
����������
�������

Citation: Wang, S.; Zhang, Y.; Guo, Y.

A Blockchain-Empowered Arbitrable

Multimedia Data Auditing Scheme in

IoT Cloud Computing. Mathematics

2022, 10, 1005. https://doi.org/

10.3390/math10061005

Academic Editors: Ximeng Liu,

Yinbin Miao and Zuobin Ying

Received: 8 February 2022

Accepted: 17 March 2022

Published: 21 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Blockchain-Empowered Arbitrable Multimedia Data
Auditing Scheme in IoT Cloud Computing
Shenling Wang, Yifang Zhang and Yu Guo *

School of Artificial Intelligence, Beijing Normal University, Beijing 100875, China; slwang@bnu.edu.cn (S.W.);
zyfyydgq@mail.bnu.edu.cn (Y.Z.)
* Correspondence: yuguo@bnu.edu.cn

Abstract: As increasing clients tend to outsource massive multimedia data generated by Internet of
Things (IoT) devices to the cloud, data auditing is becoming crucial, as it enables clients to verify the
integrity of their outsourcing data. However, most existing data auditing schemes cannot guarantee
100% data integrity and cannot meet the security requirement of practical multimedia services.
Moreover, the lack of fair arbitration leads to clients not receiving compensation in a timely manner
when the outsourced data is corrupted by the cloud service provider (CSP). In this work, we propose
an arbitrable data auditing scheme based on the blockchain. In our scheme, clients usually only
need to conduct private audits, and public auditing by a smart contract is triggered only when
verification fails in private auditing. This hybrid auditing design enables clients to save audit fees
and receive compensation automatically and in a timely manner when the outsourced data are
corrupted by the CSP. In addition, by applying the deterministic checking technique based on a
bilinear map accumulator, our scheme can guarantee 100% data integrity. Furthermore, our scheme
can prevent fraudulent claims when clients apply for compensation from the CSP. We analyze the
security strengths and complete the prototype’s implementation. The experimental results show that
our blockchain-based data auditing scheme is secure, efficient, and practical.

Keywords: data auditing; data integrity; bilinear map accumulator; blockchain; smart contract

MSC: 68P20

1. Introduction

The rapid development of the Internet of Things (IoT) and intelligent multimedia
has led to the explosive growth of massive amounts of data, which has put tremendous
pressure on the entire Internet. To cope with this challenge, storing IoT and intelligent
multimedia data with a cloud service provider (CSP) is a common solution [1–4]. Many
schemes have been implemented and proved to ensure the security of outsourced data
during transmission [5]. However, such a wide attack surface and many recent data
breaches have raised concerns about data integrity and availability [6–10]. When sensitive
IoT and intelligent multimedia data are outsourced to a CSP, the clients lose control of
the data, and the data may be changed or deleted without their permission. To solve this
problem, clients need to regularly check the integrity of the outsourced data, and remote
data integrity checking is becoming an important issue in cloud computing.

Most existing data integrity checking techniques are probabilistic [11–27]. In this
approach, the verifier randomly selects partial data blocks and then performs integrity
verification on those chosen data blocks instead of checking the whole dataset, and hence
a 100% guarantee for the integrity of the data cannot be provided. However, for massive
IoT and intelligent multimedia data, especially sensitive data related to finance, energy,
transportation, etc., a probabilistic approach is not enough, since they have strict require-
ments for data integrity and correctness. Another type of data integrity checking technique

Mathematics 2022, 10, 1005. https://doi.org/10.3390/math10061005 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10061005
https://doi.org/10.3390/math10061005
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-4268-6712
https://doi.org/10.3390/math10061005
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10061005?type=check_update&version=1

Mathematics 2022, 10, 1005 2 of 17

is deterministic. In this approach, the verifier examines all data blocks instead of only
checking chosen partial data blocks, thus providing 100% assurance of data integrity [28].
However, the deterministic method means higher verification and computational overhead,
and hence efficiency is a challenge and must be considered in this approach.

In order to check remote outsourced data integrity, numerous data auditing schemes
have been proposed. According to the different roles of verifiers, the existing auditing
schemes can be divided into private auditing and public auditing [24]. In private auditing
schemes, the role of the verifier is assumed by the client himself, and some important key
information used in verification is usually stored by the client instead of the CSP. Therefore,
there will be disputes when the verification fails, because if the key information used
in the verification is broken by a malicious client, the response of the CSP cannot pass
verification. In other words, we cannot determine whether the CSP has damaged the data
when verification fails. At this point, fair arbitration is required because the CSP needs to
compensate the client for data corruption if verification is not passed. In public auditing
schemes, the client usually resorts to a third-party auditor (TPA) to check the integrity of
outsourced data. Thus, the audit results completely depend on the TPA. However, this is
unrealistic since a fully credible TPA may not always exist. In addition, it should be noted
that in these two existing types of auditing schemes, if the auditing results show that the
outsourced data are corrupted by the CSP, it is usually difficult for clients to obtain the
compensation from the CSP in a timely manner.

In this work, we propose an efficient blockchain-based hybrid auditing scheme with
fair arbitration. In our scheme, we use bilinear map accumulators to realize deterministic
checking, in which the verifier can check all data blocks, and at the same time, the com-
putational overhead is acceptable. Specifically, for outsourced data B = {b1, · · · , bn},
the basic idea of an audit is that the verifier uses the random index j to challenge the CSP.
Upon receiving the challenge, the CSP needs to compute the corresponding witness witbj

for the target data block bj, and all data blocks except bj are used in the calculation of the
witness. The CSP returns both the target data block bj and the calculated witness as a
response, namely (witbj

, bj). Thus, even a small change in the outsourced data can cause
the generated response to change, and so the generated response cannot pass verification.
In other words, a valid response cannot be generated by the CSP if the data are not actually
saved or the data are corrupted with the CSP. Therefore, the verifier examines all data
blocks instead of only checking partial data blocks, thus providing 100% assurance of
data integrity.

Moreover, the client not only holds the data file digest accB, which is the key infor-
mation used in verification by him or herself, but also saves a copy of the digest accB
to the blockchain simultaneously with the data uploading phase. During the audit, the
role of the verifier can be assumed by a client or blockchain smart contract, which means
that clients usually only need to conduct private audits, and public auditing by a smart
contract is triggered only when verification fails in private auditing because if the data
file digest is broken by the client, the CSP’s response cannot pass verification even if the
data are not corrupted by the CSP, and disputes may arise in this point. In this case, it will
trigger the blockchain smart contract to conduct the public auditing for fair judgement,
since the data file digest accB saved in the blockchain will not be broken by anyone due to
the non-tamperability property of the blockchain. Therefore, this blockchain-based hybrid
auditing scheme with fair arbitration can solve the problem of distrust between the CSP
and the client.

It is worth noting that we replace the TPA with a blockchain smart contract in our
public auditing phase, and by using this technology, designing a smart contract with fair
arbitration can ensure that the client will be compensated automatically and in a timely
manner when the outsourced data are corrupted by the CSP due to the smart contract,
which is an automatically executed code running on the blockchain. Furthermore, a
dishonest client may falsely claim for compensation from the CSP, and we resort to digital

Mathematics 2022, 10, 1005 3 of 17

signature technology to prevent dishonest behavior by the client. The contributions of our
work are summarized as follows:

• We present an efficient hybrid data auditing scheme for the IoT and intelligent multi-
media by using the blockchain. By applying deterministic cryptographic techniques
and the blockchain, our proposed design can fairly solve the problem of distrust be-
tween the CSP and the client. It also makes the auditing scheme more reliable, because
the deterministic methods provide 100% data possession and integrity guarantees.

• We enforce a healthy ecosystem to punish dishonest CSPs automatically and provide
timely compensation to the client for data corruption by the CSP in the proposed scheme.

• Our scheme can protect honest CSPs and prevent fraudulent claims by dishonest
clients at the same time.

• We use the hybrid auditing design in the proposed scheme. It can also save audit fees
and communication costs for the client, because the public auditing phase is triggered
only when verification fails in the private auditing phase.

• We not only theoretically prove the correctness and soundness of our scheme but also experi-
mentally verify the feasibility and efficiency of the scheme by the prototype’s implementation.

The rest of the paper is structured as follows. Section 2 overviews some related works,
and Section 3 introduces the preliminaries used in our scheme. After that, we give the
system model of our proposed design, including the architecture overview, threat model,
and security goals, in Section 4. Section 5 presents a detailed description of our proposed
scheme. In Section 6, we present security analysis and some characteristics of our proposed
scheme. We show the performance evaluation in Section 7 and conclude the paper in
Section 8.

