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Abstract: The knacks of evolutionary and swarm computing paradigms have been exploited to solve
complex engineering and applied science problems, including parameter estimation for nonlinear
systems. The population-based computational heuristics applied for parameter identification of
nonlinear systems estimate the redundant parameters due to an overparameterization problem.
The aim of this study was to exploit the key term separation (KTS) principle-based identification
model with adaptive evolutionary computing to overcome the overparameterization issue. The
parameter estimation of Hammerstein control autoregressive (HC-AR) systems was conducted
through integration of the KTS idea with the global optimization efficacy of genetic algorithms (GAs).
The proposed approach effectively estimated the actual parameters of the HC-AR system for noiseless
as well as noisy scenarios. The simulation results verified the accuracy, convergence, and robustness
of the proposed scheme. While consistent accuracy and reliability of the designed approach was
validated through statistical assessments on multiple independent trials.

Keywords: Hammerstein nonlinear systems; parameter estimation; bioinspired computing;
genetic algorithms

MSC: 93C10; 93B30

1. Introduction

Parameter estimation is an essential and fundamental step for solving various engi-
neering and applied science problems [1–3]. Parameter estimation and control of nonlinear
systems is a challenging task and has been explored in various studies [4–7]. Nonlinear sys-
tems/processes can be modeled through block structure representation, i.e., Hammerstein,
Wiener, and Hammerstein–Wiener models [8–10]. The Hammerstein model representation
given in Figure 1 consists of two blocks where the first block normally represents the static
nonlinearity, while the second block is a linear dynamical subsystem [11]. The Hammerstein
structure has been used to model different nonlinear processes. For instance, joint stiffness
dynamics [12], heating process [13], cascade water tanks [14], geochemical problems [15],
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pneumatic muscle actuator [16], financial analysis [17], electric load forecasting [18], and
muscle dynamics [19,20].
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The research community proposed various algorithms/methods for parameter esti-
mation for the Hammerstein model owing to its significance in modeling different non-
linear systems: for example, gradient/least squares iterative methods [21–25], fractional
gradient based adaptive strategies [26–29], Newton iterative scheme [30], Kalman filter-
ing [31], reframed model [32], filtering technique [33], separable block approach [34],
Levenberg–Marquardt optimization [35], orthogonal matching pursuit technique [36],
and the maximum likelihood scheme [37]. The biological/nature-inspired computations
through evolutionary/swarm optimization were also explored for Hammerstein system
identification. For instance, Mehmood et al. exploited the strength of genetic algorithms
(GA), differential evolution, pattern search, simulated annealing, and backtracking search
optimization heuristics for Hammerstein structure identification [38–40]. Tariq et al. ex-
ploited the maximum likelihood-based adaptive DE for nonlinear system identification [41].
Raja et al. presented a detailed study of applying GAs to the Hammerstein control autore-
gressive (HC-AR) structure [42]. In [42], the identification of the HC-AR system through
GAs was done through an overparameterization approach by making the system linear in
parameters which causes the estimation of redundant parameters rather than identifying
only the actual parameters of the HC-AR system.

In order to avoid the redundant parameters involved in the overparameterization
identification approach used in genetic algorithms, we integrated the key term separation
(KTS) principle with the evolutionary computing paradigm of a GA that allowed us to
estimate only the actual parameters of the HC-AR system. The KTS principle identifies
and separates the key term in the HC-AR identification model [43] and then exploits the
global search competency of GAs to estimate only the actual parameters of the system.
The performance of the proposed KTS-based scheme was assessed in terms of accuracy,
convergence, robustness, consistency, and reliability for varying parameters of the proposed
scheme. The main contributions of the proposed study are as follows:

• A global search identification scheme through the integration of key term separation,
KTS principle identification model with the evolutionary computing algorithm of GA
is presented for parameter estimation of Hammerstein nonlinear systems.

• The proposed scheme avoids identifying redundant parameters and effectively esti-
mates only the actual parameters of Hammerstein control autoregressive (HC-AR)
systems through minimizing the mean square error-based criterion function.

