD game by asking: it is really because of the inferiority of the Markov process model
compared to the quantum BAE model or is it because the cognitive setting in the Markov
BA model cannot properly reflect the realistic cognitive mechanism.

Driven by this question, the first aim of our study is to re-examine the Markov BA
model, together with the similar quantum BAE model, focusing on the consistency between
the model setting and the realistic cognitive mechanism. As the re-examination results in
Section 3 revealed that several model settings are inconsistent with the realistic cognitive
mechanism, the second aim of our study is to explore the effectiveness of a discrete state
Markov model in explaining the disjunction effect. For this purpose, we developed an
alternative discrete state Markov process model, which is corrected from those unrealistic
settings, to account for the disjunction effect in the one-shot PD game.

The rest of the paper is structured as follows. Section 2 reviews the cognitive settings
in the Markov BA model, the quantum BAE model and the recent relevant works. Then a
re-examination of the quantum BAE and Markov BA models considering the underlying
cognitive mechanism is conducted in Section 3. Based on the re-examination results, we
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propose an alternative, more realistic Markov model to account for the disjunction effect
in the one-shot PD game in Section 4. The model application results are compared and
discussed in Section 5. Finally, Section 6 comes to the conclusion.

2. Background
2.1. Cognitive Settings in Quantum BAE and Markov BA Models

The cognitive settings of the decision making process in the quantum BAE and Markov
BA models can be displayed in Figure 1. φ(·), is the probability distribution across belief–
action states in the DM’s mind (see Supplementary Material or [20] for details), which
evolves across the decision making process based on the information about the opponent’s
action, payoff evaluation and cognitive dissonance. When receiving information about the
opponent’s action at time t1, the probability distribution across belief–action states changes
to φ(t1|N ) (where N ∈ {KD, KC, Ukn}, hereinafter). Then, the dynamical evolution of
decision process happens during t1 and t2 in which a DM adopts both payoff evaluation
and cognitive dissonance (or so called BAE) strategies in order to make a decision. Payoff
evaluation is a rational strategy representing that a DM evaluates the payoffs corresponding
to different pairs of belief–action states to select an action with a higher payoff. Cognitive
dissonance is a heuristical strategy that makes the DM’s belief and action more consistent:
in the case of the PD game, when a DM believes that the opponent will defect/cooperate,
then the DM will tend to defect/cooperate, and vice versa.

Mathematics 2022, 10, x FOR PEER REVIEW 3 of 23 
 

 

crete state Markov model in explaining the disjunction effect. For this purpose, we devel-
oped an alternative discrete state Markov process model, which is corrected from those 
unrealistic settings, to account for the disjunction effect in the one-shot PD game. 

The rest of the paper is structured as follows. Section 2 reviews the cognitive settings 
in the Markov BA model, the quantum BAE model and the recent relevant works. Then a 
re-examination of the quantum BAE and Markov BA models considering the underlying 
cognitive mechanism is conducted in Section 3. Based on the re-examination results, we 
propose an alternative, more realistic Markov model to account for the disjunction effect 
in the one-shot PD game in Section 4. The model application results are compared and 
discussed in Section 5. Finally, Section 6 comes to the conclusion. 

2. Background  
2.1. Cognitive Settings in Quantum BAE and Markov BA Models 

The cognitive settings of the decision making process in the quantum BAE and Mar-
kov BA models can be displayed in Figure 1. 𝜙(∙), is the probability distribution across 
belief–action states in the DM’s mind (see Supplementary Material or [20] for details), 
which evolves across the decision making process based on the information about the op-
ponent’s action, payoff evaluation and cognitive dissonance. When receiving information 
about the opponent’s action at time 𝑡 , the probability distribution across belief–action 
states changes to 𝜙(𝑡 |𝑁) (where 𝑁 ∈ {KD, KC, Ukn}, hereinafter). Then, the dynamical 
evolution of decision process happens during 𝑡  and 𝑡  in which a DM adopts both pay-
off evaluation and cognitive dissonance (or so called BAE) strategies in order to make a 
decision. Payoff evaluation is a rational strategy representing that a DM evaluates the 
payoffs corresponding to different pairs of belief–action states to select an action with a 
higher payoff. Cognitive dissonance is a heuristical strategy that makes the DM’s belief 
and action more consistent: in the case of the PD game, when a DM believes that the op-
ponent will defect/cooperate, then the DM will tend to defect/cooperate, and vice versa. 

 
Figure 1. Graphical illustration of the cognitive settings in quantum BAE and Markov models. 

There are several characteristics in the settings of the quantum BAE and Markov BA 
models to be addressed. Firstly, the settings assume that there is no influence of the op-
ponent’s information on the subsequent evolution dynamics, indicating that a DM will 
adopt the identical payoff evaluation and cognitive dissonance strategy to make a decision 
under decision conditions with different information about the opponent’s action. Sec-
ondly, the settings assume the independence between the payoff evaluation and cognitive 
dissonance during the decision process, indicating a DM will adopt these two strategies 
in a constant ratio through the decision making process. Thirdly, the models assume one 
fixed duration for the decision making processes of different decision conditions. 

2.2. Dual Processing in Socio-Economic Decision Making 

Figure 1. Graphical illustration of the cognitive settings in quantum BAE and Markov models.

There are several characteristics in the settings of the quantum BAE and Markov BA
models to be addressed. Firstly, the settings assume that there is no influence of the oppo-
nent’s information on the subsequent evolution dynamics, indicating that a DM will adopt
the identical payoff evaluation and cognitive dissonance strategy to make a decision under
decision conditions with different information about the opponent’s action. Secondly, the
settings assume the independence between the payoff evaluation and cognitive dissonance
during the decision process, indicating a DM will adopt these two strategies in a constant
ratio through the decision making process. Thirdly, the models assume one fixed duration
for the decision making processes of different decision conditions.

2.2. Dual Processing in Socio-Economic Decision Making

Dual processing theory states that there are two different cognitive components of
processing involved in the socio-economic decision making: (1) the conscious, deliberative
and analytic reasoning processing, (2) the intuitive, unconscious and heuristical reasoning
processing [21,22]. These two components compete with each other, and the dominant com-
ponent in the competition can be varied across different decision conditions (e.g., [23–27])
and different periods of the decision processes (e.g., [28–30]).