2. Related Works
2.1. Data Auditing Schemes

With the increase in demand for outsourced data integrity checking, many data
auditing schemes have been proposed [29,30]. Ateniese et al. [11] introduced the notion
of provable data possession (PDP), which was the first public audit scheme to verify the
authenticity of data, in 2007. However, data privacy protection and the full data dynamic
operation cannot be supported in this scheme [12]. Then, Erway et al. [13] proposed a PDP
scheme supporting full dynamic data updating. Since then, to achieve more functions and
improve the efficiency of data auditing for remote data, a lot of research has been conducted
in this area. Wang et al. [14] proposed a public data auditing scheme supporting data
dynamic operations. In [15], the follow-up work supports privacy-preserving multiple-task
auditing. Yuan et al. [16] proposed a public audit scheme for dynamic data sharing with the
help of doubly linked information tables. In [17], the authors used the data structure of a
Merkle hash tree to devise a public auditing scheme in which the communication overhead
and verification efficiency are greatly taken into account. In addition to public auditing,
private auditing is necessary in some cases [21–24]. Furthermore, various PDP models have
been proposed [25–27]. The PDP method above allows a verifier to verify the remote data
integrity without retrieving or downloading all of the data, only randomly selecting a few
data blocks and then performing integrity verification on those chosen data blocks instead
of checking the whole dataset. Thus, this is a probabilistic method and cannot provide a
100% guarantee for the data’s integrity.

Due to the limitations of hardware, few deterministic auditing schemes have been
proposed. In [31], the authors proposed the first deterministic public auditing mechanism,
but it did not support dynamic data operation. In [32], Deswarte et al. proposed an
auditing scheme based on the Diffie–Hellman cryptographic protocol. However, it incurred
a high computational overhead, because the CSP must compute the power of the entire
file for each auditing verification. Filho et al. [33] proposed a simple deterministic data
integrity checking protocol based on a homomorphic RSA-based hash function, but the
computation cost remained high and without data dynamic support. In [34], Sebé et al.
devised a data possession checking protocol based on the Diffie–Hellman key exchange,

Mathematics 2022, 10, 1005 4 of 17

which can reduce the computational overhead but without public auditing or data dynamic
support. Barsoum [35] proposed a multi-copy provable data possession scheme supporting
the public verifiability of multiple replicas of the data. In [36], Hao et al. proposed
a privacy-preserving data integrity auditing scheme that supports public auditing and
data dynamics.

With the development of the IoT and intelligent multimedia, several data auditing
schemes for the IoT and intelligent multimedia services have been proposed. In [28],
the authors devised a data audit mechanism by using a bilinear mapping accumulator
for sensor data. The proposed design can check all data blocks, thereby eliminating the
possibility of any server-side operation. However, existing data auditing solutions cannot
solve the trust issue between the data owner and the CSP (or TPA). For private auditing
schemes, since the key information used in verification is stored only on the client’s side
locally, this cannot solve the problem of client fraud. For public auditing schemes, the data
owner usually resorts to a TPA to check the outsourced data integrity, but this is unrealistic
as a fully trusted TPA may not always exist. As mentioned in [18], the involvement of a
TPA may lead to data loss or abuse of authority.

2.2. Blockchain and Smart Contracts

As the core technology of the emerging cryptocurrencies, the blockchain is essentially
a distributed database where the transactions are batched into an ordered growing list of
blocks which are linked using cryptography. As is well known, the blockchain has the char-
acteristics of decentralization, immutability, and distributed storage. Smart contracts [37]
are executable, pre-agreed programs running automatically on the blockchain. Based on the
properties and functions of the blockchain, many typical applications such as decentralized
storage [38–41], crowdsourcing systems [42–45], medical data management [46,47], and
distributed ledger technologies [48,49] have been built.

Recently, Wang et al. [19] leveraged smart contracts to design a blockchain-based fair
payment scheme to replace TPAs for public cloud auditing. Yuan et al. [20] proposed a
blockchain-based public auditing and secure deduplication scheme which supports auto-
matic compensation of users for data corruption and automatic punishment of malicious
CSPs by using a smart contract, but users need to pay an audit fee to the miners of the
blockchain in each verification. Wang et al. [24] proposed a blockchain-based private prov-
able data possession scheme which not only saves storage space but also greatly improves
efficiency. However, it has no mechanism for automatic punishment and compensation
when the outsourced data are corrupted by a CSP. Moreover, theses blockchain-based
auditing schemes are all for the probabilistic approach. In light of the previous work, our
work used a different auditing design which combines private auditing and public auditing
for a deterministic approach. We aim to ensure reliability for data integrity verification
and financial fairness in the data auditing scheme so that both the clients and CSPs are
incentivized to conduct trustworthy behavior while saving on auditing fees for the clients.
Table 1 shows the comparison between our proposed design and some related existing
auditing schemes.

Table 1. Comparison with some related existing data integrity auditing schemes.

Scheme Wang et al. [19] Yuan et al. [20] Ren et al. [28] Wang et al. [24] Our Scheme

Deterministic audit × ×
√

×
√

Fair arbitration
√ √

×
√ √

Without third-party auditor
√ √

×
√ √

Data dynamic supporting × ×
√

×
√

Privacy preserving
√ √ √ √ √

Automatic compensation and
punishment mechanism

√ √
× ×

√

Mathematics 2022, 10, 1005 5 of 17

3. Preliminaries
3.1. Bilinear Mapping

Let G1, G2, and GT be three cyclic groups of the prime order p. We use g1 and g2 to
denote the generator of G1 and G2, respectively. Bilinear mapping (pairing) is a mapping
e : G1 × G2 → GT with the following properties:

• Bilinearity: ∀ x, y ∈ Zp, e(g1
x, g2

y) = e(g1, g2)
xy = e(g1

y, g2
x);

• Non-degeneracy: e(g1, g2) 6= 1GT ; that is, e(g1, g2) generates GT ;
• Computability: For all x, y ∈ Zp, there exists an effectively computable algorithm to

compute e(g1
x, g2

y).

3.2. q-SDH Assumption

Here we assume that G1 = G2 = G. Therefore, let G be a finite cyclic group of the
order p, where p is a prime number whose length is κ bits. Thus, for a randomly chosen
element α ∈ Z∗p, a random generator g of G, and PPT algorithm A, the following holds:

Pr
[
(c, g

1
α+c)← A(g, gα, · · · · · · , gαq

)
]
≤ ε(κ) for some c ∈ Zp\{−α}

where ε (κ) denotes a negligible function.
The bilinear map accumulator to be used in our data integrity auditing scheme is

based on the properties of bilinear mapping and the q-SDH assumption described above.
See [28] for details.

3.3. Smart Contract

The concept of a smart contract was first proposed by Nick [37] in 1995. It is an
executable pre-agreed program running automatically on the blockchain according to its
content. Developers can build distributed applications such as voting, financial transactions,
and signing agreements based on smart contracts for Ethereum. When deploying the smart
contract, it is necessary to preset the trigger condition and the corresponding response rule.
After the smart contract is deployed, once an event triggers the terms of the contract, the
code will be executed automatically without central authorization. The relevant details can
be found in [37].

4. System Model

We present the system model, threat model, and security goals of our proposed hybrid
auditing scheme with fair arbitration for data integrity verification in this section.

4.1. Architecture Overview

The traditional cloud data integrity auditing scheme consists of three roles—the client,
verifier, and CSP—as shown in Figure 1. The client is the data owner who wants to
outsource their personal data to a CSP, the CSP provides outsourced data storage and
management services for the client, and the verifier is in charge of auditing the outsourced
data’s integrity. The role of the verifier can be performed by a client or a third-party
auditor (TPA), which correspond to private auditing and public auditing, respectively. Our
proposed blockchain-based hybrid auditing scheme extends the work performed in [20,28].
The integrity verification scheme in [28] meets both private and public auditing, but both
of these types of audits have some defects: (1) In private auditing, when verification fails,
we cannot determine whether the CSP has damaged the data because the file digest accB
used in verification is stored on the client’s side locally. If the file digest is broken by the
client, the CSP’s response cannot pass verification. At this point, fair arbitration is required,
because the CSP needs to compensate the client for data corruption in this case. (2) In public
auditing, the client resorts to a TPA to audit the data’s integrity. However, it is unrealistic
that the correctness of the auditing results depends entirely on the TPA.

