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Abstract: We developed a discontinuous Galerkin (DG) numerical scheme for wave propagation in
elastic solids with frictional contact interfaces. This type of numerical scheme is useful in investiga-
tions of wave propagation in elastic solids with micro-cracks (cracked solid) that involve modeling
the damage in brittle materials or architected meta-materials. Only processes with mild loading
that do not trigger crack fracture extension or the nucleation of new fractures are considered. The
main focus lies on the contact conditions at crack surfaces, including provisions for crack opening
and closure and stick-and-slip with Coulomb friction. The proposed numerical algorithm uses the
leapfrog scheme for the time discretization and an augmented Lagrangian algorithm to solve the
associated non-linear problems. For efficient parallelization, a Galerkin discontinuous method was
chosen for the space discretization. The frictional interfaces (micro-cracks), where the numerical
flux is obtained by solving non-linear and non-smooth variational problems, concerns only a limited
number the degrees of freedom, implying a small additional computational cost compared to classical
bulk DG schemes. The numerical method was tested through two model problems with analytical so-
lutions. The proposed Lagrangian approach of the nonlinear interfaces had excellent results (stability
and high accuracy) and only required a reasonable additional amount of computational effort. To
illustrate the method, we conclude with some numerical simulations on the blast propagation in a
cracked material and in a meta-material designed for shock dissipation.

Keywords: discontinuous Galerkin; frictional contact; wave propagation; Lagrangian algorithm;
cracked solid

1. Introduction

Micro-fractures strongly influence the (seismic) wave propagation that gives rise to
scattering and fracture-induced anisotropy. This phenomenon makes the derivation of
accurate relationships between the micro-structure (pores, micro-cracks) and overall elastic
properties of brittle materials (rocks, ceramics, . . . ) difficult. In a fractured medium, when
the dimensions of the fractures are substantially smaller than the wavelength, the wave
propagation can be described by using effective-medium theories (see, for instance, [1–4]
or [5] and references therein). However, if the wavelength is of the same order as the
micro-cracks’ radii, numerical simulations are the main tool of investigation.

The performances of meta-materials can be explained by their internal architectures
involving stiff and strong building blocks bonded by weaker interfaces. These interfaces,
which play a crucial role, enable large deformations and energy dissipation mechanisms
throughout large volumes of the materials. Moreover, the mechanical behavior of these
interfaces, which is typically nonlinear and governed by friction, is strongly related to their
morphology (see, for instance, [6]).

A large majority of numerical schemes treating wave propagation in materials with
micro-fractures use the finite-difference (FD) method. Some of them take the cracks as
secondary point sources [7]. Others use penny-shaped weak inclusions [8,9] to model the
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micro-cracks. In order to adequately model the thickness of cracks, the finite-difference
discretization has to be carried out on a small grid spacing, which generates high computa-
tional costs (both the grid spacing and the time interval have to be small to satisfy stability
considerations). Additionally, when the medium contains high-contrast discontinuities
(strong heterogeneities), some instability problems arise on a staggered grid [10]. Some of
them could be avoided by using the rotated staggered grid technique [11].

In contrast, for “explicit interface” approaches the fracture is assumed to have a
vanishing width across which tractions are continuous, but displacements and velocities
are allowed to have jumps. One of the “explicit interface” approaches is the so-called
“linear-slip displacement-discontinuity model” [3,12–14] offering a unified description of
fractures on scales both large and small, relative to the wavelength. However, this model is
linear and cannot describe the nonlinear phenomena present on the micro-cracks’ interface,
such as as unilateral contact and/or friction.

To model frictional contact constraints, the classical finite element (FE) technique
makes use of two (nodal values) discretization methods: the (augmented) Lagrangian
method and the penalty method (see, for instance, [15–22] or [23]). Other discretiza-
tion schemes, such as mortar methods, were developed for non-matching grids [24–27].
Another class of mixed formulations encompasses the “dual mortar” methods (see, for
instance, [28,29]). An alternative to mixed methods is using the primal formulation (in
which the displacement field is the only unknown) by Nitsche’s method (see [30,31] and its
extensions to estimate either quasi-static friction [32,33] or explicit dynamics [34]).

Nitsche’s method has also been used under the guise of the “interior penalty” method
within the context of discontinuous Galerkin (DG) methods (see Arnold [35] for the earliest
applications). There have been a lot of important developments in DG approaches for
linear and nonlinear solid mechanics (see, for instance, [36] for linear elasticity develop-
ments; [37–39] for finite-strain elasticity developments; [40] for elasto-plasticity develop-
ments; and [41] for second-order computational homogenization). A unifying analysis
of the DG method applied to elliptic problems is contained in [17]. Recently, Truster and
Masud [42] developed a stabilized DG interface method for transient contact with Coulomb
friction that extends their previous work on interphase damage modeling [43]. To overcome
the non-smoothness of the Coulomb friction model, they used an elasto-plastic regulariza-
tion technique (see Simo and Laursen [18]). This regularization needs a tangential stiffness
parameter which is not always simple to capture experimentally. Truster and Masud’s
approach is associated with a classical treatment (FE discretization in space and with an
implicit Newmark scheme in time) of the elastodynamics equations, while a DG method is
used only for the interface nonlinear conditions.

Single and multi-field versions of an h-adaptive, asynchronous space-time discon-
tinuous Galerkin (aSDG) method for elastodynamics, proposed initially in [44,45], were
developed by Abedi et al. [46] to simulate dynamic crack propagation with a cohesive
model. The aSDG numerical fluxes derive from Riemann solutions of the hyperbolic elas-
todynamic system, and are therefore more accurate than other fluxes (for instance, the
centered flux [47]), but they are restricted to isotropic elasticity. Moreover, Abedi and
Haber [48] extend the elastodynamic Riemann fluxes in order to treat interfaces subject to
frictional contact constraints and use them to obtain high-resolution aSDG solutions for
complex contact problems.

The aim of this study was to develop a robust and accurate (fully) DG method for
solving the elasto-dynamics’ equations with nonlinear boundary conditions (as friction
and/or contact) on a set of interfaces (as internal micro-cracks for instance). This numerical
method can be used to determine the effective properties of the damaged materials via
a numerical up-scaling homogenization technique by analyzing the wave propagation
(speed, amplitude, wavelength) in a cracked material, as in [49], or to study the dissipation
properties of meta-materials that exhibit many frictional interfaces. The applications we
have in mind concern brittle materials (as ceramics and rocks), but other elastic materials,
such as metals, could also be considered.



