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Abstract: Optimal designs of constant-stress accelerated life test plans is one of the important topics
in reliability studies. Many devices produced have very high reliability under normal operating
conditions. The question then arises of how to make the optimal decisions on life test plans to collect
sufficient information about the corresponding lifetime distributions. Accelerated life testing has be-
come a popular approach to tackling this problem in reliability studies, which attempts to extrapolate
from the information obtained from accelerated testing conditions to normal operating conditions. In
this paper, we develop a general framework to obtain optimal constant-stress accelerated life test
plans for one-shot devices with dependent components, subject to time and budget constraints. The
optimal accelerated test plan considers an economical approach to determine the inspection time and
the sample size of each accelerating testing condition so that the asymptotic variance of the maximum
likelihood estimator for the mean lifetime under normal operating conditions is minimized. This
study also investigates the impact of the dependence between components on the optimal designs
and provides practical recommendations on constant-stress accelerated life test plans for one-shot
devices with dependent components.

Keywords: gamma frailty; exponential distribution; constant-stress accelerated life tests; one-shot
devices; optimal designs; time and budget constraints
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1. Introduction

One-shot device test data analysis has received increased attention in reliability stud-
ies. One-shot devices, such as vehicle airbags, electro-explosive devices, and missiles,
are immediately destroyed after testing. The single-use devices result in left-censoring
and right-censoring. The exact lifetime of such a device cannot be observed, no matter
whether the life test is conducted successfully or not. Furthermore, one-shot device test data
can be obtained in destructive tests, wherein each specimen/item is inspected only once,
for instance, Li/SO2 storage batteries [1], rolling ball bearing [2], and grease-based mag-
netorheological fluids [3]. In addition, many devices/products have lifetimes of years or
decades under normal operating conditions. When practitioners are dealing with one-shot
device test data, they are usually facing great challenges with a limited time and resources,
in addition to a lack of information inherently presented in the data collection. In this
regard, accelerated life testing has been widely adopted in reliability studies to collect
sufficient lifetime information by subjecting specimens/devices to higher-than-normal
operating conditions to induce rapid failures. A recent book [4] provides an overview of
accelerated life testing of one-shot devices and presents several inferential methods for
analyzing one-shot devices. Balakrishnan and his collaborators have made substantial
efforts in the past few years to further advance the methodologies for analysis and data
collection of one-shot devices [5–12].
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Many devices/systems produced today consist of multiple components. For instance,
a rolling ball bearing contains an outer ring, an inner ring, a cage, and a ball [2]. The bearing
is defined as a failure when any of these components is malfunctioned/damaged. The fail-
ure modes of the failed bearing can be recorded. The failure can also be treated as the result
of competing failures of outer ring failure, inner ring failure, cage failure, and ball failure.
Competing-risk and copula models are commonly used for analyzing data with multiple
failure modes. Interested readers may refer to [13–16] for other applications of copula and
competing-risk models in reliability studies. To model the dependence between compo-
nents, apart from copula models, frailty and load-sharing models are currently prevailing
in reliability studies [17–20]. These two types of models facilitate easily understandable
interpretations for the dependent structure between components. In particular, for frailty
models, we may interpret that a frailty represents a random proportionality factor by
which the component hazard rates are modified and describe the latent device-to-device
variation as well as the dependence between components within the same device due to
common environment/operation. Wang et al. [16] recently proposed a frailty-copula model
that incorporated the gamma frailty and Gumbel copula for modeling dependence and
developed likelihood inference for competing risks data.

Since accelerated life tests are widely used in manufacturing industries to evaluate
the reliability of devices/products/systems, optimal accelerated life test (ALT) planning
is, therefore, one of the most important topics in reliability studies. A good ALT plan
can provide a more efficient estimator that needs fewer observations to contain a certain
amount of information. High efficient ALT plans enable practitioners to collect more useful
information with limited budget and time. Meeker and Hahn [21] and Meeker [22] com-
pared various ALT plans with Type-I censoring schemes to estimate the reliability function
at the normal operating conditions under Weibull and lognormal lifetime distributions.
Escobar and Meeker [23] further explored ALT plans with multiple accelerating factors.
Han and Ng [24] compared the efficiency of a step-stress ALT against a constant-stress ALT
under time constraints. For more recent literature on optimal ALT plans, interested readers
may refer to [25–27]. There are several optimality criteria commonly used in practice.
D-optimality is used to minimize the determinant of an information matrix, T-optimality
is used to maximize the trace of an information matrix, A-optimality is used to minimize
the trace of the inverse of an information matrix, E-optimality is used to minimize the
maximum eigenvalue of the inverse of an information matrix, and V-optimality is used
to minimize the asymptotic variance of the MLE of a parameter of interest. Han [28]
formulated the optimal designs of step-stress ALT under progressive Type-I censoring with
various optimalities.