Mathematics 2022, 10, 1005 6 of 17

Mathematics 2022, 10, x FOR PEER REVIEW 7 of 19

auditor (TPA), which correspond to private auditing and public auditing, respectively.
Our proposed blockchain-based hybrid auditing scheme extends the work performed in
[20] and [28]. The integrity verification scheme in [28] meets both private and public
auditing, but both of these types of audits have some defects: (1) In private auditing, when
verification fails, we cannot determine whether the CSP has damaged the data because
the file digest 𝑎𝑎𝑎𝑎𝑎𝑎𝐵𝐵 used in verification is stored on the client’s side locally. If the file
digest is broken by the client, the CSP’s response cannot pass verification. At this point,
fair arbitration is required, because the CSP needs to compensate the client for data
corruption in this case. (2) In public auditing, the client resorts to a TPA to audit the data’s
integrity. However, it is unrealistic that the correctness of the auditing results depends
entirely on the TPA.

Figure 1. Overview of data integrity auditing.

Based on the defects in above two types of auditing in [28], we propose an arbitrable
hybrid auditing scheme based on the blockchain. In this scheme, the client first conducts
a private audit, and in case verification fails, it will trigger the blockchain to perform a
public audit for fair judgement. It is worth noting that the TPA is replaced by the
blockchain in public audits in our scheme, and we designed a smart contract with fair
arbitration for the client. Using this smart contract, the client can be compensated
automatically when data are broken by the CSP. Our scheme includes three different roles:
the client, CSP, and blockchain. As shown in Figure 2, the interactions among them are
described as follows:

Figure 1. Overview of data integrity auditing.

Based on the defects in above two types of auditing in [28], we propose an arbitrable
hybrid auditing scheme based on the blockchain. In this scheme, the client first conducts a
private audit, and in case verification fails, it will trigger the blockchain to perform a public
audit for fair judgement. It is worth noting that the TPA is replaced by the blockchain in
public audits in our scheme, and we designed a smart contract with fair arbitration for
the client. Using this smart contract, the client can be compensated automatically when
data are broken by the CSP. Our scheme includes three different roles: the client, CSP, and
blockchain. As shown in Figure 2, the interactions among them are described as follows:

Mathematics 2022, 10, x FOR PEER REVIEW 7 of 18

Figure 2. Architecture of our two-phase data auditing scheme.

1. The client has a large amount of data and needs to outsource this data to the CSP for
maintenance and computation but does not save the copy locally. It also stores a file
digest copy on the blockchain. Then, the client challenges the CSP and verifies the
response coming from the CSP. If the response from the CSP passes verification, the
outsourced data are considered complete; otherwise, they are considered incomplete.
This case will trigger the blockchain to perform public auditing for fair judgement.

2. The CSP has huge storage space and computation resources to provide outsourced
data storage and management services for the client. Upon receiving the client’s (or
blockchain’s) challenge, the CSP sends the generated response to the client (or block-
chain).

3. The blockchain stores copies of the file digests for the client. When the blockchain is
triggered to perform public auditing for fair judgement, the blockchain will challenge
the CSP and then verify the response coming from the CSP. If the response can pass
verification, the remote data are complete; otherwise, they are determined to be in-
complete, since the data file digest 𝑎𝑐𝑐஻ saved in the blockchain will not be broken
by anyone due to the non-tamperability property of the blockchain. Therefore, the
failure of verification must be due to damage to the outsourced data by the CSP, and
the client obtains compensation from the CSP automatically through a smart contract.

4.2. Threat Model and Design Goals
Both the CSP and the clients can be dishonest in our scheme. It is assumed that the

CSP has no motivation to disclose managed data to others and also has no motivation to
drop the managed data. However, the data stored on the CSP may be damaged due to
software, hardware bugs, or hacker attacks. The CSP may conceal data corruption to avoid
compensation. For the clients, they may modify the file digests used in private auditing,
which leads to a failed verification result for obtaining compensation from the CSP. More-
over, one may pass him or herself off as a real client (i.e., real data owner) to obtain com-
pensation from the CSP.

In this scheme, we will achieve the following security goals:
• Correctness: If the outsourced data have not been broken by the CSP, and if the client

and CSP execute the proposed scheme honestly, then the response from the CSP can
pass verification;

• Soundness: Only when the data are complete can they pass verification;

Figure 2. Architecture of our two-phase data auditing scheme.

1. The client has a large amount of data and needs to outsource this data to the CSP for
maintenance and computation but does not save the copy locally. It also stores a file
digest copy on the blockchain. Then, the client challenges the CSP and verifies the
response coming from the CSP. If the response from the CSP passes verification, the
outsourced data are considered complete; otherwise, they are considered incomplete.
This case will trigger the blockchain to perform public auditing for fair judgement.

2. The CSP has huge storage space and computation resources to provide outsourced
data storage and management services for the client. Upon receiving the client’s
(or blockchain’s) challenge, the CSP sends the generated response to the client
(or blockchain).

3. The blockchain stores copies of the file digests for the client. When the blockchain is
triggered to perform public auditing for fair judgement, the blockchain will challenge

Mathematics 2022, 10, 1005 7 of 17

the CSP and then verify the response coming from the CSP. If the response can pass
verification, the remote data are complete; otherwise, they are determined to be
incomplete, since the data file digest accB saved in the blockchain will not be broken
by anyone due to the non-tamperability property of the blockchain. Therefore, the
failure of verification must be due to damage to the outsourced data by the CSP, and
the client obtains compensation from the CSP automatically through a smart contract.

4.2. Threat Model and Design Goals

Both the CSP and the clients can be dishonest in our scheme. It is assumed that the
CSP has no motivation to disclose managed data to others and also has no motivation
to drop the managed data. However, the data stored on the CSP may be damaged due
to software, hardware bugs, or hacker attacks. The CSP may conceal data corruption to
avoid compensation. For the clients, they may modify the file digests used in private
auditing, which leads to a failed verification result for obtaining compensation from the
CSP. Moreover, one may pass him or herself off as a real client (i.e., real data owner) to
obtain compensation from the CSP.

In this scheme, we will achieve the following security goals:

• Correctness: If the outsourced data have not been broken by the CSP, and if the client
and CSP execute the proposed scheme honestly, then the response from the CSP can
pass verification;

• Soundness: Only when the data are complete can they pass verification;
• Privacy preserving: The entire auditing process will not disclose any data privacy

in-formation;
• Dynamic operations support: This supports that the client can insert, delete, and

update the data outsourced to the CSP, and after dynamic operations, the auditing
scheme remains applicable;

• Timely compensation: The client can obtain compensation from the CSP in a timely
manner when the outsourced data are damaged by the CSP.

In order to better understand our audit scheme’s construction, the major notations
and their meanings in this paper are listed in Table 2.

Table 2. Notations.

Notation Meaning

e A bilinear pairing
G, G1, G2, GT Cyclic groups with order p

g Generator of group G
F The original data file to be divided into n segments f1, · · · , fn
ci The ciphertext of segment fi
τi The tag of segment ci, i.e., τi = H(ci)
H A cryptographic hash function
B The processed data file B = (b1, · · · , bn) with bi = ci ‖ τi

accB The accumulated value of data file B by the bilinear pair accumulator
witbj

The witness calculated by the CSP
σ The signature of file B

ssk, spk The private key ssk and public key spk for a digital signature algorithm
skacc, pkacc The sec ret key skacc and public key pkacc for a bilinear pair accumulator

5. Scheme Construction

We first give the main idea of our design and then show the auditing scheme in detail.

5.1. Main Idea

Our proposed blockchain-based hybrid auditing scheme extends the work in [20]
and [28], but the difference is that the role of the verifier can be the client or blockchain smart

Mathematics 2022, 10, 1005 8 of 17

contract, which enables our scheme to audit with fair arbitration and timely compensation,
saving audit fees and communication costs for the client.

In our proposed blockchain-based hybrid auditing scheme, to save audit fees and
communication costs for the client, the audit phase is executed by the client first (i.e., the
client assumes the role of the verifier for the audit). If verification is passed, then the
outsourced data are complete; otherwise, the outsourced data are possibly incomplete.
At this point, the blockchain smart contract is triggered for fair arbitration; that is, the
blockchain smart contract assumes the role of the verifier for auditing again. Meanwhile,
both the client and CSP send deposits to the smart contract, and then client signs a smart
contract with the CSP. First, the smart contract submits the deposit of the client to the
miners as an audit fee. Secondly, if verification is passed, the CSP’s deposit is returned;
otherwise, the smart contract sends the CSP’s deposit to the client as compensation. Note
that if verification is passed, then the outsourced data are complete, and thus the CSP’s
deposit is returned. If the auditing verification is not correct, then the outsourced data are
incomplete, and the verification result must be incurred by the CSP since the file digest
accB used for verification is stored on the blockchain, and the blockchain has the property
of non-tamperability.

