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Abstract: Limb movement prediction based on surface electromyography (sEMG) for the control of
wearable robots, such as active orthoses and exoskeletons, is a promising approach since it provides
an intuitive control interface for the user. Further, sEMG signals contain early information about the
onset and course of limb movements for feedback control. Recent studies have proposed machine
learning-based modeling approaches for limb movement prediction using sEMG signals, which do
not necessarily require domain knowledge of the underlying physiological system and its parameters.
However, there is limited information on which features of the measured sEMG signals provide
the best prediction accuracy of machine learning models trained with these data. In this work, the
accuracy of elbow joint movement prediction based on sEMG data using a simple feedforward neural
network after training with different single- and multi-feature sets and data segmentation parameters
was compared. It was shown that certain combinations of time-domain and frequency-domain
features, as well as segmentation parameters of sEMG data, improve the prediction accuracy of the
neural network as compared to the use of a standard feature set from the literature.

Keywords: limb movement prediction; surface electromyography; EMG; wearable robotics; feature
engineering; neural network

MSC: 37M10

1. Introduction

Wearable robots, such as active orthoses or exoskeletons, gain importance in rehabili-
tation as aids for people with disabilities, e.g., those induced by neuromuscular disorders,
or in the support of people during physical labour [1–4]. Whereas passive orthoses, such
as spring-loaded systems [5–7], provide immediate but uncontrolled support, current
active (i.e., motorized) systems based on force or torque sensors [8] provide a controlled
but unintuitive, delayed reaction of the technical system. The model-based prediction of
limb movements based on surface electromyography (sEMG) is a basis for more intuitive
control of active orthoses as neural signals that induce muscle contractions precede the
actual limb movement. These signals can, therefore, be used to predict the behavior of the
musculoskeletal apparatus before actual movements take place. However, sEMG signals
vary strongly between subjects, for example, due to differences in body composition or
electrode placement. Additionally, mere muscle contractions can lead to measurement
inaccuracies, as the electrodes shift on the skin during muscle movement [9–11]. Therefore,
to predict limb movement from sEMG signals and control active body support systems,
an adaptive model with the ability to compensate for inter-subject variations and mo-
tion artifacts would be desirable. sEMG-based prediction models are classically based
on Hill-type muscle models [12], which represent the contraction dynamics of the muscle
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based on various physiological parameters. The activation of the muscle based on neural
signals (measured as sEMG signals) is usually modeled by the so-called activation dynamics,
i.e., the electrochemical conversion of neuronal excitation into the release of Ca2+ ions
into the muscle sarcomeres [13,14]. As an alternative to classical models, such as Hill’s
muscle model, machine learning offers the potential to capture the complexity of neurally
controlled muscle contraction without the need for domain knowledge of the underlying
biomechanical properties and physiological relationships. Since machine learning models
are purely data driven and do not rely on physiological parameters that, for example, have
to be determined experimentally (as in approaches requiring domain knowledge), they
can be easily adapted to inter-subject variations using, for example, transfer learning [15].
Several studies have been performed on the classification or prediction of limb movements
using machine learning models. A backpropagation neural network was used by [16] to
estimate upper limb joint angles. In [17], a neurofuzzy matrix modifier was applied to
create an adaptive upper limb controller. Support vector regression was proposed in [18]
to estimate wrist movements in real time. In [19], various EMG features and feature seg-
mentations were investigated for support-vector-machine-based movement classification
for upper limb myoelectric control. Different EMG pattern recognition methods and EMG
features were compared in [20]. A deep neural network was used to classify wrist posi-
tions in [21]. EMG signal quality estimates were also examined in [22]. While a majority
of studies have focused on machine learning model architectures for sEMG-based limb
movement prediction, studies on the corresponding feature selection and segmentation of
sEMG signals are scarce. In the work presented here, an overview-like review of sEMG
features and segmentation parameters appropriate for elbow motion prediction based on
neural networks is given. Therefore, different single- and multi-feature sets and segmentation
parameters of sEMG signals are systematically investigated and compared with respect to
the performance of limb movement prediction, using a simple feedforward neural network
(FFNN). By choosing the simplest version of an FFNN architecture restricted to only one
hidden layer, the prediction quality should depend on the signal features and segmentation
parameters rather than the complexity of the underlying network architecture. Thus, the
procedure for feature and segmentation parameter extraction as well as the results pre-
sented have the potential to be extrapolated to more complex neural network architectures.
To investigate the signal features and segmentation parameters, sEMG data from four
muscle heads of the human upper arm and the corresponding elbow joint angle were
recorded while subjects performed various movement sequences requiring activation of
said muscle groups. Afterwards, features were selected from different categories based on
the experimentally collected sEMG data. Within sEMG signal segments of different lengths,
these features were extracted and used for training the FFNN to predict the associated
elbow joint movement of the upper arm. The accuracy of the trained FFNN based on the
feature categories and different segmentation parameters applied to the sEMG data was
evaluated to provide an indication of the usefulness of single features, as well as feature
combinations and segmentation parameters in predicting elbow-joint movements.

2. Materials and Methods

To evaluate different sEMG signal features in terms of the accuracy of an FFNN model
for predicting elbow-joint movements of the human arm, several steps were performed
(Figure 1). First, (I) the sEMG signals of four muscle heads and the corresponding elbow
joint angle signal θ of different subjects were recorded in several distinct dynamic loading
situations (Section 2.1). The recorded sEMG signals were then either (II) segmented in the
time domain (Section 2.2) to then (III) extract single- or multi-feature sets from the data, or
(IV) used without prior segmentation by applying an activation dynamics function [13]. The
resulting feature sets were categorized into groups based on similarity (Section 2.3) and
then used as input data to train an FFNN model to predict the elbow joint angle θ recorded
experimentally (Section 2.4). Based on the feature sets and segmentation parameters used
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during training, the model prediction performance was evaluated using a comparative rating
metric (Section 2.5).