• The accuracy, robustness, and convergence of the proposed approach is established
through optimal values of estimation-error-based evaluation metrics.

• The stability and reliability of the designed approach is ascertained through statistical
inferences obtained after executing multiple independent trials of the scheme.

The remaining article is organized as follows: Section 2 provides the proposed key
term separation-based identification model for HC-AR systems. Section 3 presents the
evolutionary computing approach of GAs for the KTS-based identification model of HC-
AR systems. Section 4 gives the results of numerical experimentation with elaborative
discussion. Section 5 concludes the findings of the study and lists future research directions.

2. Key Term Separation Identification Model

The block diagram of the HC-AR system is given in Figure 1 while mathematically
represented as [43,44]

h(t) =
E(z)
F(z)

g(t) +
1

F(z)
d(t) (1)

where h(t), g(t), and d(t) represent input, output, and disturbance signal, respectively, while
g(t) is a nonlinear function of known basis and written as

g(t) = k1µ1[g(t)] + k2µ2[g(t)] + . . . + kpµp[g(t)] (2)
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E(z) and F(z) are defined as

E(z) = e0 + e1z−1 + e2z−2+, . . . ,+ene z−ne , (3)

F(z) = 1 + f1z−1 + f2z−2+, . . . ,+ fn f z−n f (4)

Rearrange Equation (1) as

h(t) = (1− F(z))h(t) + E(z)g(t) + d(t) (5)

while using Equations (2)–(4) in Equation (5) and assuming e0 = 1. Apply the key term
separation (KTS) principle by considering g(t) as a key term

h(t) = −
n f

∑
i=1

fi[h(t− i)] +
ne
∑

i=0
ei[g(t− i)] + d(t)

= −
n f

∑
i=1

fi[h(t− i)] + e0[g(t)] +
ne
∑

i=1
ei[g(t− i)] + d(t)

= −
n f

∑
i=1

fi[h(t− i)] +
ne
∑

i=1
ei[g(t− i)] +

p
∑

i=1
kiµi[g(t)] + d(t)

(6)

Write Equation (6) in terms of information and parameter vectors as

h(t) = αT
f (t)f +αT

e (t)e + µT(t)k + d(t) (7)

where the information vectors are defined as

α f (t) =
[
−h(t− 1),−h(t− 2), . . . ,−h

(
t− n f

)]T
∈ Rn f , (8)

αe(t) = [g(t− 1), g(t− 2), . . . , g(t− ne)]
T ∈ Rne , (9)

µ(t) =
[
µ1[g(t)], µ2[g(t)], . . . , µp[g(t)]

]T ∈ Rp, (10)

and the corresponding parameter vectors are

f =
[

f1, f2, . . . , fn f

]T
∈ Rn f , (11)

e = [e1, e2, . . . , ene ]
T ∈ Rne , (12)

k =
[
k1, k2, . . . , kp

]T ∈ Rp. (13)

Equations (7)–(13) represent the KTS identification model for HC-AR systems that
avoids the estimation of redundant parameters due to the overparameterization approach.

3. Proposed Methodology for KTS System Model

The proposed methodology for parameter estimation of the KTS-based identification
model of HC-AR systems was developed in two phases. First, the objective/fitness function
was formulated for the KTS model of the HC-AR system presented in Section 2. Second,
the HC-AR system was identified through estimating the actual parameters of the HC-AR
system using optimization knacks of the evolutionary computing paradigm of a GA. The
overall flow diagram of the proposed study in terms of fundamental compartments is
provided in Figure 1.

