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Abstract: Data Envelopment Analysis (DEA) is one of the most used non-parametric techniques
for technical efficiency assessment. DEA is exclusively concerned about the minimization of the
empirical error, satisfying, at the same time, some shape constraints (convexity and free disposability).
Unfortunately, by construction, DEA is a descriptive methodology that is not concerned about
preventing overfitting. In this paper, we introduce a new methodology that allows for estimating
polyhedral technologies following the Structural Risk Minimization (SRM) principle. This technique
is called Data Envelopment Analysis-based Machines (DEAM). Given that the new method controls
the generalization error of the model, the corresponding estimate of the technology does not suffer
from overfitting. Moreover, the notion of ε-insensitivity is also introduced, generating a new and
more robust definition of technical efficiency. Additionally, we show that DEAM can be seen as a
machine learning-type extension of DEA, satisfying the same microeconomic postulates except for
minimal extrapolation. Finally, the performance of DEAM is evaluated through simulations. We
conclude that the frontier estimator derived from DEAM is better than that associated with DEA. The
bias and mean squared error obtained for DEAM are smaller in all the scenarios analyzed, regardless
of the number of variables and DMUs.

Keywords: data envelopment analysis; PAC learning; support vector regression; machine learning;
structural risk minimization

MSC: 90C08

1. Introduction

One of the most important issues in the field of statistical learning is the reliability
of statistical inference methods. In this framework, a sophisticated theory, the so-called
Generalization Theory, explains which factors must be controlled to achieve good general-
ization. Optimal generalization is achieved when the error generated on evaluating new
data through an inference learning method is minimized. The Generalization Theory copes
with those factors that allow for the minimization of the prediction or generalization error.

In terms of pattern classifiers, the generalization error is the probability of misclassify-
ing a randomly chosen example that holds with high probability over randomly chosen
training sets, and then, a good generalization is achieved when this is minimized. This aim
is possible if an upper bound of the generalization error is found, and the parameters on
which it depends are controlled in order to reduce it. These bounds are understood as Prob-
ably Approximately Correct (PAC) bounds, which specifically means that the probability
of the bound failing is small (Probably) when the bound is achieved through the classifier
that has a low error rate (Approximately Correct). The standard PAC learning model
implements the idea of finding this classifier: it considers a fixed hypothesis (classifier)
class together with a required accuracy and confidence, and takes into account the theory
that characterizes when a function from this class can be learned from examples (training
sample) in terms of a measure called the Vapnik–Chervonenkis dimension (VC dimension).
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However, the statistical learning theory (Vapnik [1]) reveals that it is much more
interesting not to preselect the class that will contain the target function to be learned.
Instead, it is defined a set of hypothesis classes saved as a hierarchy, and the target function
to be learned lies in one of them. The Structural Risk Minimization (SRM) copes with the
problem of minimizing an upper bound on the expected risk over each of these hypothesis
classes (Vapnik [2]). To implement the SRM in Support Vector Machines (SVM), one must
consider the structures (classes) that control two factors that appear in the bound of the
expected risk: the value of empirical risk and the complexity (the appropriate bound for
the generalization error). Thus, under this principle, to select a learning algorithm, it is
necessary to have the theoretical bound of the generalization error (PAC bounds) and to
deal with the minimization of this bound together with the empirical risk.

In addition, standard regression methods are only concerned with the minimization
of the empirical risk. This is the one based on the error produced by the regressors with
respect to the observed dataset. This error is defined as the distance between the data to
the approximation function; thus, it is a measure of the deviation of the data with respect
to the regressors. It is characterized as a residual. The vertical distance is the most common
way to measure the regression error, although it is not induced by a mathematical norm. In
Support Vector Regression (SVR) (Vapnik [1]), for example, the residuals that participate
in the empirical risk are measured through the vertical distance. Other distances, in this
case based on a norm, have been used in order to establish these residuals, such as the
l1-distance, the l2-distance and the l∞-distance (Blanco et al. [3,4]).

The estimation of production functions and measures of efficiency and productivity
have been the focus of a relatively large body of articles in the literature in both the economic
and engineering contexts, as well as in operations research and statistics. In particular, Data
Envelopment Analysis (DEA) (Charnes et al. [5] and Banker et al. [6]) is one of the existing
techniques for estimating production functions and measuring efficiency. DEA relies on
the construction of a polyhedral technology in the space of inputs and outputs that satisfies
certain classical axioms of production theory (e.g., monotonicity and convexity). It is a
non-parametric data-driven approach with many advantages from a benchmarking point
of view. Additionally, the treatment of the multi-output multi-input framework is relatively
straightforward with DEA, in comparison with other methods available. However, Data
Envelopment Analysis has been criticized for its non-statistical nature, even being labeled
as a pure descriptive tool of the data sample at a frontier level with little inferential power
(its inferential power is exclusively based on the property of consistency and the increase
in sample size instead of on the fundamentals of the method) (Esteve et al. [7]). DEA
suffers from an overfitting problem because of the application of the minimal extrapolation
principle, which places the estimator of the production function as close to the dataset as
possible. This principle is also related to exclusively minimizing the empirical error (at a
frontier level).

Regarding the literature related to this topic, some previous authors have tried to
modify the standard DEA technique such that the new approaches work as inferential
methods (with the focus on the DGP) rather than as mere descriptive tools. For example,
Banker and Maindiratta [8] and Banker [9] associated DEA with maximum likelihood.
Simar and Wilson [10–12] adapted bootstrapping to DEA. Kuosmanen and Johnson [13,14]
introduced the Corrected Concave Nonparametric Least Squares. Unfortunately, despite
the importance of machine learning techniques in the current literature, there have been few
attempts to adapt DEA to the field of machine learning (see, for example, Esteve et al. [7],
or Olesen and Ruggiero [15]). In this sense, our contribution could be seen as a new bridge
between these two worlds: machine learning and efficiency measurement.

In this paper, our main objective is to propose, for the first time in the literature, a
PAC bound in the context of the estimation of polyhedral technologies in microeconomics
and engineering, enabling the possibility of controlling the generalization error of the
estimation of the production frontier. Accordingly, we construct a model that controls the
empirical error, together with the generalization error, through a PAC bound implementing
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the philosophy of Structural Risk Minimization by analogy with SVM. Our modeling has
several implications:

(a) For the first time, a bound of the generalization error is implemented to determine the
degree of technical inefficiency of a set of Decision Making Units (DMUs).

(b) We implement the minimization of the balance between the generalization error and
the empirical error through a quadratic optimization model that will be called Data
Envelopment Analysis-based Machines (DEAM), which has DEA as a particular case.

(c) Through a computational simulation experience, we show that DEAM outperform
DEA regarding bias and mean squared error.

(d) We estimate production technologies using robust regression models that use the
concept of margin. Due to that, the problem of efficiency measurement becomes a
classification problem: to be efficient (being located within the margin) or not to be
efficient (being located out of the margin).

Finally, we mention that the expected new insights gained by applying our approach
(DEAM) are related to the determination of better estimates of production functions in
engineering and microeconomics, in terms of bias and mean squared error. Additionally,
these gains will also benefit the technical efficiency measures that can be derived from
calculating the distance from a given observation to the production function estimate.