Competing-risk models under exponential and Weibull lifetime distributions for one-
shot devices with two components have been studied [29,30]. Their studies extended the
work of Balakrishnan and Ling [31], in which the analysis did not take failure modes into
account. However, these models assume that the components are independent. In a realistic
manufacturing process or assembly, components within a device may have an association
arising from a common environment/operation. The independence assumption in the
competing-risk models would result in an unreliable analysis. In this regard, Ling [32]
further considered several popular copula models in reliability studies and investigated the
impact of a dependent structure between components on the inference for one-shot devices.
It was found that an imprecise and severely biased failure prediction can be obtained
as a result of an invalid independence assumption made to the models. Ling et al. [33]
recently developed likelihood inference for one-shot devices with multiple components
having exponential lifetime distributions under gamma frailty by using an expectation-
maximization algorithm for finding the maximum likelihood estimates (MLEs). To the best
of our knowledge, optimal constant-stress ALT (CSALT) plans for one-shot devices with
dependent components have not been investigated. This study aims to fill this research gap
through the development of a general framework to obtain a stringent CSALT plan under
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time and budget constraints, based on V-optimality, for one-shot devices with dependent
components having exponential lifetime distributions under frailty models.

The rest of this paper is organized as follows. Section 2 presents one-shot device test
data with multiple failure modes collected from a CSALT and introduces the gamma frailty
model with exponential component lifetime distributions as well as the mean lifetime
under normal operating conditions. Section 3 presents the Fisher information matrix and
the asymptotic variance of the maximum likelihood estimator for the mean lifetime. These
are required to develop a general framework to obtain the optimal CSALT plan with time
and budget constraints for one-shot devices with dependent components. In Section 4,
a simulation study is carried out to evaluate the performance of the developed framework
as well as the impact on the optimal design of CSALT under various degrees of dependence.
Based on the simulation results, some practical recommendations on CSALT plans will be
provided. A real example from a diabetic retinopathy study is presented to demonstrate the
proposed framework in Section 5. Finally, some concluding remarks are given in Section 6.

2. Model Description

In this section, we describe one-shot device test data with multiple failure modes
collected from CSALT. Interested readers may refer to [33] in connection to the likelihood
inference for one-shot devices in detail. Suppose that N one-shot devices consisting
of M components are partitioned into I higher-than-normal operating conditions. For
i = 1, 2, . . . , I, Ni devices are placed at a higher-than-normal stress level si and inspected
at Ki equally-spaced time points. There are ∑I

i=1 Ki test groups in total. In particular,
Ni,k devices are selected and inspected at a specific time τi,k, for k = 1, 2, . . . , Ki. As each
one-shot device can perform its intended function only once at a specified inspection time,
a practitioner can observe either a success or a failure. A successful test indicates that all the
components within the device have not malfunctioned at the inspection time. On the other
hand, if the test fails, it is assumed that the practitioner can determine which components
of the failed device have malfunctioned after a careful investigation or autopsy of the
device. Here, let P(Ω) be the power set of Ω, where Ω = {1, 2, . . . , M}. The power set with
2M elements represent the set of all possible combinations of malfunctioned components.
Let ni,k,X denote the number of devices with malfunctioned components X ∈ P(Ω) at
inspection time τi,k. Finally, we use z = {si, τi,k, ni,k,X, i = 1, 2, . . . , I, k = 1, 2, . . . , Ki, X ∈
P(Ω)} to denote the observed data, with ∑X∈P(Ω) ni,k,X = Ni,k.

In the i-th operating condition, where devices are exposed to an elevated stress level
si, let Tm denote the failure time of the m-th component, for m = 1, 2, . . . , M. For the j-th
device, it is assumed that, conditioned on a latent (unobserved) frailty, γi,j > 0, Tm follows
an exponential distribution with rate parameter γi,jλi,m > 0. The conditional probability
density functions (pdf) are then given by

fTm(t|γi,j) = γi,jλi,m exp(−γi,jλi,mt), t > 0.