Many characteristics of the decision condition (e.g., time constraint, task complexity)
can affect the competence between these two components. For example, researchers have
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found that under time pressure, people tend to adopt more heuristical strategy than under
time free or time delay conditions, where they tend to adopt more deliberative strategy [27].
During the decision process, component 2 is believed to dominant the decision process at
the very beginning, but as the decision process goes on, component 2 gradually gives way
to component 1.

Recently, a biased drift diffusion model was proposed to capture the behavioral
patterns in socio-economic decision making under different conditions [17]. To achieve the
dual processing framework, the model regards component 2 as a starting point bias that
is imposed on the very beginning of the decision process and component 1 as a drift rate
determined by the utility difference between options that is imposed on the subsequent
decision process. The model assumes that these two parameters can vary across different
conditions. Such a model has proved to be an effective approach to quantitatively describe
the decision process in the mini-dictator games. One might argue, why not just adopt this
model to account for the disjunction effect? The reasons are as follows. Firstly, the drift
diffusion model requires real decision time and many more model parameters to account
for the decision process under different conditions (11 free parameters in the case of our
study), which will cost much more computational resource and may lead to unnecessary
model complexity. Secondly, and more importantly, the model fails to completely capture
the intricate competence between these two components as their corresponding parameters
are assumed to be independent with each other, which remains as the biggest challenge for
our study.

Findings in other recent studies shed light on the solution of this challenge. It has
been found that increased uncertainty about the behavior of the opponent and the payoff
consequences cause DMs to use more heuristics in the socio-economic decision making
process [31,32]. Under the framework of the Markov BA model, such uncertainty can
be derived through measuring the uncertainty degree across the probability distribution
across belief–action states (i.e., the subjective uncertainty degree, DSN, as mentioned in
Section 4.1), as it reflects how certain a DM is about the opponent’s action and the payoff
consequence after a specific action. Therefore, DSN may serve as an effective indicator of
the competence between component 1 and 2.

2.3. Model Evaluation Metric

To evaluate the model performance for further model comparison, several model
evaluation metrics are adopted and described in the following. The first, and also the most
common metric is the root mean squared deviation (RMSD), which indicates the absolute
model performance [33]. However, one important shortcoming of RMSD is that it fails
to take model complexity into consideration, in that a model with more free parameters
typically exhibits better absolute performance. The second model evaluation metric, the
Bayesian information criterion (BIC) [34], considers the impact of model complexity on
fitting performance and is used to show relative model performance [34]. The third model
evaluation metric, model flexibility, refers to the ability of a model to fit different patterns
of data [33]. We want a model to be flexible enough to capture the underlying cognitive
process, which can be complicated; but, at the same time, the model must not be too flexible.
An ideal model is parsimonious and generates only those choice patterns that are observed
in experiments [35].

2.3.1. Root Mean Squared Deviation (RMSD)

A popular and simple model evaluation method is the (square root of the) average
of the squared deviations (or root mean squared deviation (RMSD)) between observed
data and model prediction. Specifically, RMSD was calculated as Equation (1), in which J
denotes the number of decision conditions, oi denotes the observed mean defection rate in
condition i and pi denotes the mean defection rate predicted by the model. A smaller value
of RMSD indicates a better absolute model performance.
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RMSD =

√
∑J

i=1(oi − pi)
2

J
(1)

2.3.2. Bayesian Information Criterion (BIC)

The BIC considers the impact of model complexity on fitting performance. A lower
value of the index indicates a better balance between goodness of fit and model com-
plexity and thus suggests a more desirable model [34,36]. The BIC can be calculated as
Gi + k ln(3N), where k is the number of free parameters in the model, Gi statistic expresses
the badness of fit of the model predictions with the observed values, which can be defined
as 2L ∑J

i=1(oi ln(pi) + (1− oi) ln(1− pi)), where L refers to the number of choices included
in each condition [14]. A lower value of BIC indicates a better balance between goodness of
fit and model complexity (in terms of the number of free parameters) and thus suggests a
more desirable model.

2.3.3. Model Flexibility

Model flexibility can be measured by the PSP (parameter space partitioning)
method [37,38]. Such a method systematically assesses the choice patterns predicted by
the models across the entire parameter space. A model is considered to be overly flexible
when it can generate not only all choice patterns that are observed empirically but also
choice patterns that are logically possible but never observed. Instead, one should pre-
fer a less flexible model that only generates choice patterns that are actually frequently
observed in experiments. In the case of the one-shot PD game, such patterns should be
the disjunctive pattern (p(D |KD ) > p(D |KC ) > p(D |UK ), #1) and the non-disjunctive
pattern (p(D |KD ) > p(D |UK ) > p(D |KC ), #2) [39–41]. To implement PSP, we used a
grid search method [38] as follows. For each model and each parameter, we chose 100
values that were equally spaced over the corresponding parameter range. All combinations
of these parameter values were used to generate data, which were then used to compute
the proportions of each possible logical choice pattern.

3. Re-Examination of Quantum BAE and Markov BA Models

In this section, we conduct a thorough re-examination of quantum BAE and Markov
BA models to test whether the settings in evolution dynamics can truly represent the
underlying decision-making process. Specifically, we aim to examine whether the two
cognitive components (i.e., payoff evaluation and cognitive dissonance), their mutual
relation, and the decision time are properly represented in these two models.

3.1. Unrealistic Payoff Evaluation
3.1.1. The Preference for Higher Payoff Is Not Always Satisfied

The payoff evaluation represents the DM’s ‘rational’ preference for a higher payoff,
which mathematically implies that for a pair of belief–action states with different payoffs,
the probability of transitioning from one state with a higher payoff to the other state with
a lower payoff is smaller than the transition probability in the opposite direction. The
decision process dominated by payoff evaluation can be described by Up(t) and Tp(t)
in the quantum BAE and Markov BA models, respectively (see Supplementary Material
or [20] for details), in which t represents the time in the decision process, and hD, hC, kD, kC
represents the utility differences between the payoffs corresponding to the different belief–
action states.
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Up(t) = e−i·t·Hp =

[
U1(t) 0

0 U2(t)

]

U1(t) =

 cos(t)− i· sin(t)√
1+h2

D
− i·hD · sin(t)√

1+h2
D

− i·hD · sin(t)√
1+h2

D
cos(t) + i· sin(t)√

1+h2
D


U2(t) =

 cos(t)− i· sin(t)√
1+h2

C
− i·hC · sin(t)√

1+h2
C

− i·hC · sin(t)√
1+h2

C
cos(t) + i· sin(t)√

1+h2
C


(2)

It is clear from this formulation that Up(t) is a symmetric matrix so that
∣∣∣Upij(t)

∣∣∣2 is

always equal to
∣∣∣Upji(t)

∣∣∣2 at any time point t, leading to the well-known consequence of the
Hermiticity. This means that the probability of transitioning to state i from state j is always
equal to the probability of transitioning to state j from state i during the decision process
regardless of the differences in the payoffs corresponding to different states. Therefore,
what we can infer from Up(t) is that different payoffs are identical in the eyes of the
DMs during the decision process. This is not only inconsistent with the intention of the
preference for the higher payoff but is also against common sense.