The rest of the paper is organized as follows. The following section provides the basic
background. Next, in the third section, we introduce a new PAC for the class of piece-wise
linear functions. In Section 4, a new approach called Data Envelopment Analysis-based
Machines (DEAM) is defined and analyzed. Section 5 shows the main results associated
with a computational experience for checking the new approach in comparison with DEA.
Section 6 contains a discussion on the main results. Finally, the article ends with the
conclusions section.

2. Background

In this section, we briefly introduce elemental notions of Support Vector Regression,
Statistical Learning and Data Envelopment Analysis.

2.1. Support Vector Regression (SVR)

Machine learning (ML) is a methodology that studies computer processes that learn
from experience and make improvements automatically. ML works with computer algo-
rithms based on a learning sample (training data) and can make predictions about the
behavior of future data. The study of this behavior is produced in two different scenarios:
the scenario of supervised learning in which training data are vectors of predictors and
responses, and the scenario of unsupervised learning, where no responses are considered
in the data sample. In the first field, the objective of learning techniques is to determine the
functional relationship between the predictors and the responses. In this case, the nature
of the responses, if they come from a binary variable or are real values, determines the
kind of problem to solve: a classification problem or a regression problem, respectively. In
the second field, since there are no responses, the objective is to gain knowledge about the
processes lying behind data generation, such as density estimation or clustering. Our paper
largely focuses on the regression problem within supervised learning, bearing in mind that
our data comprise inputs utilized by firms to produce outputs (real values).

Support Vector Machines (Vapnik [1,16]) is a technique that stands out in ML in the
world of supervised learning. SVM represents an algorithm constructed on the foundations
of statistical learning theory and is in line with the Structural Risk Minimization (SRM)
method. SRM is implemented to construct support vector machines, where the objective
is to control the value of empirical risk and the value of the VC dimension, which is the
regularization term that appears when the generalization error must be minimized rather
than minimizing only the empirical error (Vapnik [1,16]). In particular, the definition of the
notion of the VC dimension is as follows:
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Definition 1 (VC dimension). Let H be a set of binary-valued functions. A set of points X is
shattered by H if for all binary vectors b indexed by X; there is a function fb ∈ H performing b on
X. The VC dimension, VC dim(H), of the set H is the size of the largest shattered set.

With regard to the classification problem (for the regression problem, the generalization
error is defined in the same way, because the regression problem can be turned in to a
classification problem, as we will go on to explain) in SVM, minimizing the generalization
error consists of minimizing the probability of incorrectly classifying any new data that
emerges from the unknown distribution that was generated by the learning sample. This
aim is possible if a bound of the generalization error is found, and the parameters on
which it is dependent are controlled to reduce the bound. These bounds are understood as
Probably Approximately Correct (PAC) bounds, which were first proposed by Valiant [17].
The standard PAC learning implements the idea of finding this classifier: it considers a
fixed hypothesis (classifier) class together with a required accuracy and confidence, and
takes into account the theory that characterizes when a function from this class can be
learned from examples (data). In the case of regression, the exercise involves converting
the regression problem (estimation function) into a classification problem because bounds
in the generalization error are precisely based on the VC dimension or when a margin is
considered on the fat-shattering dimension (effective VC dimension).

Next, we show the definition of the fat-shattering dimension. Notice that bold will be
utilized for denoting vectors, and non-bold for scalars.

Definition 2 (fat-shattering dimension). Let F be a set of real-valued functions. A set of points
X is γ-shattered by F if there are real numbers rx indexed by x ∈ X such that for all binary vectors
b indexed by X, there is a function fb ∈ F such that

fb(x)
{
≥ rx + γ i f bx = 1
≤ rx − γ otherwise

.

The fat-shattering dimension of the set F, f atF, is a function from the positive real
numbers to the integers that maps a value γ to the largest γ-shattered set. The VC dimension
corresponds to the largest shattered set, considering γ = 0, which is the concept first used
by Vapnik to state a bound for the generalization error. This is the reason why the fat-
shattering dimension is also known as the effective VC dimension.

To convert the regression problem into a classification problem, a threshold θ > 0 that
marks the limit needs to be set, such that a mistake will be considered to have been made if
it is exceeded by the loss function when testing with new data in the model. The function
that determines the distance between the real value of the output and the estimated value
of said output through the model is called the loss function. Given a margin γ > 0, in
the case of the training point, if the loss function exceeds the value (θ − γ), it will be
considered as a mistake. Then, γ measures the discrepancy between the two losses: those
measured on test data and those measured on training data. Under this re-interpretation of
the regression problem, it is possible to use the dimension free bounds already constructed
in the case of classification. In our case, we focus on the bound obtained by Shawe-Taylor
and Cristianini [18], based on the fat-shattering dimension.

Theorem 1 (Shawe-Taylor and Cristianini [18]). Let F be a sturdy class of real-valued functions
with range [−a, a] and fat-shattering dimension bounded by f atF(γ). Fix θ ∈ R with θ > 0, and a
scaling of the output range κ ∈ R+. Consider a fixed but unknown probability distribution in the
space X× R. Then, with probability 1− ρ over randomly drawn training sets S of size m for all γ
with θ ≥ γ > 0, the probability that a training set filtered function f ∈ F has an error larger than
θ on a randomly chosen input is bounded by
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ε(m, d, ρ) =
2
m

(
d log2

(
256m

(
c
γ

)2
)
× log2

(
16em

(
c
γ

))
+ log2

(
16m1.5a

ρκ

))
(1)

where c = max{a, D(S, f , γ) + κ} and

d =

[
f atF

(
γ−/16

)
+

(
16(D(S, f , γ) + κ)

γ

)2
]

, (2)

provided m ≥ 2
ε .

In the statement of Theorem 1, D(S, f , γ) =
√

∑
(x,y)∈S

ξ((x, y), f , γ)2 = ‖ξ‖2 and

ξ((x, y), f , γ) = max{0, e( f )(x, y)− (θ − γ)}, where e( f ) is the loss function that the ana-
lyst selects in order to measure how much f exceeds the error margin (θ − γ). In addition,
the theorem introduces the concept of the fat-shattering dimension, f atF(γ), that is, the
generalization of the VC dimension, which is sensitive to the size of the margin γ.

Theorem 1 is a general result, which in the case of each function class F, will be
particularized: for each function class, the fat-shattering dimension is bounded in a different
way, and consequently, the same happens with respect to the expected error proposed in (1).
In the case of linear function classes, the fat-shattering dimension is bounded by Bartlett
and Shawe-Taylor [19].

Theorem 2 (Bartlett and Shawe-Taylor [19]). Suppose that X is a ball of radius r and center
0m in Rm, i.e., X = {x ∈ Rm : ‖x‖ ≤ r}, and consider the set

F = {x→ w · x : ‖w‖ ≤ 1, x ∈ X},

Then

f atF(γ) ≤
(

r
γ

)2
.

The most general version of this theorem, in which ‖w‖ is not restricted to be at most

1, bounds the fat-shattering dimension of linear classifiers as f atF(γ) ≤
(
‖w‖r

γ

)2
.