3.1. Fitness Function Formulation

The iterative and recursive identification approaches for parameter estimation of
nonlinear systems develop the identification model by expressing the system output as
a product of information and parameter vectors [23]. However, the population-based
stochastic computing techniques have no such requirement. The fitness function for a GA
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based on an evolutionary computing paradigm is formulated by exploiting the strength of
approximation theory in mean square error sense as

δ =
1
N

N

∑
j=1

[
h(tj)− ĥ(tj)

]2
, (14)

where N represents the number of samples involved in the parameter identification of HC-
AR systems. The desired response h is calculated using Equation (7) while the estimated
response is given by the following:

ĥ(t) = αT
f (t)f̂ +αT

e (t)ê + µT(t)k̂. (15)

The estimated parameter is written as

θ̂ = [f̂, ê, k̂], (16)

where
f̂ =

[
f̂1, f̂2, . . . , f̂n f

]T
∈ Rn f , (17)

ê = [ê1, ê2, . . . , êne ]
T ∈ Rne , (18)

k̂ =
[
k̂1, k̂2, . . . , k̂p

]T
∈ Rp. (19)

Now the objective was to estimate the parameters of the HC-AR system through
minimizing the fitness of Equation (14) using a GA-based evolutionary computing approach
such that the desired response given by Equation (7) approached the estimate calculated
from Equation (15).

3.2. Optimization Procedure: Evolutionary Computing Paradigm

The legacy of global optimization knacks of genetic algorithms (GAs) belongs to a class
of evolutionary computational paradigm that is narrated here which is used for learning
the parameters of the HC-AR system as portrayed in the fitness function in Equation (14).

The GAs were introduced in a pioneer work conducted by Holland to mimic an opti-
mization task [45]. Normally, the adaptative performance of GAs to find the appropriate
candidate solution in a large search dimension is controlled by a reproduction mechanism
consisting of the feasible selection of individuals in the nest population, viable crossover
operation for the offspring generation, and the diversity maintenance procedure of mu-
tation. GAs were implemented since their introduction in a variety of research domains
such as the viable optimization of closed-loop supply chain design [46], optimization of
the weights of neural networks representing the nonlinear singular prediction differential
system [47], optimization of electroless NiB coating model [48], optimization of the solar
selective absorber design [49], and the crack sensitivity control system for nickel-based laser
coating [50]. We were motivated/inspired from these significant applications of GA-based
evolutionary computing and used GAs for parameter identification of the HC-AR system.

The process flow structure, in terms of the fundamental steps the Gas used for the
optimization of the HC-AR system is shown in Figure 2, i.e., representation of the pop-
ulation, fitness-based ranking, selection of the matting pair, crossover procedure, and
mutation. A generic process workflow in the form of a block structure is portrayed in
Figure 2 for the GAs that were used for the optimization mechanism of the HC-AR system.
The simulation and experimentation of GAs was conducted with the help of the invoking
routines/program/tools of optimization available in the MATLAB toolbox for optimization
while Windows 10 was used as an operating system. The necessary details of GAs with
their implementation procedure is given in pseudocode as provided in Algorithm 1.
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Algorithm 1: Pseudocode of evolutionary computing with GAs for HC-AR system identification.

Start: Evolutionary computing of genetic algorithms (GAs)
Inputs: Chromosomes or individual representation as follows:

θ = [θ f , θe, θk] = [( f1, f2, . . . , fn f ) (e1, e2, . . . , ene ) (k1, k2, . . . , knk )]

Population for an ensemble of chromosomes or individuals is given as

P =


θ1
θ2
...

θl

 =


( f1,1, f2,1, . . . , fn f ,1) (e1,1, e2,1, . . . , ene ,1) (k1,1, k2,1, . . . , knk ,1)

( f1,2, f2,2, . . . , fn f ,2) (e1,2, e2,2, . . . , ene ,2) (k1,2, k2,2, . . . , knk ,2)
...

...
...