Tp(t) = et·Kp =

[
T1(t) 0

0 T2(t)

]
T1(t) = 1

1+kD

[
kD + e−(1+kD)·t kD − kD·e−(1+kD)·t

1− e−(1+kD)·t 1 + kD·e−(1+kD)·t

]

T2(t) = 1
1+kC

[
kC + e−(1+kC)·t kC − kC·e−(1+kC)·t

1− e−(1+kC)·t 1 + kC·e−(1+kC)·t

] (3)

According to the intention of payoff evaluation, elements in Tp(t) should satisfy
Tp12(t) > Tp21(t) and Tp34(t) > Tp43(t). However, this can be violated when 0 < kD, kC < 1,
which implies that Tp(t) in the Markov BA model still cannot fully serve its purpose. However,
compared to the quantum BAE model, it is clear that the problem in the Markov BA model, as a
result of the loose constraint on the relationship between hD/hC and the constant parameter ‘1′

in Kp(t), is much simpler than that in the quantum BAE model.

3.1.2. DMs Treat the Same Payoff Information Regardless of Opponent’s Actions

In the quantum BAE and Markov BA models, the matrices representing payoff evalua-
tion (Up(t) and Tp(t)) remain the same under different conditions. This setting means that
DMs evaluate the same payoff information regardless of the opponent’s action. Moreover,
the formulation of Up(t) and Tp(t) indicates that probability transitions can only happen
between two pairs of states, BDAD ↔ BDAC and BCAD ↔ BCAC , as shown in Figure 2a.
This further implies that DMs can only evaluate two pairs of payoffs ( x1 ↔ x2 ; x3 ↔ x4 ),
which is inconsistent with the real decision-making condition because DMs should pay
attention to different pairs of payoffs depending on the opponent’s action [39,42]. When
the opponent’s action is known, the DM’s belief about the opponent is fixed, and he/she
only needs to consider one pair of payoffs corresponding to the fixed belief. Thus, the
available probability transition can only happen between state BDAD and BDAC (or state
BCAD and BCAC) as illustrated in Figure 2b (or Figure 2c). When the opponent’s action
is unknown, payoffs corresponding to all the states are available for DMs for evaluation.
Thus, the probability transitions can happen between all the possible pairs of states as
illustrated in Figure 2d.
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3.2. Unrealistic Belief and Action Entanglement

The highlight of both quantum BAE and Markov BA models is belief and action
entanglement (produced by Hb and Kb in both models, see Supplementary Material or [20]
for details), which in essence, is a matter of cognitive dissonance [20,43]. In the case of the
one-shot PD game, when a DM believes the opponent will defect, then the DM will tend to
choose to defect, and vice versa. Although Hb and Kb seem to function well to produce
cognitive dissonance under Ukn [20,43], they lead to unrealistic model predictions under
KD and KC. As a DM’s belief is fixed under KD/KC, in order to make belief and action
agree with each other, the DM will tend to defect/cooperate, increasing the probability
of observing state BDAD/BCAC. However, the outcomes in both models show otherwise.
By setting the model parameters as previous studies suggested for testing the cognitive
dissonance effect (c = 1, d = 10, tb = π/2, [20]), one can obtain the probability distribution
after a duration (tb) of the decision process dominated by cognitive dissonance using the
following equations.

For the quantum BAE model

‖ ψ(t1 + tb |KD ) ‖2 = ‖ e−i·π/2·Hb(c=1)·ψ(t1 |KD ) ‖2 =


0.25
0.25
0.25
0.25

 (4)

‖ ψ(t1 + tb |KC ) ‖2 = ‖ e−i·π/2·Hb(c=1)·ψ(t1 |KC ) ‖2 =


0.25
0.25
0.25
0.25

 (5)

For the Markov model

φ(t1 + tb |KD ) = eπ/2·Kb(d=10)·φ(t1 |KD ) ≈


0.454
0.046
0.046
0.454

 (6)
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φ(t1 + tb |KC ) = eπ/2·Kb(d=10)·φ(t1|KC ) ≈


0.454
0.046
0.046
0.454

 (7)

As shown in Equations (4)–(7), the probability of observing state BDAD/BCAC under
KD/KC is 0.5 at time t1. It then drops to 0.25 (quantum BAE model) and 0.454 (Markov
BA model) after a duration tb of the decision process dominated by cognitive dissonance.
Even more unrealistic is the occurrence of non-zero probabilities of the states in which
the belief about the opponent’s action is not consistent with the known information. For
example, when the DM knows that the opponent will defect, then the DM’s belief about
the opponent’s action is fixed. Therefore, it is not likely that the DM’s belief will change to
agree with his/her action, which means that the probability of observing states with the
belief about the opponent’s action against the known information (BCAD and BCAC) after
the process should remain zero.

We suggested the following causes for these unrealistic cognitive dissonance outcomes.
First, Hb and Kb represent the probability transitions shown in Figure 3a, indicating that
DMs can make their beliefs agree with their intended actions but cannot change their
intended actions to agree with their beliefs. This is inconsistent with the definition of
cognitive dissonance. [44]. Second, since the probability transition patterns of the cognitive
dissonance process, as illustrated in Figure 3a for both quantum BAE and Markov BA
models, remain unchanged under different conditions, the difference in the probability
transition patterns across different conditions is not duly considered again. When DMs
know their opponent’s action, their belief towards the opponent’s action is fixed. Under
this circumstance, they only need to change their intended action to be consistent with their
belief, as illustrated by the probability transitions in Figure 3b,c. Otherwise, DMs can either
change their belief to agree with the intended action or change the intended action to agree
with their belief as shown in Figure 3d.
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quantum BAE and Markov BA models (a), the real probability transition patterns caused by cognitive
dissonance under KD (b), KC (c), and Ukn (d).