The following two previously published lemmas are significant for our purposes
throughout this paper (see Bartlett and Shawe-Taylor [19]).

Lemma 1. For every input set S γ-shattered by F = {x→ w · x : x ∈ X} (the linear hypothesis
class) and for every subset S0 ⊆ S, ‖∑ S0 −∑(S− S0)‖ ≥ |S|γ

‖w‖ holds.

Lemma 2. For all S ⊆ Rm
+ with ‖x‖ ≤ r for x ∈ S, certain S0 ⊆ S satisfies that

‖∑ S0 − ∑(S − S0)‖ ≤
√
|S|r.

Then, |S|γ‖w‖ ≤ ‖∑ S0 −∑(S− S0)‖ ≤
√
|S|r. In particular, |S|γ‖w‖ ≤

√
|S|r, and it is

possible to conclude that all sets of inputs S γ-shattered by F are bounded. Therefore,
the set γ-shattered by F with higher cardinality is also bounded, which is known as the

fat-shattering dimension: f atF(γ) ≤
(
‖w‖r

γ

)2
.

Now, if γ is fixed in such a way that θ ≥ γ > 0, and disregarding the logarithmic
factors in (1), the only term to reduce the expected error is (2). This process can be performed
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by implementing the minimization of its bound, which in the case of linear functions, is
as follows:

d =

 f atF
(
γ−/16

)
+


D︷ ︸︸ ︷

16(D(S, f , γ) + κ)

γ


2
 ≤ |w|2 + CD2. (3)

This expected error bound meets the SRM objective: the minimization process leads
to more than minimizing the empirical risk, i.e., D2 = ∑

(x,y)∈S
ξ((x, y), f , γ)2. Instead, it

minimizes the capacity of the estimation function to provide a suitable prediction when a
new observation (out of sample) is introduced and that is given by the appearance of the
regularization term, that is ‖w‖2, which bounds the fat-shattering dimension (PAC bound).
The minimization of this bound corresponds to the objective of the regression problem
associated with Support Vector Regression (SVR).

Support Vector Regression (SVR), as with any regression approach, attempts to con-
struct a function that is capable of predicting the behavior of the response variable under
the study. SVR sets out to predict the value of a continuous response variable y ∈ R+ given
a vector of covariables x ∈ Rm

+. Hence, SVR establishes a function f̂ : Rm
+ → R such that,

given x, f̂ (x) yields the response variable prediction. Under the SVR principle, the linear
predictor f̂ can be defined as f̂ (x) = w∗ · x + b∗, where w∗ ∈ Rm and b∗ ∈ R are optimal
solutions of the optimization model below:

Min
w,b,ξ ′ i ,ξi

‖w‖2 + C
n
∑

i=1

(
ξ ′i

2
i + ξi

2)
yi − (w · xi + b) ≤ ε + ξ ′ i, i = 1, . . . , n
(w · xi + b)− yi ≤ ε + ξi, i = 1, . . . , n
ξ ′ i, ξi ≥ 0, i = 1, . . . , n

(4)

In performing this methodology, the values of C ∈ R+ and ε ∈ R+ are obtained by a
cross-validation process. The SVR yields an estimator f̂ (x) of the response variable given x
as well as lower and upper ‘correcting’ surfaces, defined as f̂ (x)− ε and f̂ (x) + ε , where
ε is a margin that enhances the estimator linked to SVR with robustness (see Figure 1).
Additionally, observations below the surface f̂ (x)− ε reveal an associated (empirical) error
of ξi > 0 (with ξ ′i = 0), while observations above the surface f̂ (x) + ε present an (empirical)
error of ξ ′i > 0 (with ξi = 0). Observations between the surfaces f̂ (x)− ε and f̂ (x) + ε
reveal an error of zero (with ξi = ξ ′i = 0). The objective function, however, represents the
combination of regression and regularization involved in SVR, combining the empirical

error term
n
∑

i=1

(
ξ ′i

2 + ξi
2) and the regularization term ‖w‖2 through a weight C, thus bal-

ancing both components (Vazquez and Walter [20]). Moreover, although hyperplanes are
linear in shape, it must be highlighted that SVR is able to generate estimation functions
that are not necessarily linear in the original (x, y) space, and that can be achieved by using
a transformation function φ, a conversion arising from the covariable space, φ : Rm

+ → Z .
Figure 1 shows the solution of the linear estimator achieved by an SVR model, as well
as the graphical representation of the residuals (empirical error) for two points and the
hyperplanes that define the margins (dashed lines).
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Figure 1. Support Vector Regression.

The next subsection explains how Data Envelopment Analysis (DEA) works.

2.2. Data Envelopment Analysis (DEA)

Let us consider the observation of n Decision Making Units (DMUs). DMUi takes
up xi =

(
x(1)i , . . . , x(m)

i

)
∈ Rm

+ amounts of inputs to generate yi =
(

y(1)i , . . . , y(s)i

)
∈ Rs

+

amounts of outputs. The relative efficiency of each unit in the sample is evaluated by
referring to the so-called production possibility set or technology, which is essentially the
set of producible bundles of (x, y). It is generally defined as:

T =
{
(x, y) ∈ Rm+s

+ : x can produce y
}

(5)

Under Data Envelopment Analysis (DEA) (Charnes et al. [5] and Banker et al. [6]
and more recently, Villa et al. [21], Sahoo et al. [22], and Amirteimoori [23]), T is usually
assumed to satisfy free disposability with regard to inputs and outputs; that is, if (x, y) ∈ T,
then (x′, y′) ∈ T with x′ ≥ x and y′ ≤ y. Convexity of T is also generally assumed (see, e.g.,
Färe and Primont [24]).

Insomuch as the measurement of technical efficiency is concerned, a certain sub-
set of T is of interest. We allude to the weakly efficient set of T, defined as ∂W(T) :=

{(x, y) ∈ T : x̂ < x, ŷ > y⇒ (x̂, ŷ) /∈ T} (Let z =
(

z(1), . . . , z(q)
)

and t =
(

t(1), . . . , t(q)
)

.

Then, z < t means z(j) < t(j) for all j = 1, . . . , q.). Some authors (see, for example, Briec
and Lesourd [25]) define technical efficiency as the distance from a point in T to the weakly
efficient set.

When s = 1, this context is confined to the central concept of production function f .
Accordingly, m input variables are used to yield a univariate output, and hence, we can
define the technology as:

T =
{
(x, y) ∈ Rm+1

+ : y ≤ f (x)
}

.