The corresponding conditional reliability function is

RTm(t|γi,j) = exp(−γi,jλi,mt), t > 0.

It is further assumed that the failure rate of the m-th component is related to the
elevated operating condition si by using a log-linear function [34], namely,

λi,m = exp(am0 + am1si).

Furthermore, the frailty γi,j is assumed to follow a gamma distribution with scale
parameter β > 0 and shape parameter 1/β > 0. The pdf of γ is then

fγ(y) =
1

Γ
(

1
β

)
β

1
β

y
1
β−1 exp

(
− y

β

)
, y > 0, β > 0.
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Note that the mean of the frailty is 1 and the variance is β so that the model is
identifiable [17]. Moreover, Ling et al. [33] found that some constraints on β are imposed to
ensure that the mean (β < 1) and the variance (β < 0.5) of component lifetimes are finite.

Furthermore, conditioned on γi,j, the failure times of those M components (T1, T2, . . . , TM)
are assumed to be independent, namely,

RTΩ(t1, t2, . . . , tM|γi,j) = RT1(t1|γi,j)RT2(t2|γi,j) · · · RTM (tM|γi,j). (1)

By integrating RTΩ(t1, t2, . . . , tM|y) fγ(y) with respect to y over (0, ∞), the (uncondi-
tional) joint reliability function is then given by

Ri,TΩ(t1, t2, . . . , tM) =

(
1 + β

M

∑
m=1

λi,mtm

)− 1
β

. (2)

In addition, from (2), we readily find the (unconditional) reliability function for the
m-th component, namely,

Ri,Tm(t) = (1 + βλi,mt)−
1
β , t > 0. (3)

It is worth noting that Tm has a Lomax (or Pareto Type II) distribution with scale
parameter (βλi,m)

−1 and shape parameter 1/β (see [35,36]). Its Kendall’s tau is β/(β + 2),
which is commonly used to measure the correlation between variables. It is therefore
evident that an increase in β results in a stronger dependence between these M components.
In addition, these components are independent when β tends to zero.

If the device can perform its intended function when all the M components work,
from the results in [33], the mean lifetime of such a device at the normal operating condition
s0 is given by

µD =

(
(1− β)

M

∑
m=1

λ0,m

)−1

, (4)

where β < 1 and λ0,m = exp(am0 + am1s0). From (4), it is worth noting that an increase in
the dependence between the components in the device, i.e., β, results in an increase in the
mean lifetime of the device.

3. Optimal CSALT Plans

In this section, we present a general framework to determine the optimal ALT plan with
time and budget constraints, which minimizes the asymptotic variance of the maximum
likelihood estimator of µD in (4) by selecting the inspection time (τi,Ki ) and the sample size
(Ni,k) of each accelerating testing condition. The required optimization problem needs the
Fisher information matrix as well as the first-order derivatives of the mean lifetime with
respect to the model parameters.

3.1. Asymptotic Variance

For a one-shot device with M components, let θ = (a10, a11, . . . , aM0, aM1, β) denote
the vector of 2M + 1 model parameters. The log-likelihood function, based on the observed
data z = {si, τi,k, ni,k,X , i = 1, 2, . . . , I, k = 1, 2, . . . , Ki, X ∈ P(Ω)}, is given by

`(θ) =
I

∑
i=1

Ki

∑
k=1

∑
X∈P(Ω)

ni,k,X ln(Pi(X, τi,k; θ)) + c, (5)
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where

Pi(X, τi; θ) = P

( ⋂
u∈X
{Tu ≤ τi,k}

⋂
v∈Xc

{Tv > τi,k}
)

= ∑
Y∈P(X)

(−1)|Y|

1 +

β ∑
u∈{Y,Xc}

λi,u

τi,k

− 1
β

,

Xc is the complement of X, and c is a constant.
We can further obtain the Fisher information matrix, which is the negative of the

expectation of the second-order derivatives of the log-likelihood function in (5) with respect
to the model parameters, namely,

I(θ) = −E
[

∂2`(θ)

∂θ∂θ′

]
=

I

∑
i=1

Ki

∑
k=1

∑
X∈P(Ω)