Mathematics 2022, 10, 871 3 of 21

The principal original aspects of the proposed numerical scheme lay in the interplay
between the leapfrog scheme for the time discretization and the augmented Lagrangian al-
gorithm for solving the associated non-linear problems. Concerning the space discretization,
a Galerkin discontinuous method was chosen for its accuracy and efficient parallelization
of the computations. Even if for the bulk elements several choices of the numerical flux
could be made, the centered flux was preferred for the numerical implementation. The
flux in micro-cracks boundaries is computed by solving two non-linear and non-smooth
variational problem without any regularization technique. In this way the interfaces’ con-
ditions are modeled simply by different flux choices for the adjacent elements without
any specific geometric treatment of the micro-cracks. Since the proposed (augmented)
Lagrangian algorithm is related only to the interfaces’ degrees of freedom, the additional
computational effort in modeling the nonlinear interfaces is not important.

Let us outline the content of the paper. The elastodynamics problem in a domain with
interfaces (cracks) in frictional unilateral contact is stated in Section 2, whereas in Section 3
the proposed numerical method is introduced. The leapfrog time discretization splits
the elastodynamics problem into two problems: velocity and stress problems. After that,
the nonlinear boundary conditions are written as two variational inequalities involving
fluxes at the interfaces (micro-cracks). The unilateral condition is associated with the
velocity problem, and the friction law relates to the stress problem. By using the DG
method for space discretization, the bulk elements are independent of the contact interfaces,
which means that classical choices of the flux can be made. However, the fluxes on the
interfaces, related to the two nonlinear variational inequalities, have to be found through a
numerical iterative algorithm, such as the (augmented) Lagrangian approach. In Section 4,
the numerical method was tested (stability, mesh and time step sensitivity) through two
model problems for which analytical solutions exist. Finally, we illustrate how our DG
method may be used to investigate more complex wave propagation phenomena, such as
blast-wave propagation in a ceramic block with an anisotropic crack distribution.

2. Problem Statement

Let D ⊂ R3 be an elastic domain which contains a set of interfaces on its boundary. To
model a cracked solid, these interfaces (a set of micro-cracks) are located on the internal
boundary Σ ⊂ D̊ (see Figure 1 for a schematic representation), but other configurations
could also be considered. We are looking for the displacement u : [0, T]×D → R3 and the
stress tensor σ : [0, T]×D → R3×3

s (here R3×3
s is the space of symmetric 3× 3 matrices)

solution of the following equations:

ρü(t) = div σ(t) + ρb(t) in D, (1)

σ = Eε in D, (2)

ε(u) =
1
2
(∇u +∇tu) in D, (3)

where ε is the small strain tensor, ρb are the volume forces and E is the fourth order tensor of
elastic coefficients. If we denote by v = u̇ the velocity field and byA = E−1 the compliance
tensor, then (2) reads

Aσ̇(t) = ε(v(t)). (4)

Let n be the normal Σ-oriented from − to + sides as defined on Figure 1. We define
the jump [ϕ] of ϕ by the difference ϕ+ − ϕ−. The boundary ∂D of D will be divided into
two parts: the internal boundary Σ, and the “loading” boundary, which is the union of two
disjoints parts Σv and Σσ, i.e., ∂D = Σ ∪ Σv ∪ Σσ. On the external boundary Σv ∪ Σσ we
impose the displacement and the stress vector:

u(t) = U(t) on Σv, σn(t) = Fs(t) on Σσ, (5)

while on the internal boundary Σ we consider unilateral contact conditions with Coulomb friction.



Mathematics 2022, 10, 871 4 of 21

-	
+	

-	
+	

-	 +	

-	
+	

-
+	

-
+	

-
+	

-
+	

-	
+	

D
Σv 

Σσ

-	
+	

Σ 

Σ Σ 

Σ 

Σ 
Σ 

Σ 

Σ Σ 

Σ 

Figure 1. Representation of the elastic domain D and of its boundary ∂D: the external one, where
the velocity (Σv) and the stress vector (Σσ) are imposed, and the internal one (Σ) with frictional
micro-cracks.

The non-penetration Signorini conditions read

[σ]n = 0 on Σ; [u] · n > 0; σn 6 0; σn([u] · n) = 0, on Σ, (6)

while

|σT |+ µ f σn 6 0, (|σT |+ µ f σn)[u̇T ] = 0 and
[u̇T ]

|[u̇T ]|
= − σT
|σT |

, (7)

represent the (isotropic) Coulomb friction conditions, with µ f being the Coulomb coefficient.
We have used here the normal and tangential decomposition σn = (σn) · n, σT = σn− σnn,
uT = u− (u · n)n.

Let us write the Coulomb friction law (7) as a variational inequality. This will be useful
in developing the numerical approach. For that, let us consider the set of admissible stresses

S t = {τ : D → R3×3
s ; [τ]n = 0, |τT |+ µ f σn(t) 6 0 on Σ}. (8)

Then (7) is equivalent with

σ(t) ∈ S t; [v̇(t)]T · (τT − σT(t)) 6 0 for all τ ∈ S t (9)

We complete the field equations and the boundary conditions with the initial conditions

u(0) = u0 (or σ(0) = σ0 = Aε(u0)), v(0) = v0, in D. (10)

The initial and boundary problem can be formulated now as follows: Find the displace-
ment u : [0, T]×D → R3 (or equivalently the velocity v = u̇ : [0, T]×D → R3), the stress
σ : [0, T]×D → R3×3

S , the solution of (1)–(3) with the external boundary conditions (5), the
nonlinear internal boundary conditions (6) and (7) and the initial conditions (10).

3. Numerical Approach

The general framework of the numerical scheme is based on the second-order nu-
merical scheme proposed by Etienne et al. [47]: the explicit leapfrog scheme in time and
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a centered flux choice for the inner element faces. The nonlinear conditions on the micro-
cracks are treated as special flux choices, and the resulting nonlinear equations at each time
step are solved by using an augmented Lagrangian technique.

3.1. Time Discretization

We adopt here a second-order explicit leap-frog scheme that allows one to compute
alternatively the velocity v = u̇ and the stress σ from one half time step to the next one. To
this end, let ∆t > 0 be the time step and let M be the maximum number of steps M∆t = T.
We denote by uk, vk the displacement and the velocity fields at t = k∆t and by σk+ 1

2 , εk+ 1
2

the stress and the strain at t = (k + 1
2 )∆t. The momentum balance law (1) is discretized as

an explicit equation for the velocity field:

ρ

∆t
(vk+1 − vk) = div σk+ 1

2 + ρbk+ 1
2 , (11)

from now on called the “velocity problem.” The displacement is obtained from u̇ = v as

uk+1 = uk +
∆t
2
(vk + vk+1). (12)

The constitutive Equation (4), from now called “stress problem,” reads

Aσk+ 3
2 − σk+ 1

2

∆t
= ε(vk+1), (13)

and the time discretization of the displacement and stress conditions (5) are

vk+1 = V((k + 1)∆t), on Σv, σk+ 1
2 n = Fk((k +

1
2
)∆t), on Σσ. (14)

For the contact and frictional conditions, which relate the stress and velocity/displacement
fields, some special treatments must be performed to accommodate fields which are not com-

puted at the same time. We write (6) as [uk+1] · n > 0; σ
k+ 1

2
n 6 0; σ

k+ 1
2

n ([uk+1] · n) = 0, and
using (12) we get a variational formulation of the contact complementary conditions:

v ∈ V k+1, σ
k+ 1

2
n ([ϕ] · n− [vk+1] · n) > 0, on Σ, for all ϕ ∈ V k+1, (15)

where the cone V k+1 is

V k+1 = {ϕ : D → R3; [uk] · n +
∆t
2
([vk] · n + [ϕ] · n) > 0 on Σ}.