According to the selected distance for measuring technical inefficiency, different
DEA models emerge (Cooper et al. [26]). The directional distance function (DDF) is a
relevant example of them. For m inputs and one output, resorting to the directional vector
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g = (g−, g+), where g− = 1m and g+ = 1, the DDF problem has the following structure
when the efficiency level of DMUi is assessed, i = 1, . . . , n:

Max
βi ,λ1,...,λn

βi

s.t.
n
∑

k=1
λkx(j)

k ≤ x(j)
i − βi, ∀j = 1, . . . , m

n
∑

k=1
λkyk ≥ yi + βi,

n
∑

k=1
λk = 1,

λk ≥ 0 ∀k = 1, . . . , n

(6)

Given that (6) is a linear program, we can equivalently solve its corresponding
dual formulation:

Min
ci ,pi ,αi

−piyi + cixi + αi

s.t.
piyk − cixk − αi ≤ 0, ∀k = 1, . . . , n
‖(ci, pi)‖1 = 1,
pi ≥ 0,
c(j)

i ≥ 0, ∀j = 1, . . . , m

(7)

DEA models must be solved for each DMUi, i = 1, . . . , n, in the sample.
Figure 2 shows an example of the DDF model with a distance vector g = (g−, g+) =

(1m, 1). Note that DEA generates a piece-wise linear technology (the region below the line),
satisfying free disposability in inputs and outputs and convexity. Note also that the DEA
estimate envelops all the observations from above. In this case, with g = (1m, 1), the DDF
coincides with a particular distance between data and ∂W(T): the l∞-distance (Briec [27]
and Briec and Lesourd [25]).

Figure 2. Illustration of the Directional Distance Function in Data Envelopment Analysis.
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In this paper, our purpose is to construct a method that generates piece-wise linear
frontiers as in Figure 2, by implementing the minimization of the generalization error of
the model.

3. New PAC Learning with Piece-Wise Linear Hypothesis

This section revolves around two stages in the search for the generalization error
bound: the first stage is based on the construction of the class of piecewise linear hypotheses
whose elements are hyperplanes that are located as close as possible to the data sample
through l∞-distance, and the second stage is based on the construction of the bound of
the fat-shattering dimension of the class of hypothesis constructed in the first stage. The
minimization of the bound of the expected error using the bound of the fat-shattering
dimension calculated gives rise to the Data Envelopment Analysis-based Machines (DEAM)
model as a method for estimating piecewise linear production functions, which minimizes
the generalization error as well as the empirical error.

To obtain this bound of the class of functions of our interest, we must derive the fat-
shattering dimension bound for the hypothesis class with the piece-wise structure we desire.
Then, minimizing the generalization error will be implemented through the minimization
of the fat-shattering dimension bound. For this task, a previous step must be taken: a class
of piece-wise linear hypothesis must be defined. A piece-wise linear hypothesis target is
defined by a combination of n hyperplanes

{
Hp
}

p=1,...,n that are selected to evaluate the
data depending on their input values. The hyperplanes will be defined for each input value
x ∈ Rm

+ as follows:

Hpx =
{
(x, y) ∈ Rm+1 : wpx x + βpx − δpx y = 0

}
Then, if we suppose δpx > 0, ∀px ∈ {1, . . . , n}, each output value estimation through

the set of n hyperplanes
{

Hp
}

p=1,...,n can be written as a function of the input value vector x:

h(x) = wpx
δpx

x + βpx
δpx

, px ∈ {1, . . . , n} ,

with wpx ∈ Rm
+ and βpx ∈ R. The value of px ∈ {1, . . . , n}, in our case, is chosen by

considering two desired conditions that are inherited from production theory:

h(x) =
wpx

δpx

x +
βpx

δpx

≥ 0, (8)

and
wpx
δpx

x + βpx
δpx
≤ wp

δp
x + βp

δp
, ∀p ∈ {1, . . . , n} . (9)

Condition (8) ensures that the estimation of the output value associated with an
input x ∈ Rm

+ will be always non-negative. Additionally, condition (9) guarantees that the
estimation h(x) through the hyperplane Hpx is less or equal than the estimation through
any other hyperplane Hp. Condition (9) is the one that imposes concavity on the model.
This type of condition was the key for stating concavity in the general multiple-regressor
modeling in microeconomics (Afriat [28]; Kuosmanen et al. [13]). In particular, if the
production function is concave, then the technology defined from this production function
is convex.

The function class of piece-wise linear hypothesis can be constructed as follows:

F =
{

x 7→ wpx
δpx

x + βpx
δpx

: ‖x‖ ≤ R, wpx
δpx

x + βpx
δpx
≥ 0,

wpx
δpx

x + βpx
δpx
≤ wp

δp
x + βp

δp
, ∀px, p ∈ {1, . . . , n}

}
.

(10)

Now, we can proceed with the second step: to establish a bound for the fat-shattering
dimension of this function class to control the generalization error. Before proving the main
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theorem of this section, we need to state a necessary technical lemma. In the results, r ∈ R+

is the radius of the ball centered in 0m that bounds the input data in the data sample.

Lemma 3. If an input learning sample, S = {x1, . . . , xd} is γ-shattered through F defined in (10),
then every subset S0 ⊆ S satisfies

∥∥∑ S0 −∑(S− S0)
∥∥ ≥ |S|


Min

p∈{1,...,n}

{
γ− βp

δp

}
Max

p∈{1,...,n}

∥∥∥wp
δp

∥∥∥ − 2r

, (11)

denoting as ∑ S0 and ∑(S− S0) the sum of the elements in S0 and S− S0, respectively, and
as |S| the cardinal of the set S.

Proof. See Appendix A. 2

Next, we prove the main theorem of this section. In particular, we state the bound for
the fat-shattering dimension for piece-wise linear hypothesis classes.

Theorem 3. Let X be the ball of radius R and center 0m in Rm, i.e., X = {x ∈ Rm : ‖x‖ ≤ r},
and let the hypothesis class be as follows

F =

{
x 7→

wpx

δpx

x +
βpx

δpx

: ‖x‖ ≤ R,
wpx

δpx

x +
βpx

δpx

≥ 0,

wpx

δpx

x +
βpx

δpx

≤
wp

δp
x +

βp

δp
, ∀px, p ∈ {1, . . . , n}

} , (12)

then

f atF(γ) ≤


r

Min
p∈{1,...,n}

{
γ− βp

δp

}
Max

p∈{1,...,n}

∥∥∥wp
δp

∥∥∥ − 2r



2

. (13)

Proof. See Appendix A. 2

The next section involves the task of achieving a model that minimizes the established
generalization error through the l∞-distance.

4. Data Envelopment Analysis-Based Machines (DEAM)

Data Envelopment Analysis-based Machines (DEAM) can be defined from the idea
of minimizing the expected error proposed in (1). If we do not consider the logarithmic
factors, we can directly focus on minimizing d in this expression, for which a bound on the
generalization error has been found in the case of the piece-wise linear hypothesis class F
defined in (12):

d = f atF
(
γ−/16

)
+

(
16(D(S, f , γ) + κ)

γ

)2
≤


r

Min
p∈{1,...,n}

{
γ
16−

βp
δp

}
Max

p∈{1,...,n}

∥∥∥wp
δp

∥∥∥ − 2r



2

︸ ︷︷ ︸
A

+

(
16(D(S, f , γ) + κ)

γ

)2

︸ ︷︷ ︸
B

(14)
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Because of the complexity of implementing an optimization model in which the
objective function has the aim of minimizing the above bound, we will break up the
minimization of the whole bound into different objectives, which will be collected in an
aggregation function that will conform the objective function of the final optimization
program associated with DEAM, which will be shown later in this section.