Ni,k

Pi(X, τi,k; θ)

(
∂Pi(X, τi,k; θ)

∂θ

)(
∂Pi(X, τi,k; θ)

∂θ′

)
, (6)

where

∂Pi(X, τi,k; θ)

∂am0
= τi,kλi,m ∑

Y∈P(X)

(−1)|Y|+1I(m ∈ {Y, Xc})

1 + β ∑
u∈{Y,Xc}

λi,uτi,k

− 1
β−1

,

∂Pi(X, τi,k; θ)

∂am1
= τi,kλi,msi ∑

Y∈P(X)

(−1)|Y|+1I(m ∈ {Y, Xc})

1 + β ∑
u∈{Y,Xc}

λi,uτi,k

− 1
β−1

,

∂Pi(X, τi,k; θ)

∂β
= ∑

Y∈P(X)

(−1)|Y|

β2

1 + β ∑
u∈{Y,Xc}

λi,uτi,k

− 1
β

×

ln

1 + β ∑
u∈{Y,Xc}

λi,uτi,k

− βτi,k ∑u∈{Y,Xc} λi,u

1 + β ∑u∈{Y,Xc} λi,u

,

with I(m ∈ {Y, Xc}) denoting an indicator function that takes the value 1 if m ∈ {Y, Xc}
and takes the value 0 if m /∈ {Y, Xc}. Interested readers may refer to [33] for the derivation
of the first-order derivatives.

The asymptotic variance-covariance matrix of the maximum likelihood estimators for
the model parameters is the inverse of the Fisher information matrix, that is,
V(θ) = (I(θ))−1. We further apply the delta method in [33] to obtain the asymptotic
variance of the maximum likelihood estimator for µD, which requires the first-order deriva-
tives of µD with respect to the model parameters θ = (a10, a11, . . . , aM0, aM1, β), namely,

∂µD
∂am0

= − λ0,m

1− β

(
M

∑
m=1

λ0,m

)−2

,

∂µD
∂am1

= −λ0,ms0

1− β

(
M

∑
m=1

λ0,m

)−2

,

∂µD
∂β

=
1

(1− β)2

(
M

∑
m=1

λ0,m

)−1

.

Consequently, the asymptotic variance by using the delta method is given by

VµD = PµD V(θ)P′µD
,
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where PµD =
(

∂µD
∂a10

, ∂µD
∂a11

, . . . , ∂µD
∂aM0

, ∂µD
∂aM1

, ∂µD
∂β

)
.

However, the MLE of µD is not normally distributed unless the sample size is suffi-
ciently large. Ling et al. [33] revealed that the logarithm of the MLE has an approximately
normal distribution, and thus the asymptotic variance of the MLE after log-transformation
is considered, that is

Vln(µD) =
VµD

µ2
D

∝ VµD . (7)

It is obvious that the optimal CSALT minimizes both Vln(µD) and VµD simultaneously.
On the other hand, recycling and waste management are important environmental

issues worldwide. For example, iron, copper, zinc, and rare metals, such as platinum
and palladium, are used in the manufacture of automobiles. These valuable metals can
be collected from deregistered automobiles and traded as a valuable secondary resource.
In addition, components such as batteries, engines, tires, and bumpers are recyclables and
valuable materials for secondary use and, thus, very often re-sold or recycled as secondary
products [37]. In this regard, it is of great interest to consider the recycling of components
in failed devices and estimate the revenue from the sale of recycled components.

In testing of one-shot devices with multiple components, suppose that a one-shot
device has a set of X ∈ Ω malfunctioned components. The rest of the components, Xc,
have not malfunctioned and can be re-sold as valuable secondary resources. We let R(Xc)
denote the revenue from selling the recycled components in the device. The total revenue
for the recycling is then given by

R =
I

∑
i=1

Ki

∑
k=1

∑
X∈Ω

ni,k,XR(Xc). (8)

For i = 1, 2, . . . , I and k = 1, 2, . . . , Ki, ni,k,X has a multinominal distribution with
the sample size Ni,k and the corresponding probabilities Pi = (Pi(∅, τi), · · · , Pi(Ω, τi))

′.
Therefore, the expected revenue is

µR =
I

∑
i=1

Ki

∑
k=1

∑
X∈Ω

Ni,kPi(X, τi)R(Xc), (9)

and the corresponding variance is obtained as

VR = PR

[
I

∑
i=1

Ki

∑
k=1

Ni,k
{

diag(Pi)− PiP′i
}]

P′R, (10)

where PR = (R(Ω), · · · , R(∅)) is a vector of the corresponding revenues.