In the treatment of the tangential part of the stress vector we consider

Sk+ 3
2 = {τ : D → R3×3

s ; |τT |+ µ f σk+1
n 6 0 on Σ}, (16)

where σk+1
n will be defined later as a Lagrange multiplier. Then, the frictional complemen-

tary condition (9) can be written as

σk+ 3
2 ∈ Sk+ 3

2 ; [vk+1]T · (τT − σ
k+ 3

2
T ) 6 0 on Σ, (17)

for all τ ∈ Sk+ 3
2 .

3.2. Space Discretization and Algorithm

In order to give a spatial discretization of the partial differential Equations (11) and (13),
letD be discretized by using a family of tetrahedra (or triangles in 2D) Th with the mesh size
h. Notice that the discretization of domain D has to be done such that all the boundaries
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are faces of tetrahedra (or triangles in 2D). That means that finite elements cannot intersect
the internal boundary Γ which is a union of faces (or edges in 2D). Since the functions
considered below defined on this triangulation may be discontinuous from one element
to another, each common boundary of two elements (Γ included) behaves as an internal
boundary (i.e., has two sides).

The discretization space Wh for the velocities vk, the strain εk+ 1
2 and the stress σk+ 1

2 is
the set of polynomial functions of degree d (denoted by Pd) on each tetrahedron T ∈ Th,
which can have discontinuities between two tetrahedra. We denote by V k+1

h = V k+1 ∩W3
h

the discretized admissible velocity fields set and by Sk+ 3
2

h = Sk+ 3
2 ∩W3×3

h the discretized
admissible stress fields set.

Apart from internal or external boundaries, the stress and velocity fluxes, associ-
ated with the discontinuous Galerkin method, were chosen to follow the centered flux
scheme, which has very good non-dissipative properties (see BenJemaa et al. [50], Del-
courte et al. [51] and Etienne et al. [47]).

Concerning the Courant–Friedrichs–Lewy (CFL) condition, which links the mesh
width and the time step to guarantee numerical stability, there is no mathematical proof for
unstructured meshes associated with the second-order explicit leap-frog scheme used here.
However, a heuristic stability criterion that usually works well was found by Kaser et al. [52]

∆t <
1

2d + 1
min
T∈Th

2r(T)
cP(T)

, (18)

where r(T) is the radius of the sphere inscribed in the element T and cP(T) is the P-wave
velocity in the element T. For homogeneous media and structured or uniform meshes, we
denote by CFL the non-dimensional parameter

CFL =
∆t
h

cP, (19)

where h is the radius of the sphere inscribed in the element. The above stability condition
can be written in this case as CFL < 2/(2d + 1).

3.2.1. The Velocity Problem

Let us fix the time iteration k > 0. If we multiply (11) by ϕ ∈W3
h and we use the Green

formula, then the variational problem for each tetrahedron T of Th reads:∫
T

[ ρ

∆t
(vk+1 − vk) ·ϕ+ σk+ 1

2 : ε(ϕ)
]

dv =
∫

∂T
F k+ 1

2
σ ·ϕ da +

∫
T

ρbk+ 1
2 ·ϕ dv, (20)

where n is the unit normal to ∂T outward T and F k+ 1
2

σ is the stress flux, which is derived
below. If ∂T is not included in the boundary of D (i.e., ∂T ∩ ∂D = ∅) and we choose the
central flux scheme, then we have

F k+ 1
2

σ = σk+ 1
2 n +

1
2
[σ]k+

1
2 · n, on ∂T ∩D.

For the external boundaries Σσ and Σv, the flux choice is derived from the stress
boundary conditions:

F k+ 1
2

σ = F((k +
1
2
)∆t), on ∂T ∩ Σσ, F k+ 1

2
σ = σk+ 1

2 n, on ∂T ∩ Σv.

If we choose now

F k+ 1
2

σ = σ
k+ 1

2
T +

1
2
[σ]

k+ 1
2

T , on ∂T ∩ Σ,
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then from (15) we find the following variational inequality for vk+1 ∈ V k+1:∫
D

[ ρ

∆t
(vk+1 − vk) · (ϕ− vk+1) + σk+ 1

2 : ε(ϕ− vk+1)
]

dv >∫
D

ρbk+ 1
2 · (ϕ− vk+1) dv + ∑

T∈Th

∫
∂T
F k+ 1

2
σ · (ϕ− vk+1) da,

(21)

for all ϕ ∈ V k+1. To solve the variational inequality (21) we use here a Lagrangian approach.
For that, let

Γh = {γ : Σ→ R; γ|∂T∩Σ ∈ Pd, for all T ∈ Th},

be the Lagrange multipliers space and let Lv be the Lagrangian defined by

Lv(ϕ, γ) =
1
2

∫
D

ρ

∆t
|ϕ|2 −

∫
D

ρ

∆t
vk ·ϕ+

∫
D

σk+ 1
2 : ε(ϕ)−∫

D
ρbk+ 1

2 ·ϕ+ ∑
T∈Th

∫
∂T
F k+ 1

2
σ ·ϕ−

∫
Σ

2
∆t

{
[u]k · n +

∆t
2
([v]k · n + [ϕ] · n)

}
γ.

At each time step k we start the Uzawa algorithm with γk+1
0 = γk = γk

f inal and we

compute vk+1
i , the solution of Lv(vk+1

i , γk+1
i−1 ) 6 Lv(ϕ, γk+1

i−1 ) for all ϕ. Since Lv is quadratic,
we get the following equation: vk+1

i ∈W3
h∫

D

ρ

∆t
(vk+1

i − vk) ·ϕ−
∫

Σ
γk+1

i−1 [ϕ] · n +
∫
D

σk+ 1
2 : ε(ϕ) =

∑
T∈Th

∫
∂T
F k+ 1

2
σ ·ϕ−

∫
D

ρbk+ 1
2 ·ϕ, for all ϕ ∈W3

h .
(22)

for all ϕ ∈W3
h . Let us remark that in the above linear system for the velocity field we deal

with the same matrix at each time iteration k and at each Uzawa iteration i. That means
that the computational cost of each iteration is low; hence, the algorithm for solving the
nonlinear non-penetration condition does not introduce an important additional cost.