3.3. Violation of the Dual Processing Framework

Though it has not been clearly stated, it should be clear that both the quantum BAE
and Markov BA models are within the framework of the well-known dual processing
theory. The payoff evaluation can be considered as a conscious component, while the
cognitive dissonance as a heuristic component. According to the introduction of the dual
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processing framework in Section 2.2, the weight between payoff evaluation and cognitive
dissonance should vary across different decision conditions and evolve through the decision
process. For example, when a DM is confronted with a simple decision condition (e.g.,
KD or KC where a DM only needs to consider one pair of different payoffs, thus, less
cognitive resource is required), payoff evaluation should play a more advantageous role in
the decision-making process. When a DM is confronted with a complex decision condition
(e.g., Ukn where a DM needs to consider multiple pairs of payoffs, thus, more cognitive
resource is required), cognitive dissonance should play a more advantageous role. However,
as the matrices determining payoff evaluation and cognitive dissonance remain unchanged
across different conditions and periods in the decision process, indicating the constant
relationship between payoff evaluation and cognitive dissonance, the dual processing
framework is obviously violated in the quantum BAE and Markov BA models.

3.4. The Fixed Decision Time Parameter ‘π/2’

For quantum BAE models, the parameter t for decision time has always been fixed
at π/2. The reasons are as follows. On the one hand, π/2 ≈ 2 stands for the average
duration of decision making (2 s) for the DMs; on the other hand, and more importantly for
the quantum model, final defection probabilities (p(D, t1 + t|N, t1)) reach maxima when
t = π/2 [11,20,44]. However, such explanations for the fixed decision time do raise a
number of objections. First, whether parameter t can stand for the real decision time
still remains unclear. Second, there is no empirical evidence supporting 2 s to be the
average decision time, especially given the fact that the average decision time varies across
different tasks and different participants. Third, and most importantly, the statement that
the final defection choice probabilities reach their maxima when t = π/2 can be proven
wrong as shown in Figure 4, from which we can see that the maximum time point of
p(D, t1 + t|Ukn, t1) changes with different values of the parameter c.
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0.5263 as suggested in [20] for the production of the disjunction effect in the PD game.

3.5. Summary

This section presents a re-examination of the quantum BAE and Markov BA models,
based on which we posit that both models fail to describe the decision process properly.
Generally speaking, the major limitation of the Markov BA model, results from the lack of
considerations of the real decision-making situations (e.g., identical probability transition
patterns for different conditions), which can be corrected under proper consideration of
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the real decision-making situations. Moreover, for the quantum BAE model, the limitation
also comes from the very nature of the quantum framework (e.g., the symmetry of Up(t)
caused by Hermiticity), which cannot be easily solved under the current theoretical frame-
work. Therefore, it is feasible to develop a more realistic Markov model to account for the
disjunction effect in a one-shot PD game.

4. Proposed Method

In this section, we construct a more realistic Markov model, which takes the key
properties of realistic cognitive mechanisms into consideration, to account for the dis-
junction effect in the PD game. In Section 4.1, we first introduce the key settings in the
proposed Markov model that make our model more consistent with the underlying cog-
nitive mechanism we have discussed in previous Sections. Then, a detailed step-by-step
model construction procedure is provided in Section 4.2.

4.1. Model Highlights

The proposed Markov model includes the following unique key settings in the evolu-
tion dynamics of the decision process:

• The intensity matrices for payoff evaluation and cognitive dissonance are dependent
on the information about the opponent’s action.

• The weight between payoff evaluation and cognitive dissonance is moderated by the
DM’s DSN and is dynamically evolving during the decision process.

• The weight between payoff evaluation and cognitive dissonance can be considered as
unchanged during a small period of time ∆τ.

• The final decision time is determined by the time when the probability distribution of
a DM’s belief and action states reaches stationary.

The first setting is to make those matrices truly reflect the real probability transition
patterns under different conditions as we have mentioned in Sections 3.1 and 3.2. The
second, also the most important setting, is to adopt DM’s DSN about belief and intended
action as a moderator of the relationship between payoff evaluation and cognitive disso-
nance in order to fit the dual processing framework. The reasons for adopting DSN are
not only because of the empirical findings as mentioned in Section 2.2, but also because it
can correctly reflect the change in the relationship between payoff evaluation and cogni-
tive dissonance across different decision conditions and different periods of the decision
processes. Firstly, in the PD game, the increased task complexity in Ukn comes directly
from the introduction of the information uncertainty, which will lead to the increase in
DM’s DSN [39,42,45] and the consequential increase of the advantage on cognitive disso-
nance. Secondly, the decision-making process in some paradigms similar to the PD game
is believed to be a process of evidence accumulation [46], where the DM’s DSN reduces
as the accumulated evidence increases over time [47], exhibiting correspondence to the
evolution of the weight between payoff evaluation and cognitive dissonance during the
decision process. The third setting is to mimic the continuous decision process with a
discrete process for computational simplicity [48], and the last setting is to agree with the
fact that a DM has taken full consideration before making a decision, since a DM is not
forced to respond before a certain time point.

The essential differences in cognitive settings between the former two models (quan-
tum BAE and Markov BA models) and the proposed Markov model lie in the evolution
dynamics of the decision process. Figure 5 presents a schematic of the cognitive settings
in the proposed Markov model and highlights those differences. Two major differences
are summarized as follows. Firstly, the former two models assume that there is no influ-
ence of the opponent’s information on the subsequent payoff evaluation and cognitive
dissonance, leading to the invariance in the probability transition pattern across different
conditions, which is inconsistent with a real decision-making situation as we have discussed
in Section 3. In the proposed Markov model, however, the probability transition patterns
for both payoff evaluation and cognitive dissonance depend on the information about the
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opponent’s action, and, therefore, the variation in the probability transition patterns across
different condition (as illustrated in Figures 2 and 3) can be naturally derived. Secondly, the
former models assume a unilateral influence of cognitive components (payoff evaluation
and cognitive dissonance) on the DM’s belief and action state and assume independence
between each cognitive component, leading to the invariance in the weight between each
cognitive component across different conditions and different periods of decision process,
which is also against the dual processing framework mentioned before. In contrast, the
proposed Markov model assumes a bilateral influence between the cognitive components
and the DM’s belief and action states: at each moment during the decision process, the
evolution of the probability distribution across the DM’s belief and action states toward
the next moment is determined by the cognitive components, while the weight between
each cognitive component is moderated by the uncertainty in the probability distribution
across the DM’s belief and action states, which, as discussed, is an effective reflection of the
dynamical relationship between these two cognitive components.
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4.2. Model Construction

The flowchart of the construction of the proposed Markov model is illustrated in
Figure 6, including eight steps.