Once the number of different hyperplanes in each hypothesis is set as the number of
elements in the learning sample |S| = n, minimizing the bound of the fat-shattering dimen-

sion requires minimizing part A in (14). This is equivalent to maximizing
Min

p∈{1,...,n}

{
γ
16−

βp
δp

}
Max

p∈{1,...,n}

∥∥∥wp
δp

∥∥∥ .

Regarding this last expression, we must maximize the numerator and minimize the denom-
inator, as follows:

(i) The vector of coefficients (slopes) corresponding to the hyperplane Hp is
(
wp, δp

)
.

We can consider, without loss of generality, that
∥∥(wp, δp

)∥∥
1 = 1. Then, minimiz-

ing Max
p∈{1,...,n}

∥∥∥wp
δp

∥∥∥, is equivalent to minimizing Max
p∈{1,...,n}

(
1

1
‖wp‖−1

)
since δp ≥ 0,

∀p ∈ {1, . . . , n}. Focusing on that last equivalence, this objective can be directly
translated into minimizing Max

p∈{1,...,n}

∥∥wp
∥∥.

(ii) Maximizing Min
p∈{1,...,n}

{
γ
16 −

βp
δp

}
with a fixed value of the margin γ is equivalent to

minimizing Max
p∈{1,...,n}

{
βp
δp

}
. Because of

∥∥(wp, δp
)∥∥

1 = 1, by minimizing Max
p∈{1,...,n}

∥∥wp
∥∥

in (i), at the same time, the maximization of the elements
{

δp
}

p∈{1,...,n} is achieved. In

this way, it is only necessary to minimize Max
p∈{1,...,n}

{
βp
}

to maximize Max
p∈{1,...,n}

{
βp
δp

}
.

Finally, a way of implementing (i) and (ii) is minimizing u + v, where
∥∥wp

∥∥ ≤ u,
βp ≤ v,∀p ∈ {1, . . . , n}. Accordingly, minimizing the bound of the fat-shattering dimen-
sion, A + B, leads to minimizing (u + v) + CD2, where D2 = D(S, f , γ)2 = ‖ξ‖2

2 and C is a
parameter to be tuned by, for example, a cross-validation process. As a loss function we use
the following: ξ((x, y), f , γ) = max

{
0, D‖·‖∞

((x, y), f )− (θ − γ)
}

. Finally, the objective
function has the following structure:

z(u, v, ξ1, . . . , ξn) = u + v + C‖ξ‖2
2. (15)

Accordingly, we introduce the optimization model that defines DEAM:

Min
w,β,δ,ξ,ξ ′ ,u,v

u + v + C
(

n
∑

i=1
ξ2

i +
n
∑

i=1
ξ ′i

2
)

s.t.
‖wi‖1 ≤ u ∀i = 1, . . . , n (16.1)
βi ≤ v ∀i = 1, . . . , n (16.2)
δpyi ≤ wpxi + βp ∀i, p = 1, . . . , n (16.3)
wi, δi ≥ 0 ∀i = 1, . . . , n (16.4)
wixi + βi − δiyi ≤ ε + ξi ∀i = 1, . . . , n (16.5)
δiyi −wixi − βi ≤ ε + ξ ′i ∀i = 1, . . . , n (16.6)
ξi, ξ ′i ≥ 0 ∀i = 1, . . . , n (16.7)
‖(wi, δi)‖1 = 1 ∀i = 1, . . . , n (16.8)
wixi + βi − δiyi ≤ wpxi + βp − δpyi ∀i, p = 1, . . . , n (16.9)

(16)

Model (16) determines a maximum of n different hyperplanes. The intersection of the
half-spaces defined from these hyperplanes gives rise to the estimator of the underlying
(convex) production technology. The number of hyperplanes to be considered in the
implementation of the DEAM model can be seen as a key parameter of our approach since
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the results could be different depending on it. However, we suggest using n hyperplanes,
which coincide with the number of DMUs. This is due to the experimental evidence found
in the simulation study carried out in Section 5. We analyzed 2000 databases, and in all
these cases, the number of hyperplanes at optimum were less than the number of DMUs in
the corresponding data sample. This situation can be identified because some hyperplanes
are repeated at the optimal solution of each problem.

Let us now explain each constraint of model (16) in detail. Constraints (16.1) and
(16.2) come from

∥∥wp
∥∥ ≤ u, βp ≤ v,∀p = 1, . . . , n, respectively. The norm l1 is used to

be consistent with constraint (16.8). Additionally, this type of norm is associated with the
definition of linear constraints, which are easier to be solved from a computational point
of view. Constraint (16.3) is equivalent to yi ≤

wp
δp

xi +
βp
δp

, i, p = 1, . . . , n, i.e., it ensures
that the hyperplanes envelop the data sample from above. Condition (16.4) forces that the
n hyperplanes are monotonic non-decreasing and will be responsible for the satisfaction
of the property of free disposability, as we will show later in the text (see Proposition 2
below). Constraints (16.5), (16.6), (16.7), and (16.8) allow for characterizing ξ((x, y), f , γ)

as max
{

0, D‖·‖∞
((x, y), f )− (θ − γ)

}
. The parameter ε (= θ − γ ≥ 0) will be chosen by

cross validation. Let us now interpret specifically the value at optimum of the decision
variable ξi. Let us pay attention to constraint (16.5). If wixi + βi − δiyi − ε ≥ 0, then

ξi = wixi + βi − δiyi − ε since
n
∑

i=1
ξ2

i is minimized in the objective function. In this way,

considering (16.8), (16.3) and ε ≥ 0, ξi can be interpreted as the l∞-distance from the
observation (xi, yi) to the hyperplane Hiε:

ξi =

∣∣wixi + βi − δiyi − ε
∣∣∥∥(wi, δi

)∥∥
1

= Dl∞((xi, yi), Hiε),

where Hiε =
{
(x, y) ∈ Rm+1 : wix + βi − δiy− ε = 0

}
(Mangasarian [29]). If wixi + βi −

δiyi − ε < 0, then ξi = 0 by (16.7) and the minimization of
n
∑

i=1
ξ2

i . Additionally, regarding

the value of ξ ′i , i = 1, . . . , n, by constraints (16.3), (16.6), ε ≥ 0 and the minimization of
n
∑

i=1
ξ ′2i , we obtain ξ ′i = 0 for all i = 1, . . . , n at optimum. This point has computational

implications on the model since constraint (16.6) can be removed from it because (16.3)
holds. Finally, constraint (16.9) guarantees that, for each (xi, yi) in the data sample, the
hyperplane of the piece-wise linear production function associated with that point is the
closest one to (xi, yi). Note that constraint (16.9), by (16.3) and (16.8), is equivalent to
writing Dl∞((xi, yi), Hi) ≤ Dl∞

(
(xi, yi), Hp

)
∀i, p = 1, . . . , n (see Mangasarian [29]).