To have less Uzawa iterations, one can use an augmented Lagrangian approach by
replacing Lv with

La
v(ϕ, γ) = Lv(ϕ, γ) +

∫
Σ

2rv

∆t

[
[u]k · n +

∆t
2
([v]k · n + [ϕ] · n)

]2

−
,

where [x]− = (|x| − x)/2 is the negative value and rv is some numerical parameter dis-
cussed below. If an augmented Lagrangian technique is used, then the linear system to be
solved is different at each Uzawa iteration i. In this case one has to evaluate if the benefits
of the augmented Lagrangian technique are not surpassed by the additional cost of solving
the linear system.

After the computation of the velocity field vk+1
i , we update the Lagrangian multiplayer

γk+1
i through

γk+1
i = γk+1

i−1 + rv[[uk+1
i ] · n]−, (23)

where rv is a numerical parameter which has to be convenably chosen. In general, if rv is
too small, the convergence is too slow, and if rv is too large, then the algorithm does not
converge.

Notice that the Uzawa linear system (see (22) or an equivalent one in the case of the
augmented Lagrangian algorithm) concerns only a reduced number of degrees of freedom.
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To see that let denote by T Σ
h the part of the mesh Th which intersects Σ, byDΣ

h the associated
subdomain of D given by:

T Σ
h = {T ∈ Th; ∂T ∩ Σ 6= ∅}, DΣ

h =
⋃

T∈T Σ
h

T (24)

and by WΣ
h ⊂ Wh the set of polynomial functions of degree d for each tetrahedron T ∈ T Σ

h .
If we take now ϕ with the support in DΣ

h , then the Uzawa iteration (22) reads∫
DΣ

h

ρ

∆t
(vk+1

i − vk) ·ϕ−
∫

Σ
γk+1

i−1 [ϕ] · n +
∫
DΣ

h

σk+ 1
2 : ε(ϕ) =

∑
T∈T Σ

h

∫
∂T
F k+ 1

2
σ ·ϕ−

∫
DΣ

h

ρbk+ 1
2 ·ϕ, for all ϕ ∈ (WΣ

h )
3,

(25)

which is a reduced (local) linear system which computes vk+1
i on the subset DΣ

h . The values
of vk+1

i on DΣ
h are enough to compute the Lagrangian multiplayer γk+1

i through (23). Only
at the end of the Uzawa iterative process algorithm, when the convergence is achieved
(i.e., when ‖vk+1

i − vk+1
i−1 ‖DΣ

h
is small enough with respect to a chosen tolerance), the global

linear Equation (22) is used to find the vk+1
f inal = vk+1 on D.

Finally, we compute the displacement

uk+1 = uk +
∆t
2
(vk + vk+1), (26)

we put γk+1 = γk+1
f inal and we choose the normal stress in the definition of Sk+ 3

2 to be

σk+1
n = −γk+1. (27)

3.2.2. The Stress Problem

If we multiply (13) by ψ− σk+ 3
2 (with ψ ∈ Sk+ 3

2
h ), and integrate the result over each

tetrahedron T ∈ Th, we get:

∫
T
A(σk+ 3

2 − σk+ 1
2

∆t
) : (ψ− σk+ 3

2 ) +
∫

T
vk+1 · div(ψ− σk+ 3

2 ) =
∫

∂T
(ψ− σk+ 3

2 )n · F k+1
v , (28)

where F k+1
v is the velocity flux. If ∂T is not on the boundary of D and we use the centered

flux scheme, then we have

F k+1
v = vk+1 +

1
2
[v]k+1, on ∂T ∩D.

For the external boundaries Σσ and Σv, the flux choice is derived from the velocity
boundary conditions:

F k+1
v = V((k + 1)∆t), on ∂T ∩ Σv, F k+1

v = vk+1, on ∂T ∩ Σσ.

Having in mind that vk+1
T = (vk+1

T + 1
2 [v]

k+1
T )− 1

2 [v]
k+1
T from (17) we deduce

vk+1
T · (ψT − σ

k+ 3
2

T ) > (vk+1
T +

1
2
[v]k+1

T ) · (ψT − σ
k+ 3

2
T ) on Σ. (29)

and if we choose

F k+1
v = vk+1

T +
1
2
[v]k+1

T + (vk+1 · n)n, on ∂T ∩ Σ, (30)
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then using the last inequality (29), one can sum (28) for all T ∈ Th to get the following

variational inequality for the stress field: σk+ 3
2 ∈ Sk+ 3

2
h :∫

D

1
∆t
A(σk+ 3

2 − σk+ 1
2 ) : (ψ− σk+ 3

2 ) +
∫
D

vk+1 · div(ψ− σk+ 3
2 )

> ∑
T∈Dh

∫
∂T
F k+1

v · (ψ− σk+ 3
2 )n, for all ψ ∈ Sk+ 3

2
h .

(31)

In order to solve the variational inequality (31), we use here a Lagrangian formulation
and the Uzawa algorithm. For that, let Λh be the Lagrange multipliers space

Λh = {λ : Σ→ R3; λ · n = 0, λ|∂T ∈ Pd, for all T ∈ Th}

and let us define the Lagrangian Ls : W3×3
h,s ×Λh → R as

Ls(ψ, λ) =
1
2

∫
D

1
∆t
Aψ : ψ−

∫
D

1
∆t
Eσk+ 1

2 : ψ−
∫
D

vk+1 · divψ

− ∑
T∈Th

∫
∂T
F k+1

v ·ψn +
1
2

∫
Σ

λ(|ψT |
2 − (µ f σk+1

n )2).

At each time step k we start the Uzawa algorithm by choosing the Lagrange multiplier

to be λ
k+ 3

2
0 = λk+ 1

2 = λ
k+ 1

2
f inal . At each iteration i we compute σ

k+ 3
2

i to be the minimum of

Ls with respect to the first variable, i.e., Ls(σ
k+ 3

2
i , λ

k+ 3
2

i−1 ) 6 Ls(ψ, λ
k+ 3

2
i−1 ) for all ψ ∈ W3×3

h .

Since Ls is quadratic, we get the following linear equation for the stress field: σ
k+ 3

2
i∫

D

1
∆t
A(σk+ 3

2
i − σk+ 1

2 ) : ψ +
∫

Σ
λ

k+ 3
2

i−1 σ
k+ 3

2
i,T ·ψT −

∫
D

vk+1 · divψ

= ∑
T∈Th

∫
∂T
F k+1

v ·ψn, for all ψ ∈W3×3
h,s .