( f1,l , f2,l , . . . , fn f ,l) (e1,l , e2,l , . . . , ene ,l) (k1,l , k2,l , . . . , knk ,l)

,

for l members in θ in P
Output: Global Best θ in P
Begin GAs

//Initialize
Arbitrarily formulate θ with bounded pseudo real numbers.
A group of l number of θ represents initial P.
//Termination/Stoppage Criteria
Set stoppage of execution of GAs for the following conditions:

Desire fitness attained i.e., δ→ 10−16,
Fitness function-Tolerance attained i.e., TolFun→ 10−20,
Constrained-Tolerance attained, i.e., TolCon→ 10−20,
Set total number of generations = 600,
Other default of GA routine in optimization toolbox

//Main loop of GA
While {until termination conditions attained} do %

//Fitness calculation step
Evaluate δ using Expression (14) and repeat the procedure for each θ in P
//Check for termination requirements
If any of termination level attained then go out of the while loop
else continues
//Ranking of individual step
Rank each θ on the basis of quality of fitness θ achieved.
//Reproduction step through GA operators
Appropriate/suitable invoking for
selection (Stochastic uniform via routine ‘@selectionstochunif’),
crossover (heuristics via rountine ‘@crossoverheuristic’),
mutations (adaptive feasible via routine ‘@mutationadaptfeasible’)
Elitism operations up to 5%, i.e., elitism count set as 26 best ranking
individuals in the population P
Modify/update P and go to fitness calculation step

End
//Storage step of GAs outcomes
Store the global best θ with credentials of fitness attained, time spent,
generations exectuted and fitness function counts of the algorithm.

End GAs
Statistical Analysis:
Dataset generation for the statistical observation by repetition of GAs for a sufficiently large
number of multiple execution to identify the parameters of the HC-AR and analysis of these
datasets was performed for exhaustive assessments.
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3.3. Evaluation Metrics

In order to assess the performance of the evolutionary computing paradigm for
parameter estimation of nonlinear systems through the KTS-based identification model of
HC-AR systems, we defined three evaluation metrics. The formulated assessment criterions
are mean square error based on the difference between the responses, i.e., (MSE)h; as given
in Equation (14), mean square error based on the difference between the desired and the
estimated parameters, i.e., (MSE)θ; and the normalized parameter deviation, i.e., NPD.

(MSE)θ = mean
(
θ− θ̂

)2, (20)

NPD =
‖θ− θ̂‖
‖θ‖ (21)

where ‖·‖ denote the 2-norm of a vector.

4. Results of Numerical Experimentation with Discussion

The results of the numerical experimentation for parameter estimation for two HC-
AR systems are presented in this section. In problem 1, a standard HC-AR system was
considered, while in problem 2, a practical application of an HC-AR system representing
the dynamics of stimulated muscle model was considered.



Mathematics 2022, 10, 1001 8 of 20

4.1. Problem 1

In Problem 1, the HC-AR system was considered with the following parameters, as
taken from recent relevant studies to demonstrate the effectiveness of the proposed schemes:

h(t) = E(z)
F(z) g(t) + 1

F(z)d(t),

F(z) = 1 + 1.61z−1 + 0.8z−2,

E(z) = 0.85z−1 + 0.65z−2,

g(t) = k1µ1[g(t)] + k2µ2[g(t)] = 1.0g(t) + 0.5g2(t)

The actual parameters of the HC-AR system were

θ = [f, e, k]T = [ f1, f2, e1, e2 k1, k2]
T

= [θ1, θ2, θ3, θ4, θ5, θ6]
T

= [1.6, 0.8, 0.85, 0.65, 1, 0.5]T
(22)

Simulations were performed in MATLAB 2020b running on an Asuspro Laptop core
i7 with 16GB RAM. The input g was randomly generated with characteristics of zero-mean
and unit variance. The disturbance signal was generated with characteristics of Gaussian
distribution having zero-mean and constant variance. The robustness of the proposed
scheme was assessed for three disturbance levels, i.e., 0, 0.01, and 0.1. The parameter
settings of the GA used in the simulations are given in Algorithm 1. The performance of
the proposed scheme was deeply investigated through the results of executing a single
random run, the statistics through multiple autonomous trials, and evaluating the results
for the three different evaluation metrics described in Section 3.3.