5.2. A Concrete Scheme

The outsourced data are assumed to be static in our scheme. Our hybrid auditing
scheme consists of three phases—the set-up phase, the data upload phase, and the audit
phase—which extends Ren et al.’s construction [28] as follows:

• Set-up phase: The algorithm of the bilinear pairing instance generator is used to gener-
ate cyclic groups G1, G2, and GT with prime order p, a bilinear map e : G1 × G2 → GT ,

and s R← Z∗p. For simplicity, we assume G1 = G2 = G, but this is not essen-
tial. The generator of G is denoted by g. Let skacc = s be the secret key and
pkacc =

(
g, gs, · · · , gsn

)
be the public key, where n is the upper bound on the number

of elements to accumulate. Each client generates the private key ssk and public key
spk for a digital signature algorithm. Then skacc and ssk are the secret parameters, and
the public parameters of our scheme are pkacc, spk, e, and g. Let H be a cryptographic
hash function.

• Data upload phase: The client divides the file F into n segments with l1 bits
(i.e., F = (f1, · · · , fn)) and then performs the following procedure:

(1) Each segment is encrypted separately using asymmetric encryption techniques
such that ci = E(fi) for i = 1, · · · , n.

(2) An l2-bit tag τi is generated for each segment ci such that τi = H(ci) for
i = 1, · · · , n. The tags are saved in the tag index table (TIT).

(3) Each tag is put at the end of its corresponding segment and generates a data
block bi = ci ‖ τi such that B = {b1, · · · , bn}.

(4) The accumulated value of the processed file set B is calculated with the bilinear
pair accumulator (i.e., accB = g∏n

i = 1 (bi+s)), and the signature σ = Sigssk(name)
is computed, where the name ∈ Zp is the identifier of file B, which is uniformly
and randomly chosen by the client.

(5) The client stores the copies of the TIT, the signature σ, and the auxiliary value
aux = (accB, e, g, pkacc) on the blockchain.

(6) The processed data file B, the signature σ, and pkacc =
(

g, gs, · · · , gsn
)

are
uploaded to the CSP.

• First-phase audit: The client interacts with the CSP as follows:

(1) The client uses the random index j to challenge the CSP.

(2) Uponreceivingthechallenge, theCSPneeds tocalculate thewitness witbj
= acc

(bj+s)−1

B
of element bj, but the witness cannot be calculated directly since s is unknown.

Mathematics 2022, 10, 1005 9 of 17

However, the CSP can express the witness as witbj
= ∏n−1

i = 0 (gsi
)

ai using

pkacc =
(

g, gs, · · · , gsn
)

, where {a0, · · · , an−1} is the coefficient of s in polyno-
mial f(s) = ∏b∈B\{bj}(b + s). Note that the CSP uses all elements in B except
bj to compute witbj

.
(3) The CSP returns (witbj

, bj) as a response to the client.

(4) After receiving (witbj
, bj), the client checks whether e(accB, g) = e

(
witbj

, gbj gs
)

holds. Meanwhile, the client extracts the corresponding segment cj
∗ and its

tag τj
∗ from the block bj returned by the CSP and compares whether the ex-

tracted tag τj
∗ and the original τj stored in the TIT are equal. If they are,

then τ′j = H
(
cj
∗) is calculated using the extracted data segment cj

∗,and it is
determined whether the calculated tag τ′j and the original tag τj are equal.

If verification is passed, output “1” is determined, meaning the outsourced data are
complete; otherwise, output “0” is assigned, which triggers the blockchain’s smart contract
to perform a second-phase audit for fair arbitration.

• Second-phase audit: The blockchain smart contract interacts with the CSP as follows:

(1) The blockchain smart contract uses the random index j to challenge the CSP.

(2) Upon receiving the challenge, the CSP calculates the witness witbj
= ∏n−1

i = 0 (gsi
)

ai

of the element bj by pkacc =
(

g, gs, · · · , gsn
)

.

(3) The CSP sends (witbj
, bj) as a response to the blockchain smart contract.

(4) After receiving (witbj
, bj), the blockchain smart contract checks whether

e(accB, g) = e
(

witbj
, gbj gs

)
holds. Meanwhile, it extracts the correspond-

ing segment cj
∗ and its tag τj

∗ from the block bj returned by the CSP and
compares whether the extracted tag τj

∗ and the original τj stored in the TIT
are equal. If they are, then it calculates τ′j = H

(
cj
∗) using the extracted data

segment cj
∗, and determines whether the calculated tag τ′j and the original tag

τj are equal.

If verification is passed, output “1” is reached, meaning the outsourced data are
complete, and the smart contract automatically returns the CSP’s deposit and submits the
deposit of the client to the miner as an audit fee; otherwise, output “0” is reached, meaning
the outsourced data are not complete. In this case, the CSP verifies the signature σ by public
parameter spk, the smart contract submits the CSP’s deposit to the client as compensation
only if the outsourced data belong to the client, and then the smart contract submits the
deposit of the client to the miners as an audit fee.

In order to better understand the caculations of digest accB and the witness in the
above audit scheme construction, an illustrative example is given below in Figure 3.

Mathematics 2022, 10, x FOR PEER REVIEW 10 of 18

(3) The CSP sends (𝑤𝑖𝑡௕ೕ, 𝑏௝) as a response to the blockchain smart contract.
(4) After receiving (𝑤𝑖𝑡௕ೕ, 𝑏௝), the blockchain smart contract checks whether e(𝑎𝑐𝑐஻, 𝑔) =e ቀ𝑤𝑖𝑡௕ೕ, 𝑔௕ೕ𝑔௦ቁ holds. Meanwhile, it extracts the corresponding segment 𝑐௝∗ and its

tag 𝜏௝∗ from the block 𝑏௝ returned by the CSP and compares whether the extracted
tag 𝜏௝∗ and the original 𝜏௝ stored in the TIT are equal. If they are, then it calculates 𝜏௝ᇱ = 𝐻൫𝑐௝∗൯ using the extracted data segment𝑐௝∗, and determines whether the calcu-
lated tag 𝜏௝ᇱ and the original tag 𝜏௝ are equal.
If verification is passed, output “1” is reached, meaning the outsourced data are com-

plete, and the smart contract automatically returns the CSP’s deposit and submits the de-
posit of the client to the miner as an audit fee; otherwise, output “0” is reached, meaning
the outsourced data are not complete. In this case, the CSP verifies the signature σ by
public parameter spk, the smart contract submits the CSP’s deposit to the client as com-
pensation only if the outsourced data belong to the client, and then the smart contract
submits the deposit of the client to the miners as an audit fee.

In order to better understand the caculations of digest 𝑎𝑐𝑐஻ and the witness in the
above audit scheme construction, an illustrative example is given below in Figure 3.

Figure 3. An illustrative example.

Suppose the data processed by the client are B = {𝑏ଵ, 𝑏ଶ, 𝑏ଷ}. The client first calcu-
lates the digest 𝑎𝑐𝑐஻ = 𝑔∏ (௕೔ା௦)య೔సభ . In the audit phase, upon receiving the challenge index
j (suppose j = 2) from the verifier (which can be the client or blockchain smart contract),
the CSP needs to calculate the witness 𝑤𝑖𝑡௕మ = 𝑔∏ (௕೔ା௦)య೔సభ,೔ಯమ , but the witness cannot be
calculated directly since s is unknown. Let f(s) = ∏ (𝑏௜ + 𝑠)ଷ௜ୀଵ,௜ஷଶ = (𝑏ଵ + 𝑠)(𝑏ଷ + 𝑠) =𝑠ଶ + (𝑏ଵ + 𝑏ଷ)𝑠 + 𝑏ଵ𝑏ଷ. The CSP can express the witness as 𝑤𝑖𝑡௕మ = ∏ (𝑔௦೔)௔೔ଶ௜ୀ଴ = (𝑔)௕భ௕య ∙(𝑔௦)௕భା௕య ∙ (𝑔௦మ)ଵ using 𝑝𝑘௔௖௖ = (g, 𝑔௦, ⋯ , 𝑔௦೙), where {𝑎଴ = 𝑏ଵ𝑏ଷ, 𝑎ଵ = 𝑏ଵ + 𝑏ଷ, 𝑎ଶ = 1} is
the coefficient of s in polynomial f(s). The CSP sends (𝑤𝑖𝑡௕మ, 𝑏ଶ) as a response to the ver-
ifier. We can see that the CSP needs to use all elements in B except 𝑏௝ to compute the
witness 𝑤𝑖𝑡௕ೕ.