(32)

To decrease the number of iterations, one can choose to use an augmented Lagrangian
technique by using the augmented Lagrangian La

s

La
s (ψ, λ) = Ls(ψ, λ) +

∫
Σ

rs

[
|ψT | − µ f |σk+1

n |
]2

+
,

instead of Ls. As before, we remark that, since the Lagrange multiplier λk+1
i−1 is different at

each iteration, the linear Equation (32) has a different matrix at each iteration, implying an
important extra computational cost. For this reason, one could replace it with the following
linear system:∫

D

1
∆t
A(σk+ 3

2
i − σk+ 1

2 ) : ψ +
∫

Σ
λ

k+ 3
2

i−1 σ
k+ 3

2
i−1,T ·ψT −

∫
D

vk+1 · divψ

= ∑
T∈Th

∫
∂T
F k+1

v ·ψn, for all ψ ∈W3×3
h,s .

(33)

which has the same matrix at all time steps and all Uzawa iterations. Even if the convergence
is slower, this version of the Lagrangian approach is computationally attractive.

The Lagrange multipliers are updated from:

λk+1
i = λk+1

i−1 + rs[|σ
k+ 3

2
iT |

2 − (µ f σk+1
n )2]+ (34)
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where rs > 0 is a numerical parameter(step) which has to be suitably chosen (if rs is
too small the convergence is too slow, and if rs is too large then the algorithm does
not converge).

As for the velocity problem, the Uzawa linear system (see (33) or an equivalent one
in the case of the augmented Lagrangian algorithm) concerns only a reduced number
of degrees of freedom. Indeed, if we take ψ with the support in DΣ

h , then the Uzawa
iteration (33) reads∫

DΣ
h

1
∆t
A(σk+ 3

2
i − σk+ 1

2 ) : ψ +
∫

Σ
λk+1

i−1 σ
k+ 3

2
i−1,T ·ψT −

∫
DΣ

h

vk+1 · divψ

= ∑
T∈T Σ

h

∫
∂T
F k+1

v ·ψn, for all ψ ∈ (WΣ
h,s)

3×3,
(35)

where T Σ
h and DΣ

h are given by (24). From the above reduced (local) linear system we

compute σ
k+ 3

2
i on the subset DΣ

h . The values of σ
k+ 3

2
i on DΣ

h are enough to compute the

Lagrangian multiplayer λ
k+ 3

2
i through (34). Only at the end of the Uzawa iterative process

algorithm, when the convergence is achieved (i.e., when ‖σk+ 3
2

i − σ
k+ 3

2
i−1 ‖DΣ

h
is small enough

with respect to a chosen tolerance), we put λk+ 3
2 = λ

k+ 3
2

f inal and we use the global linear

Equation (33) to find the σ
k+ 3

2
f inal = σk+ 3

2 on D.

4. Testing the Numerical Scheme

In order to test the above mentioned algorithms, we considered two examples for
which we could constructed an exact solution and compute the absolute error of our
numerical schemes. The first one concerns the unilateral contact and is related principally
to the velocity problem. The second one focuses on the frictional contact and concerns
mainly the stress problem.

Plane stress conditions (i.e., σxz = σyz = σzz ≡ 0) in an isotropic homogeneous elastic
body D = Ω × (−r, r) are assumed in all cases. The two-dimensional rectangular do-
main Ω = [0, L] × [−b, b], has an internal interface Σ = {l} × [−b, b]( l < L). In what
follows we have chosen the material data, associated with ceramics, to be E = 300 GPa,
ν = 0.24 and ρ = 3673 kg m−3. On the geometric domain Ω (chosen to have L = 0.00645 m,
l = L/2, b = 0.3l) we have considered three meshes: a coarse one (300 triangles, 185 ver-
texes and 4 segments on Σ), a medium one (1252 triangles, 695 vertexes and 8 segments on
Σ) and a fine one (4914 triangles 2594, vertexes and 16 segments on Σ). In all the compu-
tations we have chosen the degree of polynomials to be d = 2 in the construction of the
discontinuous Galerkin space Wh.

4.1. Unilateral Contact

The first problem was designed to analyze the unilateral contact and to test the
numerical approach of the nonlinear velocity problem. For that we have chosen the
following boundary conditions: at y = −b and y = b, vanishing shear stress and normal
displacement were imposed, and a stress-free condition was considered at x = L. For
x = 0, we imposed a smooth pulse of time length 2δ and amplitude Av on the velocity
field v(t) = (V(t), 0, 0) with V(t) = Av ϕδ(t− δ) where ϕδ(s) = 1

2 (cos( sπ
δ ) + 1) if |s| 6 δ

and ϕδ(s) = 0 otherwise. At the internal boundary Σ, we imposed a frictionless non-
penetration Signorini condition (σxy = 0, [σxx] = 0, σxx 6 0, [ux] > 0, σxx[ux] = 0), and at
the initial state t = 0, we supposed that the elastic body was at rest (v0 = 0) and stress-free
(σ0 = 0). The compressive wave, generated by the loading boundary condition at x = 0,
was propagating through Σ and after the reflection at x = L became a traction wave that
generated the separation (jump in normal displacement) in Σ of the two elastic domains.
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The initial and boundary conditions were chosen such that we dealt with unidimen-
sional behavior (i.e., ux = ux(t, x), σxx = σxx(t, x), uy ≡ 0, σxy = 0, σyy = νσxx),
and one can easily deduce a first-order hyperbolic system for σxx and vx with an associated
speed wave c =

√
E

ρ(1−ν2)
. The time interval of interest will be [0, T], with T = 2L/c, such

that the wave which starts at x = 0 has the time to reflect at x = L and then to reflect again
at x = l.

We can compute the exact solution (vex
x , σex

xx) on the fault Σ using the method of
characteristics. Until the wave reflected at x = L arrives on the fault, there is no jump in
the velocity field and we get:

vex
x (t, l+) = vex

x (t, l−) = V(t− l
c
), σex

xx(t, l) = −
√

ρE
1− ν2 V(t− l

c
), for t ∈ [0,

2L− l
c

].

After that, we deal with a tractional wave, the velocity is positive on the right side of
Σ and the stress is vanishing:

vex
x (t, l+) = V(t− 2L− l

c
), vex

x (t, l−) = 0, σex
xx(t, l) = 0, for t ∈ [

2L− l
c

, T].

Choice of parameters. The iterative algorithm for the velocity problem stops when
the relative error ‖vk+1

i − vk+1
i−1 ‖DΣ

h
/‖vk‖DΣ

h
is less than the tolerance Tv. The choices of

Tv and of the Uzawa parameter rv are related. The best choice we found for the numer-

ical parameter rv in the Lagrangian approach was rv =
300G

h
. For this choice of rv the

convergence is rapid at a tolerance around Tv = 10−4. If the tolerance is larger than 10−2,
spurious oscillations could appear and the algorithm is no longer stable. For Tv = 10−3 the
algorithm is stable but the error is more important than for Tv = 10−4. For a tolerance Tv
smaller than 10−4, the computational time increases without any significant decrease in the
error. In the following computations we have chosen Tv = 10−4 .