Step 1: Define the initial belief and action state.
When playing a typical PD game, there exists a set of mutually exclusive and exhaus-

tive belief states {BD, BC} and action states {AD, AC}. Specifically, BC stands for the belief
state in which the DM believes that the opponent will cooperate, while AD stands for the
action state in which the DM intends to defect. Then, the four dimensional sets of belief
and action states can be derived as {BD, BC} ⊗ {AD, AC} = {BDAD, BDAC, BCAD, BCAC}.
(The symbol ⊗ stands for the Kronecker product) in which, for example, BCAD symbolizes
the state in which the DM believes that the opponent will cooperate but the DM intends to
defect. The initial probability distribution across those four states for the proposed Markov
model can be set as ψ(t = 0) or simply φ(0).

φ(0) =


φDD(0)
φDC(0)
φCD(0)
φCC(0)

 (8)

where, for example, φCD(0) represents the probability of observing state BCAD at the
beginning of a game; φDD(0) + φCD(0) represents the probability of observing state AD
(i.e., probability of acting defection) at the beginning of a game. For simplicity, initial
distribution is typically assumed as uniformed with φi(0) = 1/4.
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Step 2: Evolution of the state based on the information about the opponent’s action.
As the decision-making process goes on, the probability distribution across belief

and action state evolves into a new distribution at time t1, as the information about the
opponent’s action changes the DM’s belief about the opponent’s action. If the opponent’s
action is known to be defect, cooperate or is unknown, the probability distribution across
belief–action states would change to φ(t1 |KD ), φ(t1 |KC ) and φ(t1 |Ukn ), respectively
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φ(t1 |KD ) = 1
φDD(0)+φDC(0)


φDD(0)
φDC(0)

0
0


φ(t1 |KC ) = 1

φCD(0)+φCC(0)


0
0

φCD(0)
φCC(0)


φ(t1 |Ukn ) = φ(0)

(9)

Step 3: Reconstruction of the intensity matrices for payoff evaluation and cognitive
dissonance.

Substep 3.1: Reconstruction of payoff evaluation
To reconstruct the payoff evaluation process, the transition matrix was firstly made to

agree with the fact that the probability of transitioning from the ith state with a higher payoff
to the jth state with a lower payoff is always smaller than it is for the opposite transition
direction. One can simply set Kp′ji(N) to be strictly smaller than Kp′ij(N) where Kp′(N) is
the intensity matrix determining the payoff evaluation under condition N. Therefore, the
following equation is applied to define the off-diagonal elements in Kp′(N)

Kp′ij:i 6=j(N) =

{
xi

λ

xi
λ+xj

λ i f φi(t1|N ) 6= 0 ∧ φj(t1|N ) 6= 0

0 i f φi(t1|N ) = 0 ∨ φj(t1|N ) = 0
(10)

xi represents the payoff corresponding to the ith belief and action state. The relation-
ship between φ(t1|N ) and Kp′ij(N) guarantees that the matrix will reflect the fact that DM
will evaluate different payoff information under different conditions as we have mentioned
in Section 3.1. λ > 0 is the bounded rationality parameter indicating how well a DM can
discriminate between the profitability of the different payoffs under a given condition [49].
By applying Equation (10) into different conditions, the intensity matrices representing the
payoff evaluation process for different conditions can be reconstructed as follows.

For KD, the intensity matrix Kp′(KD), corresponding to the condition in which a
probability transition can only happen between state BDAD and BDAC, can be defined as

Kp′(KD) =


−xλ

2
xλ

1 +xλ
2

xλ
1

xλ
1 +xλ

2
0 0

xλ
2

xλ
1 +xλ

2

−xλ
1

xλ
1 +xλ

2
0 0

0 0 0 0
0 0 0 0

 (11)

Additionally, the corresponding transition matrix Tp′(t|KD) can be derived as

Tp′(t
∣∣∣KD) = eKp′(KD)·t =


xλ

1 +e−t ·xλ
2

xλ
1 +xλ

2

xλ
1−e−t ·xλ

1
xλ

1 +xλ
2

0 0
xλ

2−e−t ·xλ
2

xλ
1 +xλ

2

xλ
2 +e−t ·xλ

1
xλ

1 +xλ
2

0 0

0 0 1 0
0 0 0 1

 (12)

From the formulation of Tp′(t|KD) , it is easy to prove that given x1 > x2, the prob-

ability of transiting from state BDAC to state BDAD, xλ
1−e−t ·xλ

1
xλ

1 +xλ
2

, is always larger than the

probability of transiting from state BDAD to state BDAC, xλ
2−e−t ·xλ

2
xλ

1 +xλ
2

, demonstrating a valid

correction of the preference for the state with a higher payoff.
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Similarly, for KC, the intensity matrix Kp′(KC) can be similarly defined as

Kp′(KC) =


0 0 0 0
0 0 0 0

0 0 −xλ
4

xλ
3 +xλ

4

xλ
3

xλ
3 +xλ

4

0 0 xλ
4

xλ
3 +xλ

4

−xλ
3

xλ
3 +xλ

4

 (13)

For Ukn, the intensity matrix Kp′(Ukn), representing probability transitions between
all the possible pairs of states, can be set as

Kp′ (Ukn) =



. . . xλ
1

xλ
1 +xλ

2

xλ
1

xλ
1 +xλ

3

xλ
1

xλ
1 +xλ

4
xλ

2
xλ

1 +xλ
2

. . . xλ
2

xλ
2 +xλ

3

xλ
2

xλ
2 +xλ

4
xλ

3
xλ

1 +xλ
3

xλ
3

xλ
2 +xλ

3
. . . xλ

3
xλ

3 +xλ
4

xλ
4

xλ
1 +xλ

4

xλ
4

xλ
2 +xλ

4

xλ
4

xλ
3 +xλ

4
. . .