6. Analysis of Our Design
In this section, we analyze the security and characteristics of our scheme. It is as-

sumed that the underlying cryptographic tools such as the bilinear pairing instance gen-
erator algorithm, bilinear pair accumulator, one-way hash function, asymmetric encryp-
tion algorithm, and digital signature algorithm are secure.

6.1. Security Analysis
We should ensure the correctness and soundness requirements in our scheme. Cor-

rectness means that the response provided by the CSP can pass verification if the out-
sourced data on the CSP are not corrupted. Soundness means that verification can be
passed only if the outsourced data on the CSP is not broken. We give the following theo-
rems to prove these requirements can be satisfied in our proposed scheme:

Figure 3. An illustrative example.

Suppose the data processed by the client are B = {b1, b2, b3}. The client first calculates the
digest accB = g∏3

i = 1 (bi+s). In the audit phase, upon receiving the challenge index j (suppose
j = 2) from the verifier (which can be the client or blockchain smart contract), the CSP needs to

Mathematics 2022, 10, 1005 10 of 17

calculate the witness witb2 = g∏3
i = 1,i 6=2 (bi+s), but the witness cannot be calculated directly since

s is unknown. Let f(s) = ∏3
i = 1,i 6=2(bi + s) = (b1 + s)(b3 + s) = s2 + (b1 + b3)s + b1b3.

The CSP can express the witness as witb2 = ∏2
i = 0 (gsi

)
ai = (g)b1b3 ·(gs)b1+b3 ·

(
gs2
)1

using

pkacc =
(

g, gs, · · · , gsn
)

, where {a0 = b1b3, a1 = b1 + b3, a2 = 1} is the coefficient of s
in polynomial f(s). The CSP sends (witb2 , b2) as a response to the verifier. We can see that
the CSP needs to use all elements in B except bj to compute the witness witbj

.

6. Analysis of Our Design

In this section, we analyze the security and characteristics of our scheme. It is assumed
that the underlying cryptographic tools such as the bilinear pairing instance generator algo-
rithm, bilinear pair accumulator, one-way hash function, asymmetric encryption algorithm,
and digital signature algorithm are secure.

6.1. Security Analysis

We should ensure the correctness and soundness requirements in our scheme. Correct-
ness means that the response provided by the CSP can pass verification if the outsourced
data on the CSP are not corrupted. Soundness means that verification can be passed only if
the outsourced data on the CSP is not broken. We give the following theorems to prove
these requirements can be satisfied in our proposed scheme:

Theorem 1. For correctness, suppose that both the CSP and client execute the proposed scheme hon-
estly. If the outsourced data on the CSP are not broken, then the CSP’s response can pass verification.

Proof. Suppose that both the CSP and client execute the proposed scheme honestly. As
described in our scheme, the CSP’s response (witbj

, bj) can pass verification only when the
following two conditions are met:

(1) e(accB, g) = e
(

witbj
, gbj gs

)
.

(2) By extracting the data segment cj
∗ and its corresponding tag τj

∗ from the target block
bj returned by the CSP, the extracted tag τj

∗ and the original τj stored in the TIT are
equal. By calculating τ′j = H

(
cj
∗) using the extracted data segment cj

∗, the calculated
tag τ′j and the original tag τj are equal.

If the outsourced data on the CSP are not broken, then the first condition is met since
the following equations hold due to the properties of bilinear mapping:

e(accB, g)= e(g∏n
i = 1 (bi+s), g)

= e(g, g)∏n
i = 1 (bi+s)

= e(g
∏bi∈B\{bj}

(bi+s)
, g(bj+s))

= e
(

witbj
, gbj gs

)
where for the data file digest accB = g∏n

i = 1 (bi+s) = g∏bi∈B (bi+s), the witness response by

the CSP is witbj
= g

∏bi∈B\{bj}
(bi+s)

.
Meanwhile, the client extracts the corresponding segment cj

∗ and its tag τj
∗ from the

target block bj returned by the CSP. If the outsourced data are complete, then the extracted
tag τj

∗ and the original τj stored in the TIT must be equal, and the calculated τ′j = H
(
cj
∗)

using the extracted data segment cj
∗ must be equal to the original tag τj stored in the TIT,

so the second condition is met. Therefore, if the outsourced data on the CSP are not broken,
then the CSP’s response can pass verification. �

Mathematics 2022, 10, 1005 11 of 17

Theorem 2. Regarding soundness, verification is only possible if the outsourced data on the CSP
are not corrupted. In other words, if the outsourced data are not complete, then verification cannot
be passed.

Proof. In our proposed scheme, verification can be passed in either the first-phase audit-
ing or the second-phase auditing. In both cases, after receiving (witbj

, bj) from the CSP,
verification can be passed only when the following two conditions are met:

(1) e(accB, g) = e
(

witbj
, gbj gs

)
.

(2) When extracting the data segment cj
∗ and its corresponding tag τj

∗ from the target
block bj returned by the CSP, the extracted tag τj

∗ and the original τj stored in the TIT
are equal, and by calculating τ′j = H

(
cj
∗) using the extracted data segment cj

∗, the
calculated tag τ′j and the original tag τj are equal.

Upon receiving the challenge, the CSP needs to compute the corresponding witness
witbj

for the target data block bj, and all data blocks except bj must be used in the calculation
of the witness. Thus, even a small change in the outsourced data can cause the generated
witness to change. Moreover, the CSP returns both the target data block and the calculated
witness as a response. If the target data block bj is corrupted, then either the extracted tag
τj
∗ is not equal to the original τj stored in the TIT or the calculated τ′j = H

(
cj
∗) using

the extracted data segment cj
∗ is not equal to the original tag τj stored in the TIT. In other

words, due to the security of the hash algorithm, it is almost impossible to generate the
same tags using other data blocks. Thus, a valid response cannot be generated by the CSP
if the data are not actually saved or the data are corrupted on the CSP. Therefore, if the
outsourced data are not complete, then verification cannot be passed. �

6.2. Other Characteristics

Our scheme has the following properties:

• Privacy preservation: Before uploading the data, the client divides the data file F
into n segments with l1 bits; that is, F = (f1, · · · , fn), and then each segment is
encrypted separately using asymmetric encryption techniques such that ci = E(fi)
for i = 1, · · · , n. Note that the client does not disclose the key for the encrypted
data to others in the whole auditing process so no one can access the outsourced data
except the client him or herself;

• Dynamic operations support: Our proposed scheme also supports the dynamic opera-
tions of data such as inserting, deleting, and updating by using the tag index table (TIT)
similar to the method in [28], ensuring that after dynamic operations, the auditing
scheme remains applicable;

• Timely compensation: As described in our scheme, the blockchain smart contract
must be triggered for fair arbitration if the outsourced data are corrupted by the CSP.
The client signs a smart contract with the CSP, and both the client and CSP send
deposits to the smart contract. First, the smart contract submits the deposit of the
client to the miners as an audit fee. Secondly, if verification is passed, it returns the
CSP’s deposit; otherwise, the deposit of the CSP is sent to the client as compensation
via the smart contract. Thus, if the outsourced data are corrupted by the CSP, then
verification cannot be passed, so the smart contract submits the deposit to the client as
compensation automatically after the CSP verifies the signature σ; that is, the client
can obtain compensation from the CSP in a timely manner.

7. Performance Evaluation

We implemented our system prototype of our proposed auditing scheme model via
Python code. In this scheme, we used Solidity 0.8.11 to build an Ethereum smart contract
and used Go Ethereum (Geth) 1.10.16 as the Ethereum client. The smart contract was
deployed to the Ethereum test network.

Mathematics 2022, 10, 1005 12 of 17

The overhead of the smart contract comes from the posting parameter and on-chain
verification. In this scheme, there is just one parameter named accB which is used for
on-chain verification. Figure 4 measures the gas costs of different sizes of files that were
used in our auditing scheme. It is shown that the cost of our contract implemented on
Ethereum was a constant value. The gas cost was fixed at 4.2216× 104. The total cost
of ether could be calculated by the Ethereum gas rule: gasCost× gasPrice. The average
gas price was about 45 Gwei, and 1 Gwei is 10−9 ether. The current exchange rate is 1
ether = USD 2500. As shown in Figure 4, our cost for deploying the auditing scheme model
was about USD 4.7493. The results confirm that this was not a huge cost for the client.