Stability. There is no theoretical stability condition (CFL condition) for the leapfrog
DG scheme. Only a heuristic one (18) is given in [52] for the 3D computations. That is why
we have numerically checked the stability of the proposed numerical scheme to see how
the leapfrog DG scheme is affected by our Lagrangian approach of the unilateral contact
conditions. After several tests, we found that the the numerical scheme is stable for a CFL
less than 0.108172 for the coarse mesh, less than 0.101463 for the medium mesh and less
than 0.109394 for the fine mesh. These values have to be compared with the maximum
CFL coefficient founded for the DG leap-frog scheme without any unilateral conditions
(0.274515 for the coarse mesh, 0.282538 for the medium mesh and 0.289262 for the fine
mesh). We can conclude that for a good stability the CFL coefficient has to be less than 0.1.

To analyze the proposed numerical scheme, we have focused on the error of the
unilateral contact condition. For that we have computed the L2 absolute error of the
displacement jump E[u]

E[u](t) =
1

Au

√∫
Σ([ux](t, l, y)− [uex

x ](t, l))2 dy
|Σ| , (36)

where Au = Av
∫ δ
−δ ϕδ(s) ds is the displacement amplitude, and the L2 absolute error of

the stress Eσ on the crack Σ, given by

Eσ(t) =
1

Aσ

√∫
Σ(σxx(t, l, y)− σex

xx(t, l))2 dy
|Σ| , (37)

where Aσ = cρAv is the stress amplitude.
Mesh sensitivity. In Figure 2, we have plotted the time evolution of the normalized

averaged stress t → σxx(t) =
∫

Σ σxx(t, l, y) dy (left) and of the normalized averaged
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displacement jump t → [ux](t) =
∫

Σ[ux](t, l, y) dy (right) in Σ for three different meshes
versus the exact solution. All the computations have been done with a fixed time step
∆t = T/4000 (corresponding to a CFL of 0.0178 for the coarse mesh, 0.0379 for the medium
mesh and 0.0752 for the finer mesh). We see that the compression pulse travels through
the interface Σ without any perturbation (no displacement jump), but after the reflection
at x = L the traction wave will generate a separation (displacement jump). We remark
that the exact solution and the computed one are very close. To see the difference we have
zoomed in on the end of the stress pulse during the compression phase of the interface Σ
and the beginning of the displacement jump generated by the reflected wave. We see in
both zooms that the numerical solutions corresponding to the medium and fine mesh are
very close to the exact one. To see that more precisely, we have plotted in Figure 3 the stress
absolute error Eσ (left) and the displacement jump absolute error E[u] (right) for the three
meshes. As before, we remark that the errors of medium and fine meshes are very small.
Moreover the error of the fine mesh is of the same order as the error associated with the
wave propagator leapfrog-DG method (see “Fine mesh no crack” in Figure 3) without any
unilateral conditions.
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Figure 2. The time evolution of the normalized averaged stress σxx (left) and of the normalized
averaged displacement jump [u]x (right) in Σ for three different meshes, and the exact solution. Zoom
of the wave front.
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Figure 3. The time evolution of the stress absolute error Eσ (left) and of the displacement jump
absolute error E[u] (right) for three different meshes. To be compared with the associated error of the
DG method without any unilateral condition on Σ computed with the fine mesh.
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4.2. Frictional Slip

In the second test we wanted to see how the numerical scheme works for the frictional
slip and to test the numerical approach of the stress problem. For that we have considered
an elastic body Ω under a spherical compressive stress p = Aσ acting on all the boundaries
(σn = −Aσ on ∂Ω); at y = −b and y = b the tangential velocity was vanishing (i.e.,
vx = 0). We also imposed a vanishing tangential stress (σxy(t, L) = 0 ) at x = L, and
for x = 0 we considered a loading tangential pulse F(t) (i.e., σxy(t, 0) = F(t)), with
F(t) = Aσ ϕδ(t − δ)). Here Aσ > 0 is the stress amplitude and ϕδ was defined in the
previous subsection. At the interface Σ we considered a Coulomb friction law ([ux] = 0,
[σxx] = [σxy] = 0, |σxy|+ µ f σxx 6 0, (|σxy|+ µ f σxx)[vy] = 0, σxy[vy] 6 0). The frictional
coefficient µ f was chosen to be µ f = 0.5. At t = 0, the elastic body was at rest (v0 = 0) and
under a spherical pressure σ0 = −Aσ I.

The tangential stress condition at x = 0 generates a shear wave which will propagate
into the body, arriving at the frictional interface Σ. Since the amplitude of the shear wave
Aσ is larger than the frictional threshold µ f p = µ f Aσ, the slab will start to slip and part
of the pulse is transmitted on the right side, while the other part will be reflected on
left side of the interface. Let us notice that the problem has an one-dimensional solution
with σxx = σyy = −Aσ, vx = 0, vy = vy(t, x), σxy = σxy(t, x) and the problem can
be reduced to a first order hyperbolic system for vy and σxy with the associated speed
velocity c = cS =

√
G/ρ. The time interval of interest will be [0, T], with T = L/cs,

such that the wave which starts at x = 0 has the time to arrive at x = l and capture the
switches no-slip/slip and slip/no-slip. As before, we computed the exact solution on the
fault Σ using the method of characteristics. If we denote by t′ and t′′ the instances when
F(t′ − l/cs) = F(t′′ − l/cs) = µ f Aσ, with t′ < t′′, then the two slabs will slip ([vy](t, l) > 0)
during the time interval [t′, t′′], while in the rest of the time no slip occurs ([vy](t, l) = 0).
The analytical solution can be computed for each time interval:

σex
xy(t, l) = F(t− l

c
), vex

y (t, l−) = vex
y (t, l+) =

F(t− l
c )√

ρG
, for t ∈ [0, t′] ∪ [t′′, T],

σex
xy(t, l) = µ f Aσ, vex

y (t, l−) =
−µ f Aσ√

ρG
x, vex

y (t, l+) =
µ f Aσ − 2F(t− l

c )√
ρG

, for t ∈ [t′, t′′].

Choice of parameters. The iterative algorithm for the stress problem stops when

the relative error ‖σk+ 3
2

i+1 − σ
k+ 3

2
i ‖DΣ

h
/‖σk+ 3

2
i ‖DΣ

h
is less than the tolerance Tσ (related to

the Uzawa parameter rs). The best choice we found for the numerical parameter rs in

the Lagrangian approach was r f =
1√
Gρ

. For this choice of r f , the convergence was

rapid at a tolerance around 10−4. If the tolerance is larger than 10−3, spurious oscillations
could appear, but the algorithm is still stable. For tolerance smaller that Tσ = 10−4, the
computational time increases without any significant decrease in the error. In the following
computations we have chosen Tσ = 10−4.