(14)

where ‘· · · ’ stands for the diagonal elements Kp′ii(Ukn), which is equal to−∑4
j=1
(j 6=i)

Kp′ij(Ukn)

according to the property of the intensity matrix.
Substep 3.2: Reconstruction of cognitive dissonance
To reconstruct the cognitive dissonance process, we divide the belief and action states

into two kinds: BDAD and BCAC are the ‘stable’ states (SSt) in which belief and action agree
with each other, while BDAC and BCAD are the ‘unstable’ states (USt) in which belief and
action do not agree. We propose the following general definitions to reflect the effect of
cognitive dissonance on the probability transitions between a pair of belief and action states:

• A probability transition can only happen from one of any unstable states to one of any
stable states.

• A probability transition can neither happen from one stable state to another nor from
an unstable state to another.

The first definition guarantees those stable states are absorbing states, which, according
to the property of the Markov process, ensures that the probability of observing any stable
state is a monotonically increasing function of the transition parameter [50]. The second
definition reflects the fact that the effect of cognitive dissonance cannot make a DM change
both the belief and the action, and, therefore, there are no probability transitions between
state BDAD and BCAC or between state BCAD and BDAC. Based on these definitions,
we propose the definition of the off-diagonal elements in the intensity matrix Kb′(N)
representing cognitive dissonance in Equation (15), where 0 < d < 1 is the scale transition
parameter of the cognitive dissonance effect.

Kb′ij:i 6=j(N) =

{
d i ∈ {SSt∩ φi(t1|N ) 6= 0} ∧ j ∈ {USt∩ φi(t1|N ) 6= 0}

0 else
(15)

The role of φ(t1|N ) in Equation (15) is similar to that in Equation (10), which reflects
the variation of probability transition pattern under different conditions as shown in
Figure 3. Then, the intensity matrices of cognitive dissonance for different conditions can
be derived as

Kb′(KD) =


0 d 0 0
0 −d 0 0
0 0 0 0
0 0 0 0

 (16)
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Kb′(KC) =


0 0 0 0
0 0 0 0
0 0 −d 0
0 0 d 0

 (17)

Kb′(Ukn) =


0 d d 0
0 −2d 0 0
0 0 −2d 0
0 d d 0

 (18)

It should be noted that for the known conditions, since there is no probability tran-
sition to the states with the belief against the known information about the opponent’s
action, which guarantees the probability of observing a stable state after a duration of
cognitive dissonance is always greater than its initial probability, a valid correction of the
unrealistic probability reduction in the Markov BA model, as described in Section 3.2, is
therefore demonstrated.

Step 4: Calculate a DM’s DSN.
A DM’s DSN can be defined as how sure a DM is about the opponent’s action and

the outcomes after a specific action: when the opponent’s action is known, the payoff
information is quite clear and a DM is sure about the opponent’s action and the outcome
following that action, so that the DSN is low in this circumstance; when the opponent’s
action is unknown, the payoff information becomes complex and a DM feels uncertain about
both the opponent’s action and its outcome, resulting in a higher DSN. Mathematically, the
DM’s DSN can be defined as the uncertainty in the probability distribution across belief
and action states, thus, it can be derived using entropy methods. In our study, the classical
Shannon entropy is used to compute the DSN as follows

E(τ|N ) = −∑ φi(τ|N )· log2 φi(τ|N ) (19)

where φ(τ|N ) represents the probability distribution across the DM’s belief and action
states at time τ under the condition N, and higher E(τ|N ) reflects a higher DSN. For
example, at the beginning of the decision process (t1), when the opponent’s action is
known, the corresponding DSN E(t1 |KD ) and E(t1 |KC ) can be calculated as

E(t1 |KD ) = E(t1 |KC ) = −2 × 1
2
· log2

1
2
= 1 (20)

In contrast, a higher DSN for Ukn at t1 can be derived as

E(t1 |Ukn ) = −4 × 1
4
· log2

1
4
= 2 (21)

The difference in the DSN across different conditions at t1 is also a reflection of the
complexity difference in different conditions because no cognitive processing is involved at
the beginning of the decision process. As the decision process proceeds, the decrement in the
DSN can also be naturally derived in our model, as illustrated in Figure S1 (Supplementary
Material). This is because Markov-process-based decision-making models (including the
proposed Markov model and Markov BA model) essentially represent a DSN-reduced
evidence accumulation process [14,19].

Step 5: Calculate the weight between payoff evaluation and cognitive dissonance.
As mentioned before, the higher the DSN, the more weight on the heuristic cognitive

dissonance and the less weight on the deliberative payoff evaluation. To achieve this
purpose, a monotonic hyperbolic tangent function is adopted to map the DSN into the
weight coefficient ranging from 0 to 1 as follows.

wB(τ|N ) =
2

1 + exp(−2.5·E(τ|N ))
− 1 (22)
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wP(τ|N ) = 1− wB(τ|N ) (23)

wB(τ|N ) and wP(τ|N ) represent the weights for cognitive dissonance and payoff eval-
uation, respectively, at time τ in condition N. If a DM is extremely sure about the opponent’s
action and his/her intended action at time τ (this corresponds to the probability distri-
bution where φi=m(τ|N ) = 1, φi 6=m(τ|N ) = 0), the lowest uncertainty degree is obtained
(E(τ|N ) = 0), and, therefore, the highest weight for payoff evaluation (wP(τ|N ) = 1)
and the lowest weight for cognitive dissonance (wB(τ|N ) = 0) are derived. In contrast,
when a DM is extremely uncertain about the opponent’s action and his/her intended
action (this corresponds to the probability distribution where φi(τ|N ) = 1/4), the highest
uncertainty degree is obtained (E(τ|N ) = 2), and the coefficient ‘2.5′ is used to generate
the lowest weight for payoff evaluation and the highest weight for cognitive dissonance,
approximately equal to 0 and 1, respectively, in this instance.

Step 6: Update the probability distribution of belief and action state.
After a small time increment ∆τ, the evolution of the probability distribution of the

belief and action state from time τ to τ + ∆τ can be described by the following equation

φ(τ + ∆τ|N ) = e∆τ·(wP(τ|N)·Kp′(N)+wB(τ|N)·Kb′(N))·φ(τ|N ) (24)

Step 7: Determine whether the distribution reaches stationary.
The absolute difference between φ(τ + ∆τ|N ) and φ(τ|N ) described in Equation (25)

is used to determine whether the distribution reaches stationary at time τ.