Figure 3 shows the shape of the function that will be generated by the model as an es-
timate of the underlying production function. Note that the estimate satisfies monotonicity
and concavity, as happens with the DEA estimator. However, the DEAM estimator does
not satisfy minimal extrapolation. Additionally, it implements a certain idea of robustness
because of the margin notion inherited from SVR. Additionally, Figure 3 shows the possible
interpretation of ξi as Dl∞((xi, yi), Hiε). In particular, ξi is the ‘radius’ of the squared ball in
the figure.

As the technology generated by DEA, DEAM provides a piece-wise linear technology
that can be defined as TDEAM :=

{
(x, y) ∈ Rm+1

+ : w∗px + β∗p − δ∗py ≥ 0, ∀p ∈ {1, . . . , n}
}

,

given an optimal solution
({

w∗p, β∗p, δ∗p, ξ∗p, ξ∗p
′
}

p=1,...,n
, u∗, v∗

)
of model (16).

The next propositions state that the derived technology from model (16) satisfies
convexity and free disposability.
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Figure 3. Illustration of the DEAM estimation of a production function.

Proposition 1. TDEAM is a convex set.

Proof. The intersection of half-spaces is a convex set. 2

Proposition 2. TDEAM satisfies free disposability in inputs and outputs.

Proof. The result holds because wp, δp ≥ 0 for all p ∈ {1, . . . , n} (see Kuosmanen and
Johnson [13]). 2

Additionally, by constraint (16.3), we have that w∗pxi + β∗p − δ∗pyi ≥ 0, ∀i, p = 1, . . . , n.
Therefore, for any observation (xi′ , yi′), we have that w∗pxi′ + β∗p − δ∗pyi′ ≥ 0, ∀p = 1, . . . , n,

which implies that (xi′ , yi′) ∈ TDEAM since TDEAM =
{
(x, y) ∈ Rm+1

+ : w∗px + β∗p − δ∗py ≥ 0,

∀p ∈ {1, . . . , n}
}

. In this way, we can establish the following corollary.

Corollary 1. The production possibility set generated by DEA is a subset of the production
possibility set generated by DEAM.

Proof. The result holds because the production possibility set generated by DEA and the
production possibility set yielded by DEAM satisfy convexity, free disposability, and contain
all observations, but only the technology related to DEA meets minimal extrapolation. 2

In this way, we have that DEAM does not satisfy the minimal extrapolation principle,
but its associated estimation of the technology always contains the observations.

As for the measurement of technical inefficiency of the observations, due to the na-
ture of the technique used and based on the original ideas derived from Support Vector
Regression, any (xi, yi) located within the margin will be identified as technically efficient
(with ξ∗i = 0). Otherwise, i.e., if (xi, yi) is located below the margin (see Figure 3), we
have that ξ∗i is the l∞-distance from the observation to the (efficient) frontier of a ‘robust’
technology. This robust technology is defined by the translation of the original technol-



Mathematics 2022, 10, 909 14 of 22

ogy TDEAM downward following the value of the margin ε. If we define this translated
technology as Tε

DEAM =
{
(x, y) ∈ Rm+1

+ : w∗px + β∗p − δ∗py− ε ≥ 0, ∀p ∈ {1, . . . , n}
}

, then

ξ∗i = Dl∞
(
(xi, yi), ∂W(Tε

DEAM
))

(this result can be derived from Aparicio and Pastor [30]).
Now, we show the relationship between the Directional Distance Function (DDF) in

DEA, model, and the DEAM model (16): The DDF model always yields a feasible solution
of the model associated with Data Envelopment Analysis-based Machines.

Theorem 4. Let
{(

c∗i , α∗i , p∗i
)}

i=1,...,n be a set of optimal solutions of model (7) for each DMUi,

i = 1, . . . , n. Then,
{(

c∗i , α∗i , p∗i , ϑ∗i , ϑ′∗i
)

i=1,...,n, a∗, b∗
}

, with ϑ∗i = −p∗i yi + c∗i xi + α∗i , ϑ′∗i =

p∗i yi − c∗i xi − α∗i = 0, ∀i = 1, . . . , n, a∗ = max
i=1,...,n

∥∥c∗i
∥∥, b∗ = max

i=1,...,n

{
α∗i
}

is a feasible solution of

model (16).

Proof. Let
{(

c∗i , α∗i , p∗i
)}

i=1,...,n be a set of optimal solutions of model (7) for each DMUi,
i = 1, . . . , n. By the characterization of a∗ and b∗ as a∗ = max

i=1,...,n

∥∥c∗i
∥∥ and b∗ = max

i=1,...,n

{
α∗i
}

,

the following inequalities are true:

‖c∗i ‖ ≤ a∗ (17)

α∗i ≤ b∗ (18)

Then,
{(

c∗i , α∗i , p∗i , ϑ∗i , ϑ′∗i
)

i=1,...,n, a∗, b∗
}

satisfies (16.1) and (16.2) in the DEAM model.

Because of the fact that
{(

c∗i , α∗i , p∗i
)}

i=1,...,n is a set of optimal solutions of model (7) for
each DMUi, i = 1, . . . , n, the constraints of this model are satisfied for this solution:

p∗i yk ≤ c∗i xk + α∗i ∀k = 1, . . . , n; ∀i = 1, . . . , n (19.1)∥∥(c∗i , p∗i
)∥∥

1 = 1 ∀i = 1, . . . , n (19.2)

c∗i , p∗i ≥ 0 ∀i = 1, . . . , n (19.3)

(19)

Then,
{(

c∗i , α∗i , p∗i , ϑ∗i , ϑ′∗i
)

i=1,...,n, a∗, b∗
}

trivially satisfies (16.3), (16.4) and (16.8) in

the DEAM model. Because of the definition of the variables ϑ∗i and ϑ′∗i as ϑ∗i = −p∗i yi +
c∗i xi + α∗i , ϑ′∗i = p∗i yi − c∗i xi − α∗i = 0, ∀i = 1, . . . , n, we have that:

− piyi + cixi + αi ≤ ϑ∗i + ε (20)

and

p∗i yi − c∗i xi − α∗i ≤ ϑ′∗i + ε, (21)

∀i = 1, . . . , n, and ∀ε ≥ 0. Then,
{(

c∗i , α∗i , p∗i , ϑ∗i , ϑ′∗i
)

i=1,...,n, a∗, b∗
}

satisfies (16.5) and
(16.6) in the DEAM model. Additionally, we have

0 ≤ −p∗i yi + c∗i xi + α∗i = ϑ∗i ∀i = 1, . . . , n (22)

and,

0 ≤ p∗i yi − c∗i xi − α∗i = ϑ′∗i ∀i = 1, . . . , n . (23)

Constraint (22) is satisfied by (19.1), and (23) is trivially satisfied. Then,
{(

c∗i , α∗i , p∗i , ϑ∗i ,

ϑ′∗i
)

i=1,...,n, a∗, b∗
}

satisfies (16.7) in the DEAM model. Finally, the objective in (7) is to
minimize ϑi = −piyi + cixi + αi, ∀i = 1, . . . , n,
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that implies

ϑ∗i = −p∗i yi + c∗i xi + α∗i ≤ −pkyi + ckxi + αk ∀k = 1, . . . , n . (24)

Then,
{(

c∗i , α∗i , p∗i , ϑ∗i , ϑ′∗i
)

i=1,...,n, a∗, b∗
}

satisfies (16.9) in the DEAM model. Conse-

quently,
{(

c∗i , α∗i , p∗i , ϑ∗i , ϑ′∗i
)

i=1,...,n, a∗, b∗
}

is a feasible solution of (16). 2

However, it can be shown that the DDF model (7) does not always yield an optimal
solution of model (16).