Stability. As before, we numerically checked the stability of the proposed numerical
scheme to see how the leapfrog DG scheme is affected by our Lagrangian approach of the
frictional condition. After several tests, we found that the numerical scheme is stable for a
CFL coefficient less than 0.128649 for the corse mesh, less than 0.136483 for the medium
mesh and less than 0.13556 for the fine mesh. These values have to be compared with
the maximum CFL coefficient found for the DG leap-frog scheme without any frictional
conditions (around 0.28; see the previous subsection). We can conclude that we have to
choose a time step for the frictional stability such that the CFL coefficient is less than 0.12.
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To see how the proposed numerical scheme approaches the frictional boundary condition,
we have computed the absolute error of the tangential velocity jump (or slip rate) E[v]:

E[v](t) =
1

Au

√∫
Σ([vy](t, l, y)− [vex

y ](t, l))2 dy
|Σ| , (38)

where Av = Aσ/(cρ) is the velocity amplitude, and the absolute error of the tangential
stress Eσ on the crack Σ, is given by

Eσ(t) =
1

Aσ

√∫
Σ(σxy(t, l, y)− σex

xy(t, l))2 dy
|Σ| . (39)

Mesh sensitivity. In Figure 4, we have plotted the time evolution of the normalized
averaged stress t → σxy(t) =

∫
Σ σxy(t, l, y) dy (left) and of the normalized averaged

velocity jump t→ [vy](t) =
∫

Σ[vy](t, l, y) dy (right) in Σ for three different meshes against
the exact solution. All the computations have been done with a fixed time step ∆t = T/4000
(corresponding to a CFL of 0.0289 for the coarse mesh, 0.0614 for the medium mesh and
0.122 for the finer mesh). We can observe a plateau in the loading pulse due to the activation
of the friction conditions, generating a frictional slip and a wave reflection. We remark
on the very good accuracy of the proposed numerical scheme (numerical and analytical
solutions are superposed). To see the difference, we have zoomed in on the end of the stress
pulse. As before, we can observe an improvement in the numerical solution with regard
to the mesh refinement: the numerical solutions corresponding to the medium and fine
meshes are very close to the exact one. Only small spurious oscillations are present at the
front of the wave. To see that more precisely, we have plotted in Figure 5 the stress absolute
error Eσ (left) and the slip rate absolute error E[v] (right) for the three meshes. As before,
we remark that the errors of medium and fine meshes are very small. In contrast, with the
unilateral condition, discussed earlier, the error of the fine mesh is larger than the error
associated with the wave propagator leapfrog-DG method (see “Fine mesh no crack” in
Figure 5) without any frictional conditions.
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Figure 4. The time evolution of the normalized averaged stress σxy (left) and of the averaged slip
rate [v]y (right) in Σ for three different meshes and the exact solution. Zoom of the wave front.



Mathematics 2022, 10, 871 15 of 21

0.5 0.70.6 0.8 0.9 1.1
Time (µsec)

1.0 0.5 0.70.6 0.8 0.9 1.1
Time (µsec)

1.0

N
or

m
al

iz
ed

str
es

s e
ro

or

Sl
ip

ra
te

er
oo

r

Figure 5. The time evolution of the stress absolute error Eσ (left) and of the slip rate absolute error
E[v] (right) for three different meshes. To be compared with the associated error of the DG method
without any unilateral condition on Σ computed with the fine mesh.

5. Blast Impact on a Cracked Material

The aim of this section is to illustrate how the DG method introduced above can be
used to investigate more complex wave propagation phenomena. Since 3D computations,
involving intensive parallel computing techniques for engineering applications, are beyond
the scope of this theoretical paper, we only deal with 2D computations.

5.1. Anti-Plane Blast in a Meta-Material

The central focus here is an architected meta-material, designed to blast energy dis-
sipation, with a hexagonal distribution of the micro-cracks. In Figure 6a we have plotted
the mesh with an 8-subdomain decomposition for parallel computing. Each subdomain
contains 75 hexagonal cells separated by micro-cracks. The meta-material, which was
pre-stressed with a hydro-static pressure −pI, was impacted by a blast pulse located at
the center of the left side (see Figure 6a), and all the other boundaries were stress-free. For
simplicity we have considered here the anti-plane configuration; hence, the two sides of all
micro-cracks were always in contact.
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Figure 6. Blast in an architected meta-material with internal micro-cracks in the anti-plane configura-
tion. The mesh with a distribution of hexagonal cells with an 8-subdomains decomposition (a). The
evolution of the total (b), kinetic (c) and potential (d) energies with frictional slip (red) and without
damage (no cracks or no slip in blue).

Since the main objective was observing the energy dissipation, we have plotted in
Figure 6b–d the evolution of the total, kinetic and potential energies (in red) compared
with the case without cracks (in blue). We note that around 63% of the total energy was
dissipated through the frictional slip in the micro-cracks.

In Figure 7, we have plotted the evolution of the stress deviator during the blast
propagation in the meta-material. As expected, the central part near the blast inital location
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was the most affected, but the blast wave succeeded in generating frictional slip in a large
region. This frictional slip is associated with residual stresses.

a b c

Stress deviator (GPa)

Figure 7. Anti-plane blast propagation in an architected meta-material. Three snapshots of the stress
deviator (color scale in GPa) at t = T/3 (a), t = 2T/3 (b) and and t = T (c).

5.2. In-Plane Blast for an Anisotropic Crack Distribution

We considered a (compressive) in-plane blast-wave propagation in a ceramic block
with an anisotropic crack distribution. The elastic domain Ω = (0, a)× (0, 5a), in a plane-
stress configuration, was impacted at the left side x = 0, y ∈ (2a, 3a) by a compressive
pulse t → S(t) with an amplitude −Aσ and time duration 2δ = 0.5a/cP (see Figure 8a).
The faces y = 0 and y = 5a were fixed, and the face x = a was stress-free. The numerical
computations were done over the time interval [0, T] with T = 2a/cp in a domain containing
M = 72 micro-cracks inclined at the angle θ. The loading compressive wave was traveling
into the cracked material till it reached the stress-free boundary, when it was reflected as a
traction loading wave. We considered two cases corresponding to frictionless and frictional
contact with the micro-cracks.