The results of the proposed scheme generated for a single random run based on evalu-
ation criteria from Equation (14) in terms of learning curve, best individual scores (best,
worst, and mean), and average distance between individuals are provided in Figures 3–5
for 0, 0.01, and 0.1 noise levels, respectively. The results indicated that the proposed identi-
fication scheme accurately estimated the parameters of the HC-AR system by optimizing
the cost function through minimizing the error between the desired and the estimated
responses.
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The one good run of the evolutionary approach does not guarantee consistently
accurate performance. The identification of the HC-AR system through the proposed
scheme was also investigated for multiple autonomous executions, and the results are
given in Figures 6 and 7 for standard and ascending order, respectively, in the case of all
three evaluation metrics. The results verified the consistently accurate performance of the
proposed methodology for 70 autonomous trials in the case of all three evaluation metrics
given in Equations (14), (20) and (21).



Mathematics 2022, 10, 1001 10 of 20

Mathematics 2022, 10, x FOR PEER REVIEW 10 of 20 
 

 

 
Figure 5. Results of Problem 1 in terms of learning curve, best individual scores, and average dis-
tance for 0.1 noise level. 

The one good run of the evolutionary approach does not guarantee consistently ac-
curate performance. The identification of the HC-AR system through the proposed 
scheme was also investigated for multiple autonomous executions, and the results are 
given in Figures 6 and 7 for standard and ascending order, respectively, in the case of all 
three evaluation metrics. The results verified the consistently accurate performance of the 
proposed methodology for 70 autonomous trials in the case of all three evaluation metrics 
given in Equations (14), (20), and (21). 

 
(a)  

 
(b)  

Mathematics 2022, 10, x FOR PEER REVIEW 11 of 20 
 

 

 
(c)  

Figure 6. Results of autonomous executions through different evaluation metrics for Problem 1. (a) 
MSE through estimated response (b) MSE through estimated parameters (c) Normalized parame-
ter deviation 

 
(a)  

 
(b)  

 
(c)  

Figure 6. Results of autonomous executions through different evaluation metrics for Problem 1.
(a) MSE through estimated response (b) MSE through estimated parameters (c) Normalized parame-
ter deviation.



Mathematics 2022, 10, 1001 11 of 20

Mathematics 2022, 10, x FOR PEER REVIEW 11 of 20 
 

 

 
(c)  

Figure 6. Results of autonomous executions through different evaluation metrics for Problem 1. (a) 
MSE through estimated response (b) MSE through estimated parameters (c) Normalized parame-
ter deviation 

 
(a)  

 
(b)  

 
(c)  

Figure 7. Result of autonomous executions in ascending order through different evaluation metrics
for Problem 1. (a) MSE (ascending order) through estimated response (b) MSE (ascending order)
through estimated parameters (c) Normalized (ascending order) parameter deviation.

The stability of the design approach was assessed through statistical measurements of
the best, mean, and standard deviation. The results of the statistical indices are presented
in Table 1 for all considered disturbances and evaluation metrics. The mean values for
evaluation criteria (14) were 7.4405 × 10−7, 3.0590 × 10−4, and 1.7138 × 10−2 for distur-
bance level 0, 0.001, and 0.1, respectively, while the respective mean values in the case of
evaluation measures (20) and (21) were 8.0612 × 10−6, 2.8981 × 10−3, 1.4764 × 10−1 and
2.0806 × 10−3, 4.7970 × 10−2, 3.6962 × 10−1, respectively. For a better interpretation, the
statistical results are also given in Figure 13. It was witnessed that the proposed scheme con-
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sistently provided the accurate results for all considered disturbance levels in the HC-AR
system (22). However, the precision level decreased with an increase in disturbance level.
The statistical results endorsed the stability, consistently accurate performance, robustness,
and reliability of the proposed scheme.

Table 1. Results of statistical indices for different evaluation metrics in Problem 1.