AD(τ|N ) = ∑
i
|φi(τ + ∆τ|N )− φi(τ|N )| (25)

If AD(τ|N ) > ∆τ/1010, the distribution φ(τ|N ) is not stationary at time τ, the
decision process continues at time τ + ∆τ and then goes back to step 3; otherwise, the
distribution is considered as stationary and then goes to the next step. In our study, ∆τ is set
to 0.01, a further test for the effect of the size of ∆τ on the stationary distribution is displayed
in Table S1 (Supplementary Material). The results show the consistency of the stationary
distributions produced by the ∆τ with varied sizes, demonstrating the reliabilities of the
selection of ∆τ and the application of discrete approximations to a continuous process.

Step 8: Calculate the final defection probabilities under different conditions.
Similar to the Markov BA model, the final defection probabilities for different condi-

tions can be computed by Equation (26)

p(D|N ) = L·M·φ(ts(N, ∆τ)|N )

M =


1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 (26)

where ts(N, ∆τ) represents the time of the final decision making (i.e., the time for φ(τ|N )
reaching stationary) under the condition N given the defined value of ∆τ, and φ(ts(N, ∆τ)|N )
represents the stationary probability distribution of the belief and action states under
condition N.

5. Model Fitting and Comparison
5.1. Model Fitting

A PSO (particle swarm optimization) algorithm was implemented to search for the
parameter combination that can generate the minimal RMSD between the empirical data
and model prediction. (To fit our model to the empirical data, the payoff parameters in
our model inherit a classical setting with x1 = 30, x2 = 25, x3 = 85 and x4 = 75 [2]) In
addition, in order to make comparisons between the quantum BAE model and our Markov
model in the following section, the quantum BAE model is used to fit the empirical data.
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The optimized fitting results are shown in Table 2. Generally, the results of our proposed
Markov model are well fitted to the empirical data, and the disjunction effect is also well
predicted in the cases of each part of the literature. In contrast, the quantum BAE model
exhibits questionable fitting performances in the cases of [2,39,51] and this model even fails
to predict the disjunction pattern in the cases of [41,42].

Table 2. The empirical data and optimized fitting results of proposed Markov model and quantum
BAE model.

Literature p (D|KD) p (D|KC) p (D|Ukn)

[2]
Obs a 0.97 0.84 0.63
Q b 0.83 0.77 0.69
M c 0.95 0.85 0.63

[45]
Obs 0.67 0.32 0.30
Q 0.67 0.37 0.35
M 0.72 0.34 0.32

[40]
Obs 0.82 0.77 0.72
Q 0.82 0.77 0.73
M 0.83 0.74 0.73

[52]
Obs 0.91 0.84 0.66
Q 0.83 0.79 0.70
M 0.94 0.82 0.66

[42]
Obs 0.97 0.93 0.88
Q 0.95 0.91 0.93
M 0.98 0.92 0.88

[39]
Obs 0.91 0.86 0.79
Q 0.85 0.88 0.83
M 0.94 0.84 0.79

[41]
Obs 0.94 0.89 0.88
Q 0.93 0.87 0.90
M 0.95 0.87 0.86

Average
Obs 0.88 0.78 0.69
Q 0.83 0.77 0.73
M 0.90 0.77 0.69

a Obs represents the observed experiment results. b Q represents the quantum BAE model. c M represents the
proposed Markov model.

5.2. Model Comparison

The comparison results of RMSD and BIC for each model are shown in Table 3, it
is evident that the results favor our Markov model since the proposed Markov model
produced smaller RMSD and BIC values in most cases.

The PSP results presented in Table 4 show that the quantum BAE model can produce
four different choice patterns including the frequently observed disjunctive pattern (#1)
and non-disjunctive pattern (#2). However, the large residual part of the parameter space
is occupied by logical but unreasonable choice patterns, i.e., #3 and #4, which have not
been observed in empirical studies. For the proposed Markov model, the majority of
the parameter space belongs to the frequently observed disjunctive and non-disjunctive
patterns. Furthermore, from the visualized partitioned parameter space of the quantum
BAE simplified model (quantum BAE simplified model, QS, refers to the model proposed
by [43], assuming hD = hC = h) and the proposed Markov model as shown in Figure 7,
one can see that the parameter space of choice patterns generated by QS exhibits an
unreasonable periodic-like structure with multiple, non-contiguous areas representing each
choice pattern, while that of the proposed Markov model shows a continuous structure for
each choice pattern. Therefore, it is clear that the quantum BAE model is overly flexible
and should not be preferred over the proposed Markov model.
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Table 3. RMSD and BIC computed by the optimal model fitting results of quantum BAE and proposed
Markov models.

Literature k L RMSD BIC

[2]
Q 3 444 0.0150 1219.46
M 2 444 0.0002 1112.57

[45]
Q 3 80 0.0031 317.83
M 2 80 0.0021 310.79

[40]
Q 3 210 <0.0001 692.86
M 2 210 0.0007 687.90

[52]
Q 3 528 0.0074 1547.99
M 2 528 0.0006 1473.06

[42]
Q 3 180 0.0018 298.92
M 2 180 0.0001 286.16

[39]
Q 3 1500 0.0031 3756.77
M 2 1500 0.0007 3705.17

[41]
Q 3 150 0.0008 308.37
M 2 150 0.0001 295.52

Average Q 2 441.72 0.0045 1163.17
M 3 441.72 0.0005 1124.50

Table 4. Proportions of choice patterns generated by each model.

Choice Pattern
Proportion of All Choice Patterns

Q M

#1: p(D |KD ) > p(D |KC ) > p(D |UK ) 0.33 0.53
#2: p(D |KD ) > p(D |UK ) > p(D |KC ) 0.15 0.47
#3: p(D |KC ) > p(D |KD ) > p(D |UK ) 0.24 0.00
#4: p(D |KC ) > p(D |UK ) > p(D |KD ) 0.28 0.00
#5: p(D |UK ) > p(D |KD ) > p(D |KC ) 0.00 0.00
#6: p(D |UK ) > p(D |KC ) > p(D |KD ) 0.00 0.00

In sum, the model comparison results show that the proposed Markov model outper-
forms the quantum BAE model in terms of absolute model performance, relative model
performance and model flexibility, demonstrating the proposed Markov model is superior
in modelling the disjunction effect in the one-shot PD game compared with the quantum
BAE model.
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5.3. Academic and Practical Implications

The excellent performance of the proposed Markov model demonstrates the effec-
tiveness of the dual processing feature in explaining the decision process in the one-shot
PD game, which is consistent with a series of research regarding socio-economic decision
making as a result of dual processes [27,52–55]. The proposed Markov model partially
supports the idea of the ‘equate-to-differentiate’ method, stating that a DM may focus
more on an alternative perspective instead of the evaluation of their own payoffs to make a
decision under Ukn [5]. Moreover, it demonstrates the effective role of the DSN between the
rational cognitive component and the heuristic cognitive component, which is consistent
with previous studies [29,30]. To some degree, it also supports the importance of adopting
an extra degree of uncertainty in Ukn to model the disjunction effect [56,57], in that a higher
DSN in Ukn does contribute to the production of the disjunctive pattern in the proposed
Markov model.