a b c d

Stress deviator (MPa) 
0 250200100

Figure 8. Role of the micro-cracks orientation in wave propagation for frictionless contact. Four
snapshots of the stress deviator (color scale in MPa) for vertical (left) and horizontal (middle)
micro-cracks and an undamaged material (no-cracks, (right)) at t = 0.5T (a), 0.7T (b), 0.8T (c) and
t = 0.9T (d).
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5.2.1. Frictionless Contact

In Figure 8, we show the comparison between the propagation of a blast wave in a
cracked material and an undamaged one with the stress deviator on a color scale. For
the micro-cracks being vertically oriented (θ = π/2, in Figure 8 left), we can observe at
t = 0.5T, the instance before the pulse reaches the boundary, a high concentration of the
stress in the middle of the pulse which is propagating as a P-wave. The micro-cracks are
not opening and the P-wave is not really affected by the presence of the micro-cracks. At
the tips of the impact zone, we remark two S-waves acting in mode II. In the following
frames, at t = 0.7T and t = 0.8T, just after the pulse is reflected by the stress boundary, we
remark that the micro-cracks are opening, generating stress concentration at the tips of the
cracks, giving an irregular shape to the wave. The S-waves are perturbed, but an overall
behavior can be observed. In the following frame, at t = 0.9T, we remark that the cracks
near the right boundary begin to close. In all frames, we observe that the S-waves are not
too scattered.

For micro-cracks horizontally oriented (θ = 0), one can see in Figure 8 middle) that, at
t = 0.5T, the S-waves are almost completely scattered, but the P-wave is well represented.
This is due to the fact that horizontal micro-cracks are active in the shearing process (Mode
II) but almost inactive in Mode I. At t = 0.7T, we found that the micro-cracks near the
right boundary are opening, giving a high concentration of the deviatoric stress, but the
P-waves are not as affected as in the vertical case. However, the overall shape of the wave is
preserved. In the last two frames we remark that the loading wave is less scattered than in
the previous case (vertical orientation), but in all frames we observe an important scattering
of the S-waves.

If the micro-cracks are oriented θ = π/4, we can see in Figure 9-middle that, at
t = 0.5T, due to cracks acting in mode II, the P-Wave is already perturbed. After the
reflection (t = 0.7T), we can observe that more rightward cracks begin to open. In the last
two frames the cracks are active in mode I and II, and it is difficult to distinguish an overall
behavior of the resulting scattered wave.

a b c d

Stress deviator (MPa) 
0 250200100

Figure 9. Role of friction in wave propagation for micro-cracks oriented θ = π/4. Four snapshots
of the stress deviator (color scale in MPa) for frictional (left) and frictionless (middle) contact and
undamaged material (no-cracks, (right)) at t = 0.5T (a), 0.7T (b), 0.8T (c) and t = 0.9T (d).
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5.2.2. Frictional Contact

We analyze here the role played by the friction, acting on the micro-cracks’ sides, in
the wave propagation. Globally, we expected that the friction has a stabilization effect and
the waves are less perturbed by the presence of the micro-cracks. This is due to the fact
that cracks have more resistance to slip in mode II. On the contrary, mode I activation of
the micro-cracks is not affected by the friction. The friction coefficient was chosen to be
µ f = 0.5.

We have plotted in Figure 10 the evolution of the stress deviator during the reflection
of the blast wave on the free stress boundary for a material with vertical frictional micro-
cracks. We remark that, due to friction, the incident S-wave does not open the cracks
(working in the mode II). For the reflected wave, when the cracks work mainly in mode I,
the friction has a negligible influence on the wave propagation.

In Figure 9 we show several frames of blast propagation in a cracked material with
friction, without friction and in an undamaged one (with the stress deviator in the color
scale) for micro-cracks oriented θ = π/4. The first snapshot is at t = 0.5T (a), and we note
the loss of symmetry in the horizontal plane. In the frictional case, the waves (P and S)
are less scattered than in the frictionless case. Indeed, all the micro-cracks are working in
mode II at this stage, where friction implies a “damage decrease”. For t = 0.7T (b), when
the reflected wave is in traction, we remark that in both cases the cracks next to the right
boundary start to open, working in mode I. However, the P-wave has a larger amplitude in
the frictional case than in the other one. The other cracks are working in mode II, and as
before, we remark that the S-waves are more scattered in the frictionless case. In the last
two frames (c,d), we observe that in both cases the waves are spread out and it is difficult
to distinguish between the frictional and frictionless propagation. This is due to the key
role played by the mode I activation of the micro-cracks in damage evolution, which affects
the waves’ propagation.

a b

ba

c
c d

d
Stress deviator (MPa) 

0 250200100

Figure 10. Blast propagation for frictional vertical micro-cracks. (Left) Four snapshots of the stress
deviator (color scale in MPa) at t = 0.6T (a), 0.7T (b), 0.8T (c) and t = 0.9T (d). (Right) Zoom of the
central part.
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6. Conclusions

The qualitative and quantitative investigation of the wave propagation in (damaged)
materials with a nonlinear micro-structure (micro-cracks in frictional contact) needs robust,
efficient and accurate numerical schemes. This paper proposes a new method based on
the interplay between the leapfrog scheme (for the time discretization) and the augmented
Lagrangian algorithm (to solve the associated non-linear problems). For an efficient paral-
lelization of the computations, a DG method was used for the space discretization. Since
the Lagrangian algorithm concerns only the degrees of freedom associated with the inter-
faces, the additional computational effort is small with respect to that needed for the wave
propagation in the same domain without any interfaces.

This numerical method was tested through two model problems for which other
analytical solutions exist. In both cases we analyzed the stability and the mesh sensitivity.
To illustrate the numerical scheme, the wave generated by a blast in a cracked material
with multiple interfaces has been analyzed.

Future developments of this work could include 3D computations for engineering
applications, involving intensive parallel computing techniques, to investigate the wave
propagation in elastic solids with micro-cracks (cracked solid) for a better understanding of
dynamic damage in brittle materials or in architected meta-materials.
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Nomenclature

D ⊂ R3 elastic domain
Σv external boundary of D, where the velocities are imposed
Σσ external boundary of D, where the stress vector is imposed
Σ internal boundary of D, composed of frictional micro-cracks
[ϕ] = ϕ+ − ϕ− the jump of ϕ, n unit normal vector on a surface
u, v displacement and velocity vector fields, σ, ε stress and strain tensor fields
σT , uT , vT tangential, σn, un, vn normal stress, displacement, velocity
E ,A = E−1 fourth order tensors of elastic and compliance coefficients
E Young’s modulus, ν Poisson coeficient
ρ mass density, µ f frictional coefficient
∆t time step, vk the approximation of v at t = k∆t
V k+1 the set of admissible velocities at t = (k + 1)∆t
Sk+ 3

2 the set of admissible stresses at t = (k + 3/2)∆t
Th the mesh discretization of D, Wh associated discontinuous Galerkin space
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