Noise Statistical Indices MSE Responses MSE Parameters NPD

0 Minimum 1.8583 × 10−14 2.1427 × 10−17 3.5541 × 10−7

Mean 7.4405 × 10−17 8.0612 × 10−6 2.0806 × 10−3

Standard Deviation 2.6148 × 10−6 3.6142 × 10−5 5.0126 × 10−3

0.01 Minimum 4.9615 × 10−5 6.2525 × 10−5 8.1884 × 10−3

Mean 3.0590 × 10−4 2.8981 × 10−3 4.7970 × 10−2

Standard Deviation 2.0307 × 10−4 4.3865 × 10−3 2.8608 × 10−2

0.1 Minimum 1.7040 × 10−3 1.4920 × 10−2 1.2649 × 10−1

Mean 1.7138 × 10−2 1.4764 × 10−1 3.6962 × 10−1

Standard Deviation 1.3315 × 10−2 1.1119 × 10−1 1.4840 × 10−1
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The comparison of the actual parameters of the HC-AR system (22) with the estimated
parameters through the proposed scheme was conducted, and the results are presented in
Figure 9 and Table 2 along with the actual system parameters. The results validated the
accurate and convergent performance of the proposed scheme in estimating the parameters
of the HC-AR system (22) for different evaluation measurements based on mean square
error of the responses (14), mean square error of the parameters (20), and normalized
parameter deviation (21).
Table 2. Comparison of the estimated parameter values with the actual parameters of Problem 1.

Metric Noise θ1 θ2 θ3 θ4 θ5 θ6 Metric Value

MSE 0 1.6000 0.8000 0.8500 0.6500 1.0000 0.5000 2.14 × 10−17

0.01 1.5934 0.7972 0.8534 0.6614 1.0101 0.5089 6.25 × 10−5

0.1 1.7468 0.9828 0.9678 0.7525 1.0791 0.5626 1.49 × 10−2

NWD 0 1.6000 0.8000 0.8500 0.6500 1.0000 0.5000 3.55 × 10−7

0.01 1.5934 0.7972 0.8534 0.6614 1.0101 0.5089 8.19 × 10−3

0.1 1.7468 0.9828 0.9678 0.7525 1.0791 0.5626 1.26 × 10−1

DW 1.6000 0.8000 0.8500 0.6500 1.0000 0.5000 0

While comparing the proposed scheme with the conventional evolutionary
approaches [42], the KTS-based GA was more efficient than the conventional GA pre-
sented in [42] for the HC-AR identification in the sense that it avoided the estimation of
redundant parameters and estimated only the actual parameters of the HC-AR system,
thus, making it computationally more efficient than the conventional GA.
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4.2. Problem 2

In Problem 2, a practical application of an HC-AR system representing the muscle
dynamics required to restore the functional use of paralyzed muscles through automati-
cally controlled stimulations was considered by taking the actual parameters from the real
time experimentations performed in the rehabilitation center of the Southampton Univer-
sity [51].
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h(t) = E(z)
F(z) g(t) + 1

F(z)d(t),

F(z) = 1− z−1 + 0.8z−2,

E(z) = 2.8z−1 − 4.8z−2,

g(t) = k1µ1[g(t)] + k2µ2[g(t)] = 1.68g(t)− 2.88g2(t) + 3.42g3(t)

The actual parameters of the HC-AR system representing the dynamics of the stimu-
lated muscle model are

θ = [f, e, k]T = [ f1, f2, e1, e2 k1, k2, k3]
T

= [θ1, θ2, θ3, θ4, θ5, θ6, θ7]
T

= [−1.0, 0.8, 2.8, −4.8, 1.68, −2.88, 3.42]T
(23)

In this problem, the same input and disturbance signal were considered as taken from
Problem 1. The robustness of the proposed scheme in Problem 2 was assessed for three
disturbance levels, i.e., 0, 0.001, and 0.01.