3.2. Procedure of Obtaining the Optimal CSALT Plan

Here, we assume that the cost of conducting a CSALT consists of two terms: the
cost linked to the purchase of the devices and the cost associated with operation at each
accelerating operating condition. In this study, it is also assumed that the operation cost
increases as a result of an increase in the elevated operating condition si, as well as the
duration of the CSALT, because more resources will normally be consumed to increase
the elevated operating condition and conduct the CSALT for a longer duration. Given a
CSALT plan ξ = {Ki, τi,k, Ni,k, i = 1, 2, . . . , I, k = 0, 1 . . . , Ki}, the total cost of conducting
the CSALT is, therefore, given by

TC(ξ) = Citem

I

∑
i=1

Ki

∑
k=1

Ni,k +
I

∑
i=1

Ci,operτi,Ki , (11)
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where τi,Ki and Ci,oper are the duration and the operation cost, respectively, for the i-th
operating condition, and Citem is the cost of each device. Moreover, time and budget
constraints are usually imposed to CSALT in practice, and therefore, the total cost TC(ξ)
cannot exceed a specified budget Cbudget and the duration τi,Ki cannot exceed a specified
termination time τter. In short, the optimal CSALT plan can be determined by solving the
following objective function subject to time and budget constraints.

Minimize VµD ,

subject to TC(ξ) ≤ Cbudget,

τi,Ki ≤ τter, for all i.

Figure 1 presents a framework to determine the optimal CSALT plan ξ = {Ki, τi,k, Ni,k,
i = 1, 2, . . . , I, k = 0, 1 . . . , Ki}.

Figure 1. A general framework to determine the optimal CSALT.

Here, b·c is a truncated integer, f represents the inspection frequency, with τi,k = f k,
and K∗i represents the maximum number of inspections in the i-th operating condition. It
is worth noting that when the number of test groups is large, the optimization function
“optim()” provides reasonable but not optimal sample sizes due to a high dimensional
objective function involved in the optimization problem. Therefore, some inspection
times τi,k are discarded if the sample sizes are very small, e.g., Ni,k ≤ Nmin, so that more
resources will be concentrated on the remaining test groups and the results obtained by the
optimization function will be more stable due to a lower-dimensional objective function.
At the same time, the duration for some operating conditions may be shortened due to
the discard of inspection times, resulting in more devices being purchased for testing. It is
worth noting that the median or quantile can also be used to replace the mean lifetime in
the objective function. One should follow the same process in Section 3.1 to determine the
corresponding asymptotic variance of the MLE.

4. Simulation Study

In this section, we perform a Monte Carlo simulation study to evaluate the perfor-
mance of the procedure of obtaining the optimal CSALT plan with three stress levels
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(s1, s2, s3) = (35, 45, 55) under various budgets Cbudget ∈ {$100,000, $200,000, $500,000},
termination times τter ∈ {30, 60}, and degrees of dependence between the components in
the device β ∈ {0.01, 0.1, 0.2, 0.3}, representing nearly independence, small dependence,
moderate dependence, and high dependence, respectively.

Here, one-shot devices consisting of four components (C1, C2, C3, C4) are considered.
Suppose that the cost of each one-shot device is $1100, and the costs of operation at the
three stress levels are $100, $150, and $200 per unit of time, respectively. In addition,
we set (a10, a11) = (−6, 0.05), (a20, a21) = (−6.5, 0.06), (a30, a31) = (−7, 0.07), (a40, a41) =
(−8, 0.08), and s0 = 25, so that the corresponding failure rates are

(λ1, λ2, λ3, λ4) = (0.00865, 0.006734, 0.00525, 0.00248).

The optimal CSALT plans for different settings are presented in Table 1. Here, TC
represents the total cost of the optimal CSALT plan, V = Vln(µD) is the theoretical variance
of the MLE for ln(µD) in (7) at the normal operating condition s0 = 25, MSE is the mean
square error (based on 1000 simulated samples) for the MLE of ln(µD).