Mathematics 2022, 10, x FOR PEER REVIEW 13 of 18

Figure 4. Storage overhead required for blockchain verification based on different file sizes.

In order to execute the polynomial operations in a bilinear map accumulator, we in-
troduced the PBC library in the implementation. The PBC library is an open-source C li-
brary built on the GMP library that performs the mathematical operations underlying
pairing-based cryptosystems. In the data upload phase, the client encrypts the data blocks
which need to be outsourced by RSA, a kind of asymmetric encryption algorithm. Then,
the client generates conflict-free 20-bit tags using a hash algorithm. To evaluate the per-
formance of our model, we used the following set-up. The server proxy of the client was
collocated with the CSP server on 8 cores of a machine with 2.60 GHz Intel i7-6700 HQ
processors and 12 GB of RAM running Ubuntu Linux.

The upload time of the client, the witness computation time of the CSP, and the ver-
ification time cost of the verifier should be considered. First, we fixed the size of the data
file to 2 MB. The data file was generated randomly from 0–9, a–z, and A–Z in our testing.
Both the base size of the data blocks and the size of each increment were designed to be
256 bytes. When the block size was increased to 2 KB, the experiment would be stopped.
For each round of experiments, we ran 100 tests with the same data and took the average
as the result to reduce the error effect of a single experiment. Note that the larger the data
block size, the fewer segments were divided, and the fewer labels were generated since
the size of the data file was fixed. The final experimental results are shown in Figure 5a,b.
It is not hard to observe that the upload time and the generation time of the witness were
inversely proportional to the block size, and the time required for the verifier to conduct
verification was fixed at 0.002 s, which conformed to our expectations. We can see that as
the block size increased, the time required to calculate 𝑎𝑐𝑐஻ and wit decreased corre-
spondingly, as shown in Figure 5c. Additionally, the order of magnitude of these param-
eters was about 0.01, well below the upload time. For the client, most of the time the cost
was spent on encrypting the data file. Moreover, the calculation overhead of the parame-
ters b (i.e., data segment) and τ (i.e., tag) was independent of the block size.

Figure 4. Storage overhead required for blockchain verification based on different file sizes.

In order to execute the polynomial operations in a bilinear map accumulator, we
introduced the PBC library in the implementation. The PBC library is an open-source C
library built on the GMP library that performs the mathematical operations underlying
pairing-based cryptosystems. In the data upload phase, the client encrypts the data blocks
which need to be outsourced by RSA, a kind of asymmetric encryption algorithm. Then, the
client generates conflict-free 20-bit tags using a hash algorithm. To evaluate the performance
of our model, we used the following set-up. The server proxy of the client was collocated
with the CSP server on 8 cores of a machine with 2.60 GHz Intel i7-6700 HQ processors and
12 GB of RAM running Ubuntu Linux.

The upload time of the client, the witness computation time of the CSP, and the
verification time cost of the verifier should be considered. First, we fixed the size of the
data file to 2 MB. The data file was generated randomly from 0–9, a–z, and A–Z in our
testing. Both the base size of the data blocks and the size of each increment were designed
to be 256 bytes. When the block size was increased to 2 KB, the experiment would be
stopped. For each round of experiments, we ran 100 tests with the same data and took
the average as the result to reduce the error effect of a single experiment. Note that the
larger the data block size, the fewer segments were divided, and the fewer labels were
generated since the size of the data file was fixed. The final experimental results are shown
in Figure 5a,b. It is not hard to observe that the upload time and the generation time of the
witness were inversely proportional to the block size, and the time required for the verifier
to conduct verification was fixed at 0.002 s, which conformed to our expectations. We can
see that as the block size increased, the time required to calculate accB and wit decreased
correspondingly, as shown in Figure 5c. Additionally, the order of magnitude of these
parameters was about 0.01, well below the upload time. For the client, most of the time
the cost was spent on encrypting the data file. Moreover, the calculation overhead of the
parameters b (i.e., data segment) and τ (i.e., tag) was independent of the block size.

Mathematics 2022, 10, 1005 13 of 17
Mathematics 2022, 10, x FOR PEER REVIEW 14 of 18

(a) (b)

(c)

Figure 5. Computing overhead based on different block sizes. (a) Computing overhead of audit
participants. (b) Computing overhead of the client. (c) Computing overhead of the parameters.

Figure 5. Computing overhead based on different block sizes. (a) Computing overhead of audit
participants. (b) Computing overhead of the client. (c) Computing overhead of the parameters.

In addition, if the block size was fixed at 256 bytes, we increased the data file size from
256 KB to 2 MB in increments of 256 KB. Figure 6a,b shows that most of the computing
overhead was spent on the data upload phase, and the vast majority of this time was used
to encrypt the data as mentioned above. As shown in Figure 6c, both the time required for
generating accB by the client and the computational overhead for calculating the witness
by the CSP were proportional to the size of the outsourced data file. The results show that
the computational overhead of the verifier was a constant value regardless of the data file
size and the data block size. Therefore, the experimental results show that our proposed
auditing scheme was very effective.

To measure the distribution trend of the computing overhead with different param-
eters, we fixed the size of the data file at 2 MB and the block size at 256 bytes. Then, we
repeated the experiment 100 times and recorded the computing overhead of the parameters
for each experiment. The distribution trend of the computing overhead is shown in Figure 7.
The computing overhead of all parameters was according to Gaussian distribution.

Mathematics 2022, 10, 1005 14 of 17

Mathematics 2022, 10, x FOR PEER REVIEW 15 of 18

In addition, if the block size was fixed at 256 bytes, we increased the data file size
from 256 KB to 2 MB in increments of 256 KB. Figure 6a,b shows that most of the compu-
ting overhead was spent on the data upload phase, and the vast majority of this time was
used to encrypt the data as mentioned above. As shown in Figure 6c, both the time re-
quired for generating 𝑎𝑐𝑐஻ by the client and the computational overhead for calculating
the witness by the CSP were proportional to the size of the outsourced data file. The re-
sults show that the computational overhead of the verifier was a constant value regardless
of the data file size and the data block size. Therefore, the experimental results show that
our proposed auditing scheme was very effective.

(a) (b)

(c)

Figure 6. Computing overhead based on different file sizes. (a) Computing overhead of audit par-
ticipants. (b) Computing overhead of the client. (c) Computing overhead of the parameters.

To measure the distribution trend of the computing overhead with different param-
eters, we fixed the size of the data file at 2 MB and the block size at 256 bytes. Then, we
repeated the experiment 100 times and recorded the computing overhead of the parame-
ters for each experiment. The distribution trend of the computing overhead is shown in
Figure 7. The computing overhead of all parameters was according to Gaussian distribu-
tion.

Figure 6. Computing overhead based on different file sizes. (a) Computing overhead of audit
participants. (b) Computing overhead of the client. (c) Computing overhead of the parameters.

Mathematics 2022, 10, x FOR PEER REVIEW 16 of 18

Figure 7. The distribution trend of computing overhead with different parameters.

8. Conclusions and Future Work
In this paper, we designed a novel and efficient two-phase arbitrable hybrid auditing

scheme based on the blockchain. By using a bilinear map accumulator and blockchain
smart contract, our scheme not only realizes deterministic checking, which provides 100%
data possession and integrity guarantees, but also enables a healthy ecosystem between
the client and the CSP. That aside, when the outsourced data are lost or corrupted by the
CSP, our scheme can compensate the client in a timely manner and punish the dishonest
CSP automatically with a smart contract. Meanwhile, our scheme also protects the honest
CSP and prevents dishonest behavior from the client. Furthermore, we designed hybrid
auditing in our scheme instead of conducting public auditing through the blockchain. The
hybrid auditing design not only provides fair judgment but also saves audit fees for the
client, because the public auditing phase by the blockchain is triggered only when verifi-
cation fails in the private auditing phase. Through theoretical and experimental analysis,
it was verified that our design was feasible and efficient, and it achieved the desired secu-
rity goals. Of course, our scheme still has some limitations to be improved upon. For ex-
ample, it can only check whether the outsourced data are corrupted and cannot determine
which data blocks are corrupted or how to repair the corrupted data blocks. In future
works, we will enhance more functions of our auditing scheme, such as the location and
repair of corrupted data blocks.

Author Contributions: Conceptualization, S.W. and Y.G.; methodology, S.W. and Y.G.; validation,
Y.Z. and Y.G.; writing—original draft preparation, S.W.; writing—review and editing, S.W., Y.Z.,
and Y.G. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Fundamental Research Funds for the Central Universities
under Grants 2020NTST32 and National Natural Science Foundation of China under Grants
62102035.