The results of the proposed scheme for Problem 2 of the HC-AR system (23) generated
from a single random run based on the evaluation criteria off Equation (14) in terms
of learning curve, best individual scores (best, worst, and mean), and average distance
between individuals are provided in Figures 10–12 for 0, 0.001, and 0.01 noise levels,
respectively. The results indicated that the proposed identification scheme accurately
estimated the parameters of the HC-AR system (23) by optimizing the cost function through
minimizing the error between the desired and the estimated responses.
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The comparison of the actual parameters of the HC-AR system (23) with the estimated
parameters through the proposed scheme was conducted, and the results based on the
best run are presented in Figure 13 and Table 3 along with the actual system parameters.
The results validated the accurate and convergent performance of the proposed scheme in
estimating the parameters of the muscle model represented through the HC-AR system (23)
for different evaluation measures based on the mean square error of the responses (14), the
mean square error of the parameters (20), and the normalized parameter deviation (21).
This case study presented a KTS-based GA approach for parameter estimation of an HC-AR
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system representing the parameters of muscle dynamics, while the details for the real
rehabilitation procedure can be seen in [51].

Table 3. Comparison of the estimated parameter values with the actual parameters of Problem 2.

Metric Noise θ1 θ2 θ3 θ4 θ5 θ6 θ7 Value

MSE 0 −1.0001 0.8000 2.7942 −4.7928 1.6636 −2.9094 3.4155 4.88 × 10−5

0.001 −0.9999 0.8001 2.7836 −4.7786 1.7292 −2.8884 3.4251 4.64 × 10−4

0.01 −1.0001 0.8000 2.7912 −4.7903 1.6224 −2.9880 3.3795 2.40 × 10−3

NWD 0 −1.0001 0.8000 2.7942 −4.7928 1.6636 −2.9094 3.4155 4.73 × 10−3

0.001 −0.9999 0.8001 2.7836 −4.7786 1.7292 −2.8884 3.4251 7.66 × 10−3

0.01 −1.0001 0.8000 2.7912 −4.7903 1.6224 −2.9880 3.3795 1.74 × 10−2

DW −1.0000 0.8000 2.8000 −4.8000 1.6800 −2.8800 3.4200 0
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5. Conclusions

The conclusions drawn from the study are

• The integration of an evolutionary computing paradigm of genetic algorithms, GA,
with a key term separation-based identification model was presented for parameter
estimation of Hammerstein control autoregressive (HC-AR) systems.

• The proposed identification scheme effectively estimated only the actual parame-
ters of the HC-AR system without estimating the redundant parameters due to an
overparameterization approach.

• The accurate and convergent behavior of the proposed strategy was ascertained
through achieving an optimal value of different evaluation metrics based on response
error and parameter estimation error.

• The results of the Monte Carlo simulations and statistical indices established the
consistent accuracy of the proposed scheme.

• The accurate estimation of HC-AR parameters representing the dynamics of a muscle
model for the rehabilitation of paralyzed muscles further endorsed the efficacy of the
design approach.

The proposed KTS-based evolutionary optimization scheme seems to be an attractive
alternative to be exploited for solving complex nonlinear problems [52–56].

Author Contributions: Conceptualization, N.I.C. and M.A.Z.R.; methodology, N.I.C. and M.A.Z.R.;
software, F.A.; validation, M.A.Z.R. and N.I.C.; resources, C.-L.C. and C.-M.S.; writing—original draft
preparation, F.A.; writing—review and editing, N.I.C. and M.A.Z.R.; project administration, C.-L.C.,
K.M.C., C.-M.S. and A.H.M.; funding acquisition, K.M.C. and A.H.M. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Mathematics 2022, 10, 1001 19 of 20

References
1. Bock, H.G.; Carraro, T.; Jäger, W.; Körkel, S.; Rannacher, R.; Schlöder, J.P. (Eds.) Model Based Parameter Estimation: Theory and

Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; Volume 4.
2. Chaudhary, N.I.; Latif, R.; Raja, M.A.Z.; Machado, J.T. An innovative fractional order LMS algorithm for power signal parameter

estimation. Appl. Math. Model. 2020, 83, 703–718. [CrossRef]
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