First, the procedure guarantees that the total costs of the determined CSALT plans
are under the corresponding budgets. Second, the theoretical and empirical variances of
the MLE (V and MSE) are similar in all the considered cases. In general, the inspection
times of the optimal CSALT plans are robust. When more devices are tested under CSALTs
with a larger budget, it is not surprising that the asymptotic variance of the MLE becomes
smaller. More importantly, the optimal CSALT plans require the lowest and highest stress
levels. It is also observed that a long-term experiment reduces the asymptotic variance of
the MLE significantly. It is recommended that more devices be placed at the lowest stress
level. The dependence influences the proportions of devices being placed at the lowest and
highest stress levels. When the components in devices are nearly independent, the optimal
CSALT plan with a high proportion of devices placed at the lowest stress level is obtained.

Table 1. Optimal CSALTs with various budgets (Cbudget), termination times (τter), and degrees of
dependence (β), along with the corresponding asymptotic variance (V) and MSE for ln(µD) at
normal operating conditions s0 = 25.

Setting Optimal CSALT (ξ) Total Cost ln(µD)
β Cbudget τter Ki τi,k Ni,k TC(ξ) V MSE

0.3 500K 60 (1,0,1) (60, 0, 24) (325, 0, 119) 499.2K 0.015 0.017
0.2 500K 60 (1,0,1) (60, 0, 24) (329, 0, 115) 499.2K 0.011 0.011
0.1 500K 60 (1,0,1) (60, 0, 24) (332, 0, 112) 499.2K 0.008 0.008
0.01 500K 60 (1,0,1) (60, 0, 24) (335, 0, 109) 499.2K 0.006 0.006

0.3 500K 30 (1,0,1) (30, 0, 30) (277, 0, 169) 499.6K 0.023 0.025
0.2 500K 30 (1,0,1) (30, 0, 30) (297, 0, 149) 499.6K 0.017 0.017
0.1 500K 30 (1,0,1) (30, 0, 30) (313, 0, 133) 499.6K 0.013 0.013
0.01 500K 30 (1,0,1) (30, 0, 30) (325, 0, 121) 499.6K 0.010 0.010

0.3 200K 60 (1,0,1) (60, 0, 24) (125, 0, 47) 200K 0.039 0.039
0.2 200K 60 (1,0,1) (60, 0, 24) (127, 0, 45) 200K 0.028 0.029
0.1 200K 60 (1,0,1) (60, 0, 20) (128, 0, 44) 199.2K 0.021 0.022
0.01 200K 60 (1,0,1) (60, 0, 24) (129, 0, 43) 200K 0.016 0.015

0.3 200K 30 (1,0,1) (30, 0, 30) (107, 0, 66) 199.3K 0.060 0.060
0.2 200K 30 (1,0,1) (30, 0, 30) (115, 0, 58) 199.3K 0.045 0.047
0.1 200K 30 (1,0,1) (30, 0, 30) (121, 0, 52) 199.3K 0.034 0.034
0.01 200K 30 (1,0,1) (30, 0, 30) (126, 0, 47) 199.3K 0.027 0.024

0.3 100K 60 (1,0,1) (60, 0, 24) (59, 0, 22) 99.9K 0.083 0.078
0.2 100K 60 (1,0,1) (60, 0, 24) (60, 0, 21) 99.9K 0.059 0.066
0.1 100K 60 (1,0,1) (60, 0, 20) (60, 0, 21) 99.1K 0.044 0.052
0.01 100K 60 (1,0,1) (60, 0, 24) (61, 0, 20) 99.9K 0.033 0.037
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Table 1. Cont.

Setting Optimal CSALT (ξ) Total Cost ln(µD)
β Cbudget τter Ki τi,k Ni,k TC(ξ) V MSE

0.3 100K 30 (1,0,1) (30, 0, 24) (52, 0, 31) 99.1K 0.127 0.113
0.2 100K 30 (1,0,1) (30, 0, 30) (54, 0, 28) 99.2K 0.094 0.089
0.1 100K 30 (1,0,1) (30, 0, 30) (57, 0, 25) 99.2K 0.072 0.074
0.01 100K 30 (1,0,1) (30, 0, 30) (59, 0, 23) 99.2K 0.057 0.055

In addition, we consider the income from the recycling of components under the
optimal CSALT plans. It is assumed that the amounts of income generated from the
recycling of components C1, C2, C3, and C4 are $100, $50, $30, and $10, respectively.
For example, if failure modes X = {1, 3} are identified from a device, components C2
and C4 can then be re-sold, and the corresponding revenue from the recycling of the
device is $60. However, for X = ∅, those devices are destroyed after successful tests,
and the corresponding revenue is zero. Table 2 reports the theoretical mean and standard
derivation (µR, σR) and the empirical mean and standard derivation (x̄R, sR) of revenue
from recycling the components under various settings. It is realized that the theoretical and
empirical results are similar. Moreover, more revenue would be generated from recycling
the malfunctioned devices with independent components.