5. Computational Experience

This section compares the performance of DEA and DEAM for estimating production
functions. For this task, we designed five typical production scenarios in Table 1.

Table 1. Simulated scenarios.

Scenario Inputs Production Function

I x1 y = x1
0.5

II x1, x2 y = x0.35
1 · x0.15

2
III x1, x2, x3 y = x0.30

1 · x0.15
2 · x0.05

3
IV x1, x2, x3, x4 y = x0.25

1 · x0.15
2 · x0.05

3 · x0.05
4

V x1, x2, x3, x4, x5 y = x0.25
1 · x0.10

2 · x0.05
3 · x0.05

4 · x0.05
5

The simulations implement Cobb–Douglas production functions, which are frequently
used in econometrics for establishing the relation between the maximum amount of outputs
that can be produced from a set of inputs. Thereby, scenario I implements a mono-input
mono-output case, while the other scenarios represent multi-input mono-output cases. For
each scenario, we ran 100 trials (t = 1, . . . , 100) with sample sizes: n ∈ {25, 50, 75, 100}.
The inputs were calculated randomly from Uni[1, 10]. For simulating inefficiencies, we
selected a random distribution exp(1/3) for u. Mean squared error (MSE) and bias were
the two measures employed to assess the performance of each method.

The DEAM model (16), as other machine learning techniques, needs to find the
best model through a cross-validation process. For this task and exclusively for the
DEAM model, we implemented a five-fold cross validation using a certain grid of hy-
perparameters. This grid was arbitrarily set as: C ∈

{
1, 10, 50, 100, 106} and ε ∈

{0, 0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 1}. Note that DEA does not need to apply a cross-
validation process. Instead, DEA uses the whole dataset to evaluate efficiency scores.

Table 2 sums up the results obtained for each scenario when DEA (without cross
validation) and DEAM (with cross validation) are applied. The first two columns present
the type of scenario and the sample size. The following columns show the mean and
standard deviation (in brackets) of MSE obtained by DEA and DEAM. Fraction of trial
reports the proportion of trials in which DEAM either improves upon or equals the MSE
given by the DEA method, while the next column illustrates the percentage of improvement
of DEAM with respect to DEA. The four subsequent columns are similar to the previous
ones, but with regard to bias.

Regarding the results, the DEAM method performed better than DEA, with improve-
ments ranging from 5% to 45% on average in MSE and 2% to 28% in bias. This fact increased
when the number of inputs were higher. In addition, the results illustrate how the model
worked better when the number of DMUs was around 50–75. Scenario I, i.e., the single
input single output framework, shows small differences between the two methods. Never-
theless, in the trials, DEAM outperformed DEA in more than 95% of the cases. In contrast,
the best analyzed situation was scenario V (one output and five inputs) with n = 25,
showing a 45% reduction in MSE and 28% in bias, on average. This last result could be
interpreted in favor of the DEAM approach as an indication that DEAM also seemed to
outperform DEA with respect to the curse of dimensionality (Charles et al. [31]).
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Table 2. Performance of DEA and DEAM.

MSE BIAS

Fraction of
Trials

Improvement
(%)

Fraction of
Trials

Improvement
(%)

Scenario Number of
Obs. DEA DEAM DEAM<=

DEA
DEAM vs.

DEA DEA DEAM DEAM<=
DEA

DEAM vs.
DEA

I 25 0.027(0.020) 0.024(0.019) 1.000 11.609% 0.125(0.046) 0.119(0.046) 1.000 4.873%
I 50 0.011(0.007) 0.010(0.007) 0.990 8.005% 0.076(0.026) 0.075(0.026) 0.990 2.822%
I 75 0.007(0.005) 0.007(0.005) 0.990 7.622% 0.060(0.019) 0.059(0.019) 0.980 2.194%
I 100 0.005(0.004) 0.005(0.004) 0.990 5.231% 0.051(0.019) 0.050(0.019) 0.950 1.936%

II 25 0.151(0.084) 0.108(0.067) 1.000 27.109% 0.276(0.071) 0.240(0.072) 1.000 13.460%
II 50 0.091(0.043) 0.067(0.037) 0.980 24.012% 0.206(0.045) 0.184(0.045) 0.990 10.587%
II 75 0.060(0.029) 0.040(0.024) 1.000 32.846% 0.160(0.032) 0.138(0.035) 1.000 14.252%
II 100 0.049(0.022) 0.033(0.019) 1.000 32.636% 0.140(0.031) 0.122(0.030) 1.000 13.285%

III 25 0.451(0.236) 0.287(0.199) 0.960 35.967% 0.470(0.126) 0.380(0.125) 0.960 19.215%
III 50 0.270(0.121) 0.165(0.090) 0.990 36.812% 0.347(0.077) 0.280(0.072) 0.980 19.075%
III 75 0.211(0.091) 0.119(0.050) 0.990 39.786% 0.291(0.056) 0.229(0.050) 0.980 20.996%
III 100 0.171(0.076) 0.112(0.053) 1.000 32.405% 0.257(0.047) 0.213(0.043) 1.000 16.971%

IV 25 1.046(0.457) 0.804(1.070) 0.880 14.949% 0.727(0.177) 0.623(0.264) 0.860 12.086%
IV 50 0.728(0.246) 0.471(0.265) 0.960 35.859% 0.571(0.113) 0.469(0.146) 0.880 18.295%
IV 75 0.605(0.191) 0.384(0.154) 0.990 35.084% 0.497(0.079) 0.403(0.079) 0.960 18.539%
IV 100 0.462(0.162) 0.308(0.114) 1.000 30.776% 0.418(0.068) 0.342(0.064) 0.990 17.912%

V 25 1.896(0.766) 1.009(0.563) 0.980 44.803% 0.984(0.224) 0.703(0.211) 0.980 28.043%
V 50 1.396(0.478) 0.922(0.566) 0.900 32.353% 0.801(0.140) 0.648(0.218) 0.870 18.492%
V 75 1.057(0.303) 0.750(0.315) 0.950 28.473% 0.673(0.107) 0.567(0.152) 0.880 15.677%
V 100 0.914(0.261) 0.624(0.211) 0.980 29.296% 0.613(0.090) 0.502(0.087) 0.970 17.543%

6. Discussion

In this section, we briefly discuss the main results of this paper and how they can
be interpreted from the perspective of previous studies, mainly those based on Data
Envelopment Analysis. Our findings and their implications are also discussed. Some
limitations of our approach are highlighted.