Data Availability Statement: The data used to support the findings of this study are available from
the authors upon request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zheng, X.; Cai, Z. A Private and Efficient Mechanism for Data Uploading in Smart Cyber-Physical Systems. IEEE Trans. Netw.

Sci. Eng. 2020, 7, 766–775.
2. Cai, Z.; He, Z. Trading Private Range Counting over Big IoT Data. In Proceedings of the 2019 IEEE 39th International Conference

on Distributed Computing Systems (ICDCS), Dallas, TX, USA, 31 October 2019.
3. Zheng, X.; Cai, Z. Privacy-Preserved Data Sharing towards Multiple Parties in Inxdustrial IoTs. IEEE J. Sel. Areas Commun. 2020,

38, 968–979.
4. Cai, Z.; Shi, T. Distributed Query Processing in the Edge Assisted IoT Data Monitoring System. IEEE Internet Things J. 2021, 8,

12679–12693.

Figure 7. The distribution trend of computing overhead with different parameters.

8. Conclusions and Future Work

In this paper, we designed a novel and efficient two-phase arbitrable hybrid auditing
scheme based on the blockchain. By using a bilinear map accumulator and blockchain
smart contract, our scheme not only realizes deterministic checking, which provides 100%
data possession and integrity guarantees, but also enables a healthy ecosystem between the
client and the CSP. That aside, when the outsourced data are lost or corrupted by the CSP,

Mathematics 2022, 10, 1005 15 of 17

our scheme can compensate the client in a timely manner and punish the dishonest CSP
automatically with a smart contract. Meanwhile, our scheme also protects the honest CSP
and prevents dishonest behavior from the client. Furthermore, we designed hybrid auditing
in our scheme instead of conducting public auditing through the blockchain. The hybrid
auditing design not only provides fair judgment but also saves audit fees for the client,
because the public auditing phase by the blockchain is triggered only when verification
fails in the private auditing phase. Through theoretical and experimental analysis, it was
verified that our design was feasible and efficient, and it achieved the desired security
goals. Of course, our scheme still has some limitations to be improved upon. For example,
it can only check whether the outsourced data are corrupted and cannot determine which
data blocks are corrupted or how to repair the corrupted data blocks. In future works, we
will enhance more functions of our auditing scheme, such as the location and repair of
corrupted data blocks.

Author Contributions: Conceptualization, S.W. and Y.G.; methodology, S.W. and Y.G.; validation,
Y.Z. and Y.G.; writing—original draft preparation, S.W.; writing—review and editing, S.W., Y.Z. and
Y.G. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Fundamental Research Funds for the Central Universities
under Grants 2020NTST32 and National Natural Science Foundation of China under Grants 62102035.

Data Availability Statement: The data used to support the findings of this study are available from
the authors upon request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zheng, X.; Cai, Z. A Private and Efficient Mechanism for Data Uploading in Smart Cyber-Physical Systems. IEEE Trans. Netw. Sci.

Eng. 2020, 7, 766–775.
2. Cai, Z.; He, Z. Trading Private Range Counting over Big IoT Data. In Proceedings of the 2019 IEEE 39th International Conference

on Distributed Computing Systems (ICDCS), Dallas, TX, USA, 31 October 2019.
3. Zheng, X.; Cai, Z. Privacy-Preserved Data Sharing towards Multiple Parties in Inxdustrial IoTs. IEEE J. Sel. Areas Commun. 2020,

38, 968–979. [CrossRef]
4. Cai, Z.; Shi, T. Distributed Query Processing in the Edge Assisted IoT Data Monitoring System. IEEE Internet Things J. 2021, 8,

12679–12693. [CrossRef]
5. Dragulinescu, A.-M.; Constantin, F.; Orza, O.; Bosoc, S.; Streche, R.; Negoita, A.; Osiac, F.; Balaceanu, C.; Suciu, G. Smart

Watering System Security Technologies using Blockchain. In Proceedings of the 2021 13th International Conference on Electronics,
Computers and Artificial Intelligence (ECAI), Pitesti, Romania, 1–3 July 2021.

6. Cai, Z.; He, Z.; Guan, X.; Li, Y. Collective Data-Sanitization for Preventing Sensitive Information Inference Attacks in Social
Networks. IEEE Trans. Dependable Secur. Comput. 2018, 15, 577–590. [CrossRef]

7. Miao, Y.; Ma, J.; Liu, X.; Weng, J.; Li, H.; Li, H. Lightweight fine-grained search over encrypted data in fog computing. IEEE Trans.
Serv. Comput. 2018, 12, 772–785. [CrossRef]

8. Ong, Q.; Miao, Y.; Li, H.; Liu, X.; Deng, R. Privacy-Preserving Ranked Spatial Keyword Query in Mobile Cloud-Assisted Fog
Computing. IEEE Trans. Mob. Comput. 2021. [CrossRef]

9. Xie, H.; Guo, Y.; Jia, X. Privacy-preserving Location-based Data Queries in Fog-enhanced Sensor Networks. IEEE Internet Things J.
2021. [CrossRef]

10. Guo, Y.; Xie, H.; Wang, C.; Jia, X. Enabling privacy-preserving geographic range query in fog-enhanced iot services. IEEE Trans.
Dependable Secur. Comput. 2021. [CrossRef]

11. Ateniese, G.; Burns, R.; Curtmola, R.; Herring, J.; Kissner, L.; Peterson, Z.; Song, D. Provable data possession at untrusted stores.
In Proceedings of the 14th ACM Conference on Computer and Communications Security, New York, NY, USA, 2 November
2007–31 October 2007; pp. 598–609.

12. Ateniese, G.; Di Pietro, R.; Mancini, L.V.; Tsudik, G. Scalable and efficient provable data possession. In Proceedings of the 4th
International Conference on Security and Privacy in Communication Networks, New York, NY, USA, 22–25 September 2008.

13. Erway, C.C.; Kupcu, A.; Papamanthou, C.; Tamassia, R. Dynamic provable data possession. ACM Trans. Inf. Syst. Secur. 2015, 17,
1–29. [CrossRef]

14. Wang, Q.; Wang, C.; Ren, K.; Lou, W.; Li, J. Enabling public auditability and data dynamics for storage security in cloud
computing, IEEE Trans. Parallel Distrib. Syst. 2011, 22, 847–859. [CrossRef]

15. Wang, C.; Chow, S.S.M.; Wang, Q.; Ren, K.; Lou, W. Privacy-preserving public auditing for secure cloud storage. IEEE Trans.
Comput. 2013, 62, 362–375. [CrossRef]

http://doi.org/10.1109/JSAC.2020.2980802
http://doi.org/10.1109/JIOT.2020.3026988
http://doi.org/10.1109/TDSC.2016.2613521
http://doi.org/10.1109/TSC.2018.2823309
http://doi.org/10.1109/TMC.2021.3134711
http://doi.org/10.1109/JIOT.2021.3135303
http://doi.org/10.1109/TDSC.2021.3095933
http://doi.org/10.1145/2699909
http://doi.org/10.1109/TPDS.2010.183
http://doi.org/10.1109/TC.2011.245

Mathematics 2022, 10, 1005 16 of 17

16. Yuan, J.; Yu, S. Public integrity auditing for dynamic data sharing with multiuser modification. IEEE Trans. Inf. Forensics Secur.
2015, 10, 1717–1726. [CrossRef]

17. Liu, C.; Ranjan, R.; Yang, C.; Zhang, X.; Wang, L.; Chen, J. MuR-DPA: Top-down levelled multi-replica Merkle hash tree based
secure public auditing for dynamic big data storage on cloud. IEEE Trans. Comput. 2014, 64, 2609–2622. [CrossRef]

18. Yu, Y.; Li, Y.; Ni, J.; Yang, G.; Mu, Y.; Susilo, W. Comments on ‘public integrity auditing for dynamic data sharing with multiuser
modification’. IEEE Trans. Inf. Forensics Secur. 2015, 11, 658–659. [CrossRef]

19. Wang, H.; Qin, H.; Zhao, M.; Wei, X.; Shen, H.; Susilo, W. Blockchain-based fair payment smart contract for public cloud storage
auditing. Inform. Sci. 2020, 519, 348–362. [CrossRef]

20. Yuan, H.; Chen, X.; Wang, J.; Yuan, J.; Yan, H.; Susilo, W. Blockchain-based public auditing and secure deduplication with fair
arbitration. Inf. Sci. 2020, 541, 409–425. [CrossRef]