Table 2. Optimal CSALTs with various budgets (Cbudget), termination times (τter), and degrees of
dependence (β), along with the corresponding theoretical mean and standard derivation (µR, σR)

and the empirical mean and standard derivation (x̄R, sR) of revenue from recycling the components.

Setting Optimal CSALT (ξ) Revenue
β Cbudget τter Ki τi,k Ni,k µR x̄R σR sR

0.3 500K 60 (1,0,1) (60, 0, 24) (325, 0, 119) 29,995 30,114 1216 1279
0.2 500K 60 (1,0,1) (60, 0, 24) (329, 0, 115) 30,873 30,937 1197 1173
0.1 500K 60 (1,0,1) (60, 0, 24) (332, 0, 112) 31,544 31,504 1172 1112
0.01 500K 60 (1,0,1) (60, 0, 24) (335, 0, 109) 32,493 32,462 1146 1176

0.3 500K 30 (1,0,1) (30, 0, 30) (277, 0, 169) 28,817 28,854 1287 1297
0.2 500K 30 (1,0,1) (30, 0, 30) (297, 0, 149) 29,815 29,777 1284 1271
0.1 500K 30 (1,0,1) (30, 0, 30) (313, 0, 133) 30,863 30,801 1277 1265
0.01 500K 30 (1,0,1) (30, 0, 30) (325, 0, 121) 31,848 31,846 1266 1251

0.3 200K 60 (1,0,1) (60, 0, 24) (125, 0, 47) 11,618 11,641 757 728
0.2 200K 60 (1,0,1) (60, 0, 24) (127, 0, 45) 11,958 11,918 745 755
0.1 200K 60 (1,0,1) (60, 0, 20) (128, 0, 44) 12,601 12,560 734 715
0.01 200K 60 (1,0,1) (60, 0, 24) (129, 0, 43) 12,583 12,565 713 714

0.3 200K 30 (1,0,1) (30, 0, 30) (107, 0, 66) 11,173 11,176 801 834
0.2 200K 30 (1,0,1) (30, 0, 30) (115, 0, 58) 11,563 11,586 799 799
0.1 200K 30 (1,0,1) (30, 0, 30) (121, 0, 52) 11,965 11,986 795 807
0.01 200K 30 (1,0,1) (30, 0, 30) (126, 0, 47) 12,352 12,393 789 809

0.3 100K 60 (1,0,1) (60, 0, 24) (59, 0, 22) 5472 5471 519 539
0.2 100K 60 (1,0,1) (60, 0, 24) (60, 0, 21) 5632 5629 511 510
0.1 100K 60 (1,0,1) (60, 0, 20) (60, 0, 21) 5935 5936 504 514
0.01 100K 60 (1,0,1) (60, 0, 24) (61, 0, 20) 5927 5915 490 507

0.3 100K 30 (1,0,1) (30, 0, 24) (52, 0, 31) 5615 5573 560 572
0.2 100K 30 (1,0,1) (30, 0, 30) (54, 0, 28) 5474 5500 550 551
0.1 100K 30 (1,0,1) (30, 0, 30) (57, 0, 25) 5665 5657 547 534
0.01 100K 30 (1,0,1) (30, 0, 30) (59, 0, 23) 5840 5870 542 559