In this paper, we have introduced a new way of estimating production frontiers in
engineering and microeconomics, which is based upon the same fundamentals of Support
Vector Machines (SVM), which is a well-known machine learning technique. Our numerical
results have demonstrated that the frontier estimator derived from the new methodology
(DEAM) is better than that associated with Data Envelopment Analysis (DEA), which
represents the standard non-parametric technique for determining technical efficiency in
the literature. The bias and mean squared error obtained for DEAM are smaller in all the
scenarios analyzed, regardless of the number of variables and DMUs.

In comparison with the standard literature, the new methodology is more flexible. It
generates production possibility sets that satisfy convexity, free disposability in inputs and
outputs, and contain all the observations, but they do not meet the postulate of minimal
extrapolation. In contrast, DEA satisfies all the above properties. In particular, minimal
extrapolation is the reason why DEA can be seen as an overfitted model to estimate the
underlying Data Generating Process (DGP) that is behind the generation of the data sample.
DEAM does not suffer from this overfitting problem. However, it is not evident where
the production possibility set, estimated by a non-overfitted model, should be located in
the input–output space to correctly approximate the underlying technology, which, by
definition, is unknown to us. In this regard, in this paper, we have implemented for the first
time a strategy based on the idea of Structural Risk Minimization (Vapnik [1]) and cross
validation, introducing a new PAC (Probably Approximately Correct) bound in production
theory with the aim of solving the overfitting problem linked to DEA.

Some other authors have tried to modify the standard DEA technique such that the
new approaches work as inferential methods (with the focus on the DGP) rather than as
mere descriptive tools. For example, Banker and Maindiratta [8] and Banker [9] associated
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DEA with maximum likelihood. Simar and Wilson [10–12] adapted bootstrapping to DEA.
Kuosmanen and Johnson [13,14] introduced the Corrected Concave Nonparametric Least
Squares. Unfortunately, despite the importance of machine learning techniques in the
current literature, there have been few attempts to adapt DEA to the field of machine
learning (see, for example, Esteve et al. [7], or Olesen and Ruggiero [15]). In this sense,
DEAM has allowed us to build a new bridge between these two worlds: machine learning
and efficiency measurement.

Finally, we would like to highlight a clear limitation associated with the new approach.
DEAM is linked to an intensive computational procedure based on cross validation. This
feature contrasts sharply with the simplicity of Data Envelopment Analysis.

7. Conclusions and Future Work

In this paper, for the first time, a bound on the generalization error for a piece-wise
linear hypothesis has been established in the context of Support Vector Regression (SVR), by
also considering typical axioms from production theory: convexity and free disposability.
It shapes a new nexus between non-parametric frontier analysis and machine learning in
the line recently followed by Esteve et al. [7], Valero-Carreras et al. [32], and Olesen and
Ruggiero [15]. The new formulation on the bound of the generalization error of this kind
of hypothesis gives rise to a new way of bounding the whole expected error when we
approximate a target function through a piece-wise linear function, also controlling the
empirical error. Minimizing this bound led to the definition of a new model, called Data
Envelopment Analysis-based Machines (DEAM), which generates production function
estimations that seek a balance between the empirical error and the generalization error.

Classical non-parametric techniques, such as DEA, suffer from the overfitting problem
because they assume the axiom of minimal extrapolation (Banker et al. [6], Afriat [28],
and Farrell [33]). The DEAM model, however, is more flexible when it comes to estimat-
ing production frontiers through a cross-validation process, disregarding the minimal
extrapolation axiom, as was shown by a computational experience in this paper.

Finally, we finish by mentioning several lines that pose interesting avenues for further
research. The first one is the possibility of extending the method to model multi-output
situations. This could be interesting for dealing with more realistic production situations,
considering information on the correlation among several outputs. Second, we could use
other transformation functions (kernel methods) for the input space, in the same way as
standard Support Vector Regression.

Author Contributions: Conceptualization, N.M.G. and J.A.; methodology, N.M.G. and J.A.; software,
D.V.-C.; validation, N.M.G. and D.V.-C.; formal analysis, N.M.G., J.A. and D.V.-C.; investigation,
N.M.G., J.A. and D.V.-C.; resources, N.M.G., J.A. and D.V.-C.; data curation, N.M.G. and D.V.-C.;
writing—original draft preparation, N.M.G., J.A. and D.V.-C.; writing—review and editing, N.M.G.,
J.A. and D.V.-C.; visualization, N.M.G. and D.V.-C.; supervision, J.A.; project administration, J.A.;
funding acquisition, J.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Ministerio de Ciencia e Innovación/Agencia Estatal de
Investigación/10.13039/501100011033 grant number PID2019-105952GB-I00, by Generalitat Valen-
ciana grant number ACIF/2020/155, and by Miguel Hernández University of Elche grant number
01623/2020.

Acknowledgments: The authors are grateful to the two anonymous reviewers for providing construc-
tive comments and helping in improving the contents and presentation of this paper. Additionally,
the authors are thankful for grant PID2019-105952GB-I00 funded by Ministerio de Ciencia e Inno-
vación/Agencia Estatal de Investigación/10.13039/501100011033. D. Valero-Carreras is thankful
for the financial support from the Generalitat Valenciana under grant ACIF/2020/155. Finally, N.
Guerrero is thankful for the financial support from the Miguel Hernández University of Elche under
grant 01623/2020.

Conflicts of Interest: The authors declare no conflict of interest.



Mathematics 2022, 10, 909 18 of 22

Appendix A

Proof of Lemma 3. Let S = {x1, . . . , xd} be γ-shattered by

F =
{

x 7→ wpx
δpx

x + βpx
δpx

: ‖x‖ ≤ R, wpx
δpx

x + βpx
δpx
≥ 0,

wpx
δpx

x + βpx
δpx
≤ wp

δp
x + βp

δp
, ∀px, p ∈ {1, . . . , n}

}
witnessed by r1, . . . , rd ∈ R. Then, for all b = (b1, . . . , bd) ∈ {−1, 1}d, there are

{(
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)

b

}
p∈{1,...,n},{(
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bi

[((
wpxi

δpxi

)
b

xi +

(
βpxi

δpxi

)
b

)
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Let set S0 ⊂ S, and consider two cases:

• Case 1: If ∑{ri : xi ∈ S0} ≥ ∑{ri : xi ∈ S− S0}, then bi = 1 if and only if xi ∈ S0
• Case 2: If ∑{ri : xi ∈ S0} < ∑{ri : xi ∈ S− S0}, then bi = 1 if and only if xi ∈ S− S0

Let us suppose that ∑{ri : xi ∈ S0} ≥ ∑{ri : xi ∈ S− S0}, with bi = 1 if and only if
xi ∈ S0 (CASE 1). For all xi ∈ S0, we have
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that is (
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Then, taking the sum over the elements in the set S0, we obtain the expression
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Now, let xi ∈ S− S0, then
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Finally,
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The proof for case 2 is analogous. 2

Proof of Theorem 3. By Lemma 3, we have
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for every subset S0 ⊆ S, with S = {x1, . . . , xd} being an input learning sample γ-shattered
through F defined in (10). Additionally, by Lemma 2, for all S ⊆ Rm
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Because this is true for all S γ-shattered by F, it will be also true for the largest set
γ-shattered by F, which means that f atF(γ) will be bound in that way:
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