21. Wang, H.; Li, K.; Ota, K.; Shen, J. Remote data integrity checking and sharing in cloud-based health internet of things. IEICE
Trans. Inf. Syst. 2016, 99, 1966–1973. [CrossRef]

22. Wang, H.; He, D.; Yu, J.; Wang, Z. Incentive and unconditionally anonymous identity-based public provable data possession.
IEEE Trans. Serv. Comput. 2019, 12, 824–835. [CrossRef]

23. Wang, H. Proxy provable data possession in public clouds. IEEE Trans. Serv. Comput. 2013, 6, 551–559. [CrossRef]
24. Wang, H.; Wang, Q.; He, D. Blockchain-based private provable data possession. IEEE Trans. Dependable Secur. Comput. 2021, 18,

2379–2389. [CrossRef]
25. Wang, H.; He, D.; Fu, A.; Li, Q.; Wang, Q. Provable data possession with outsourced data transfer. IEEE Trans. Serv. Comput. 2019,

14, 1929–1939. [CrossRef]
26. Kuang, B.; Fu, A.; Yu, S.; Yang, G.; Su, M.; Zhang, Y. ESDRA: An efficient and secure distributed remote attestation scheme for IoT

swarms. IEEE Internet Things J. 2019, 6, 8372–8383. [CrossRef]
27. Zhang, Y.; Yu, J.; Hao, R.; Wang, C.; Ren, K. Enabling efficient user revocation in identity-based cloud storage auditing for shared

big data. IEEE Trans. Dependable Secur. Comput. 2018, 17, 608–619. [CrossRef]
28. Ren, Y.; Qi, J.; Liu, Y.; Wang, J.; Kim, G.-J. Integrity verification mechanism of sensor data based on bilinear map accumulator.

ACM Trans. Internet Technol. 2021, 21, 1–19. [CrossRef]
29. Zafar, F.; Khan, A.; Malik, S.U.R.; Ahmed, M.; Anjum, A.; Khan, M.I.A. 2017. Survey of cloud computing data integrity schemes:

Design challenges, taxonomy and future trends. Comput. Security. 2017, 65, 29–49. [CrossRef]
30. Du, Y.; Duan, H.; Zhou, A.; Wang, C.; Au, M.; Wang, Q. Enabling Secure and Efficient Decentralized Storage Auditing with

Blockchain. Proc. IEEE Trans. Dependable Secur. Comput 2021. [CrossRef]
31. Caronni, G.; Waldvogel, M. Establishing trust in distributed storage providers. In Proceedings of the Third International

Conference on Peer-to-Peer Computing (P2P2003), Linköping, Sweden, 1–3 September 2003; pp. 128–133.
32. Deswarte, Y.; Quisquater, J.-J.; Saïdane, A. Remote Integrity Checking, in Integrity and Internal Control in Information Systems VI;

Springer: Berlin, Germany, 2004; pp. 1–11.
33. Filho, D.L.G.; Barreto, P.S.L.M. Demonstrating Data Possession and Uncheatable Data Transfer. Cryptology ePrint Archive:

Report 2006/150. Available online: https://eprint.iacr.org/2006/150 (accessed on 12 December 2021).
34. Sebe, F.; Domingo-Ferrer, J.; Martinez-balleste, A.; Deswarte, Y.; Quisquater, J. Efficient remote data possession checking in critical

information infrastructures. IEEE Trans. Knowl. Data Eng. 2008, 20, 1034–1038. [CrossRef]
35. Barsoum, A.F.; Hasan, M.A. Provable Possession and Replication of Data over Cloud Servers; University Waterloo: Waterloo, ON,

Canada, 2010.
36. Hao, Z.; Zhong, S.; Yu, N. A privacy-preserving remote data integrity checking protocol with data dynamics and public

verifiability. IEEE Trans. Knowl. Data Eng. 2011, 23, 1432–1437.
37. Buterin, V. Ethereum White Paper. Available online: https://www.mendeley.com (accessed on 12 December 2021).
38. The Storj Project, [Online]. Available online: https://storj.io/storj.pdf (accessed on 12 December 2021).
39. Guo, Y.; Zhang, C.; Jia, X. Verifiable and forward-secure encrypted search using blockchain techniques. In Proceedings of the

IEEE International Conference on Communications, Dublin, Ireland, 7–11 June 2020.
40. Guo, Y.; Wang, S.; Huang, J. A blockchain-assisted framework for secure and reliable data sharing in distributed systems.

EURASIP J. Wirel. Commun. Netw. 2021, 2021, 1–19. [CrossRef]
41. Tong, W.; Dong, X.; Shen, Y.; Jiang, X. A hierrchical sharding protocol for multi-domain IoT blockchains. In Proceedings of the

ICC 2019—2019 IEEE International Conference on Communications, Shanghai, China, 20–24 May 2019.
42. Zhu, S.; Cai, Z.; Hu, H.; Li, Y.; Li, W. zkCrowd: A Hybrid Blockchain-based Crowdsourcing Platform. IEEE Trans. Ind. Inform.

2019, 16, 4196–4205. [CrossRef]
43. Guo, Y.; Xie, H.; Miao, Y.; Wang, C.; Jia, X. FedCrowd: A federated and privacy-preserving crowdsourcing platform on blockchain.

In Proceedings of the IEEE Transactions on Services Computing, 14 October 2020.
44. Li, C.; Qu, X.; Guo, Y. TFCrowd: A blockchain-based crowdsourcing framework with enhanced trustworthiness and fairness.

EURASIP J. Wirel. Commun. Netw. 2021. [CrossRef]
45. Zhang, C.; Guo, Y.; Jia, X.; Wang, C.; Du, H. Enabling Proxy-Free Privacy-Preserving and Federated Crowdsourcing by Using

Blockchain. IEEE Internet Things J. 2021, 8, 6624–6636. [CrossRef]
46. Wang, M.; Guo, Y.; Zhang, C.; Wang, C.; Huang, H.; Jia, X. MedShare: A Privacy-Preserving Medical Data Sharing System by

Using Blockchain. IEEE Trans. Serv. Comput. 2021. [CrossRef]

http://doi.org/10.1109/TIFS.2015.2423264
http://doi.org/10.1109/TC.2014.2375190
http://doi.org/10.1109/TIFS.2015.2501728
http://doi.org/10.1016/j.ins.2020.01.051
http://doi.org/10.1016/j.ins.2020.07.005
http://doi.org/10.1587/transinf.2015INI0001
http://doi.org/10.1109/TSC.2016.2633260
http://doi.org/10.1109/TSC.2012.35
http://doi.org/10.1109/TDSC.2019.2949809
http://doi.org/10.1109/TSC.2019.2892095
http://doi.org/10.1109/JIOT.2019.2917223
http://doi.org/10.1109/TDSC.2018.2829880
http://doi.org/10.1145/3380749
http://doi.org/10.1016/j.cose.2016.10.006
http://doi.org/10.1109/TDSC.2021.3081826
https://eprint.iacr.org/2006/150
http://doi.org/10.1109/TKDE.2007.190647
https://www.mendeley.com
https://storj.io/storj.pdf
http://doi.org/10.1186/s13638-021-02041-y
http://doi.org/10.1109/TII.2019.2941735
http://doi.org/10.1186/s13638-021-02040-z
http://doi.org/10.1109/JIOT.2021.3051295
http://doi.org/10.1109/TSC.2021.3114719

Mathematics 2022, 10, 1005 17 of 17

47. The MedRec Project. Available online: https://www.pubpub.org/pub/medrec (accessed on 28 December 2021).
48. Silvano, F.W.; Marcelino, R. Iota Tangle: A cryptocurrency to communicate Internet-of-Things data—ScienceDirect. Future Gener.

Comput. Syst. 2020, 112, 307–319. [CrossRef]
49. Suciu, G.; Nadrag, C.; Istrate, C.; Vulpe, A.; Ditu, M.-C.; Subea, O. Comparative Analysis of Distributed Ledger Technologies. In

Proceedings of the 2018 Global Wireless Summit (GWS), Chiang Rai, Thailand, 25–18 November 2018.

https://www.pubpub.org/pub/medrec
http://doi.org/10.1016/j.future.2020.05.047

	Introduction
	Related Works
	Data Auditing Schemes
	Blockchain and Smart Contracts

	Preliminaries
	Bilinear Mapping
	q-SDH Assumption
	Smart Contract

	System Model
	Architecture Overview
	Threat Model and Design Goals

	Scheme Construction
	Main Idea
	A Concrete Scheme

	Analysis of Our Design
	Security Analysis
	Other Characteristics

	Performance Evaluation
	Conclusions and Future Work
	References