Mathematics 2022, 10, 840 10 of 13

5. Eye Data from Diabetic Retinopathy Study

In this section, we consider the diabetic retinopathy study in [38]. This study examined
the effectiveness of laser photocoagulation treatment in delaying the onset of blindness in
patients with diabetic retinopathy. These data contain age, and the patients are classified
into juveniles (aged below 20) and adults (aged 20 or above). For each patient, one eye was
randomly selected for treatment and the other eye did not receive any treatment. Therefore,
M = 2 and we let T1 and T2 represent the time to blindness for treated and untreated eyes,
respectively, and s is the age covariate that influences the time to blindness. The study
showed that there is a moderate association between the treated and untreated eye for each
patient. As β is bounded between 0 and 0.5 for finite mean and variance, it is therefore
reasonable to set β = 0.4. Table 3 presents the sample mean times to blindness for treated
and untreated eyes of juvenile and adult patients as well as the sample means of age for
juvenile and adult patients. With (4), it is reasonable to set (a10, a11) = (−3,−0.006) for
treated eyes and (a20, a21) = (−3, 0.003) for untreated eyes, so that the mean times to vision
loss of treated and untreated eyes for juvenile patients (s1 = 10) are 35.55 and 32.49 months,
respectively, while the mean times for adults patients (s2 = 35) are 41.30 and 30.14 months,
respectively. It is evident that the mean times to vision loss based on these settings are close
to the sample means reported in Table 3.

Table 3. Sample means of age for juvenile and adult patients and sample mean times to blindness (in
months) for treated and untreated eyes of juvenile and adult patients in the eye data.

Juvenile Adult

Mean age 10.21 35.30

Treated eye Untreated eye Treated eye Untreated eye

Mean time to blindness 36.48 33.33 42.16 30.85

Suppose that eye doctors check the vision of both eyes for each patient only once after
receiving the treatment. There are four possible outcomes for each patient, namely, no
vision loss in both eyes, vision loss in the treated eye alone, vision loss in the untreated
eye alone, and vision loss in both eyes. Suppose that there is no operation cost for juvenile
and adult patients (C1,oper = C2,oper = $0), the cost of eye doctors visiting each patient is
Citem = $100, the budget is Cbudget = $20,000, and the study allows 5 years of follow-up
(τter = 60). The proposed procedure can then be used to schedule the appointments for the
patients so that the asymptotic variance of the MLE of mean time to blindness for patients
of age 25 (s0 = 25) is minimized. The optimal appointment schedule is presented in Table 4,
which suggests that juvenile and adult patients are to be visited after receiving the treatment
for 5 years and the ratio of juvenile patients to adult patients is 2:3. The asymptotic variance
Vln(µD) = 0.025.

Table 4. Optimal appointment schedule for 200 patients in a 5-year study.

Patient τ (months) K

Juvenile 60 80
Adult 60 120

6. Concluding Remarks

In this paper, we have considered a one-shot device with dependent components
having exponential lifetime distribution under gamma frailty and developed a procedure
for obtaining the optimal CSALT plan with budget and time constraints. The optimal
CSALT plan minimizes the asymptotic variance of the MLE for the mean lifetime under
normal operating conditions. The simulation results showed that the procedure is reliable
to obtain CSALT plans under specified budgets and experimental duration. Under the
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exponential distribution, the optimal CSALT plan requires only two stress levels. More
devices are recommended to be placed at the lowest stress level. In addition, a short-term
CSALT is not recommended because it results in a large variation of the MLE. The R codes
can be available from the author upon request.

On the other hand, we investigate the impact of dependence between components
in a device on the optimal CSALT plans. It is observed that the inspection times are
robust, but more devices are placed at the highest stress level when the components are
highly dependent. The dependence also influences the revenue from the recycling of
the malfunctioned devices. It is found that more revenue would be generated when the
components are nearly independent. Furthermore, as CSALT plans with two stress levels
are the optimal design, it is natural to determine the explicit forms of the proportions of
devices placed at the lowest and highest stress levels.

In this study, it is assumed that a practitioner can determine which components of
the failed device have malfunctioned after a careful investigation or autopsy of the device.
In some cases, some malfunctioned components may not be identified or some failure
modes of interest are hindered by other failure modes, which lead to masked data or
competing risk data. In this regard, it will be of practical interest to consider the analysis of
one-shot devices based on masked data or competing risk data.

In addition, it will be of great interest to study optimal CSALT plans under more
flexible lifetime distributions for components such as Weibull and gamma. Furthermore,
the replacement of conditional independence given frailty with a conditional copula func-
tion described in [16] and the consideration of a log-linear model for the frailty variance as
in [39] can be treated as extensions of this current work. We are currently working on these
problems and hope to report the findings in a future paper.
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