Our proposed Markov model also has implications for the design of institutions that
aim to control the ‘irrational’ behavior under uncertainty in social decision making. As
DSN is an effective moderator between the rational cognitive component and heuristic
cognitive component. Encouraging the DM to carefully consider the outcomes of his/her
intended actions in the decision process under uncertain condition can reduce the DSN,
thus, increasing the weight of the rational component and promoting the rational choice. In
contrast, providing obscure information about the decision scenario may increase the DSN,
thus, increasing the weight of the heuristic component and promoting the intuitive choice.

6. Concluding Remarks

In this study, we argue that the triumph of the quantum BAE model in explaining the
disjunction effect may not be as convincing as it seems. We pointed out some unreasonable
outcomes in the quantum BAE and Markov BA models. The occurrences of these problems
are, on the one hand, a result of its quantum-like nature (e.g., the property of the Hermitian
matrix and oscillatory and periodic solutions derived from the state evolution equations)
and, on the other hand, resulting from a lack of consideration for the real decision-making
scenario (e.g., identical state evolution dynamics across different conditions). It should be
noted that the intention of this study is not to negate the quantum-like models. We believe
that some ideas proposed by the quantum-like models, such as adopting the quantum
concept of superposition to describe ‘fuzzy’ and ambiguous feelings under conditions of
uncertainty [5], do provide novel insights into psychological issues. We also believe that
the challenging findings against the quantum BAE model in our current study can help to
improve this kind of model in the future.

Importantly, our study proposed a more realistic Markov model, which is demon-
strated to better explain the disjunction effect than the quantum BAE model. The model
takes realistic cognitive mechanism in decision making into account, especially the dual
processing mechanism and its consequential effect that the evolution dynamics varied
across different conditions and different periods in the decision process.

In broader terms, our study provides an alternative perspective to model the dis-
junctive pattern. The quantum BAE model posits the key to account for such ‘irrational’
behavior patterns is the ‘interference term’, which can be generated under the quantum
theory framework. The essential setting for the generation of such an interference term
is that the state evolution dynamics are identical for different conditions [20], which is
inconsistent with a real decision-making situation, as we have discussed in Section 3.
In contrast, our proposed Markov model admits the difference in evolution dynamics
across different conditions, thus, the disjunction pattern can be naturally derived from a
classical probability-based framework based on a comprehensive understanding of the
corresponding cognitive process. We suggest the key to better model these ‘irrational’ be-
havioral patterns is to capture the realistic cognitive mechanisms underlying each specific
behavioral pattern.
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Finally, there are several limitations of our study to be addressed. Firstly, since our
study only focused on the application of the Markov process model in one specific situation
(i.e., the one-shot PD game), the advantages of quantum-like models in other fields should
not be ignored. For example, Ikeda and his group proposed a quantum-like framework
in the infinite repeated quantum game [58] and established infinitely repeated game of
quantum prisoner’s dilemma and discovered a new Nash equilibrium in the presence of
entanglement between players [59]. More recently, they applied repeated quantum games
for theory of money, in which they verified the existence of the new Nash equilibrium
that makes quantum information a commodity such as money [60]. In their most recent
work, a quantum supremacy of quantum decision making was shown in a more simplified
setting of adverse selection and principal-agent relation [61]. These works undoubtedly
demonstrated the quantum advantages in this field. Secondly, as with similar decision-
making models (e.g., [7,36]), the selection of the model parameters in our proposed Markov
model is aimed at generating the optimal model performance. Such a selection method
neglected the real-world scenarios, for example, the individual differences in personality
and some cognitive capacity are highly related to the dual processing components (e.g., [62]).
By measuring such individual characteristics, future study may develop empirical model
parameters selection methods. Thirdly, because of the lack of data with real response time,
our proposed Markov model still cannot take the real response time of decision making
into consideration. Future research may extend the current framework of the proposed
Markov model by applying data with real response time into our model.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/math10050834/s1, Figure S1: An example of the reduction of
DSN with the increase of the decision time derived from the proposed Markov model; Table S1: The
optimal parameter combination searched by the PSO algorithm for each literature cases and the
absolute difference between the final probability distribution across belief and action states generated
by ∆τ = 0.01 and other sizes of ∆τ′; Detailed review of the quantum BAE and Markov BA models
for the explanation of the disjunction effect in the PD game; Matlab code for the exemplary case of
the proposed Markov model.
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Nomenclature

N
The set of decision conditions, with KD for the condition where the opponent is known
to defect, KC for the condition where the opponent is known to cooperate and Ukn for
the rcondition where the opponent’s action is unknown.

L The number of choices included in each condition.
J The number of decision conditions.

xi
The payoff corresponding to the ith belief and action state: BDAD, BDAC, BCAD and
BCAC corresponding to 1st, 2nd, 3rd and 4th state, respectively.

λ The bounded rationality parameter.
c The indicator of cognitive dissonance in the quantum BAE model.
d The indicator of cognitive dissonance in the Markov model.

https://www.mdpi.com/article/10.3390/math10050834/s1
https://www.mdpi.com/article/10.3390/math10050834/s1
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φ(·) The probability distribution across belief–action states.

t

Time of decision process, with t1 for the time point receiving the information
about the opponent’s action, t2 (quantum BAE and Markov BA models) and
ts(N, ∆τ) (proposed Markov model) for the time point of the end of the
decision process.

τ The time between t1 and ts(N, ∆τ).
k The number of free parameters in the model.

hD
The utility differences between the payoffs x1 and x2 in the quantum BAE
model.

hC
The utility differences between the payoffs x3 and x4 in the quantum BAE
model.

kD The utility differences between the payoffs x1 and x2 in the Markov BA model.
kC The utility differences between the payoffs x3 and x4 in the Markov BA model.
∆τ The small time increment for the decision process.
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