Figure 1. Schematic illustration of the procedure for evaluating different features and feature com-
binations, as well as segmentation parameters for predicting elbow-joint movement by an FFNN
based on sEMG data. Depending on which features were evaluated, the sEMG data were either
segmented, or directly processed by a muscle activation dynamics model. All features served either as
single features, or in various multi-feature combinations as input signals to an FFNN that was trained to
predict the corresponding angle of an elbow joint θ̂. Note that the input layer of the FFNN scaled
with the number of features used (Ninput = Nchannels · N f eatures).

2.1. Data Acquisition

As a basis for training and verification of the FFNN for elbow-joint angle prediction,
sEMG data were recorded experimentally from different subjects while performing different
exercises involving forearm motion at different speeds and under varying load situations.

2.1.1. Subjects and Exercises

sEMG data and the corresponding elbow joint angle θ were acquired for n = 30 sub-
jects (24 male, 3 female and 3 in none of these categories; see Appendix A Table A1), while
the subjects were performing different elbow-movement sequences with their dominant
hand (28 right-handed and 2 left-handed). All subjects were healthy and did not have any
prior neuronal diseases when the experiments were performed. The movement sequences
consisted of two different arm exercises with each at two different loads and at two different
speeds, resulting in a total of eight experimental conditions (see Appendix A Table A2).
The two different upper arm exercises performed were upper curls and lower curls and are
referred to as postures in the following. Subjects were asked to perform each exercise by
cyclically moving the lower arm in a sinusoidal manner using a metronome as a visual
and auditory reference. Each exercise was repeated at two different frequencies, referred
to as slow (0.25 Hz) and fast (0.5 Hz) speeds. Again, each posture/speed combination was
performed with different additional loads, namely 2 and 4 kg. Exercise lengths varied due
to muscle fatigue of the individual subjects. Due to this circumstance, the recorded data
used varied in length per experimental condition and subject (Figure 2).
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Figure 2. Distribution of the number (n) of recorded sEMG data samples (sampling rate of 1111 Hz)
for each subject separated by posture: (a) upper curls and (b) lower curls. The plots in the top row depict
the data samples per individual subject. The boxplots in the lower row summarize the distribution of
data samples based on experimental conditions (speed and load) for all subjects. Whiskers are plotted
within the 1.5 interquartile range (IQR), and black dots represent outliers.

2.1.2. Recording of sEMG Data

Wireless EMG sensors (Delsys Trigno, Delsys, Inc., Boston, MA, USA) were used to
record the muscle activity of each of the two heads of the biceps brachii (bic) and triceps
brachii (tric), both involved in the actuation of the lower arm, with a sample rate of 1111 Hz
while subjects were performing exercise repetitions. Before the placement of the sensors,
the skin was cleaned using isopropyl alcohol and the innervation zones of the respective
muscles were marked via pen and tape roller according to [23] in order to determine the
adequate positioning of the sensors. After the preparation of the skin and the determination
of the positional placement, the sEMG sensors were fixed with double-sided adhesive tape
on the skin of the subjects. The interface between skin and electrodes was evaluated via
instructing the subjects to separately contract the flexors and extensors of the upper arm
and subsequent visual inspection of the signal quality. The sEMG signals were filtered
using a Butterworth bandpass filter with cutoff frequencies of 4 and 400 Hz according
to [24].

2.1.3. Measurement of the Elbow-Joint Angle

A passive measurement orthosis was used to record the elbow-joint angle θ while the
subjects were performing the different motion sequences. The measurement orthosis was
custom designed and 3D-printed in house from polylactic acid (PLA) plastic. The mounting
points and the overall length of the orthosis were customizable to allow fitting to different
arm geometries. The elbow-joint angle was determined using a 10 bit magnetic rotary
position encoder (AS5043, ams AG, Premstaetten, Austria), which was aligned to the rotary
axis of the elbow joint of the subject. The analog output of the rotary encoder was fed into a
Trigno Analog Adapter (Delsys, Inc., Boston, MA, USA) to allow for synchronous recording
of the elbow joint angle θ and the sEMG data with a sample rate of 1111 Hz.

2.2. Segmentation of sEMG Data in the Time Domain

Muscle contraction is triggered via neural innervation of motor units, resulting in
a release of acetylcholine (ACh) in the neuromuscular junction. It is followed by a bio-
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chemical cascade, leading to the formation of cross bridges, which extend from the myosin
filaments and cyclically interact with actin filaments while adenosine triphosphate (ATP)
is hydrolyzed [25–27]. Hence, a sEMG signal that activates the muscles involved in the
actuation of the lower arm precedes the resulting movement of the elbow joint by ap-
proximately 50 to 100 ms due to the biochemical time constants [28,29]. As a result, the
exact sEMG trigger signal corresponding to a predicted elbow-joint angle θ̂ can only be
approximated. Here, this approximation was achieved by choosing a time frame enclosing
the corresponding sEMG trigger signal (Figure 3). This time frame will be referred to as seg-
ment, the number of data points contained within the segment as N, and the corresponding
time span as segment length T in the following. By extracting single- or multiple features
based on individual sEMG data segments, the increase in dimensionality of the input signal
with respect to the input layer of the FFNN was compensated. To further account for the
temporal latency between the sEMG trigger signal and the predicted elbow-joint angle θ̂
due to biochemical and mechanical time constants as described above, a temporal offset δ
was introduced according to

δ = tθ̂ − Tend, (1)

where tθ̂ is the point in time corresponding to the predicted elbow-joint angle θ̂ and Tend is
the endpoint in time of the current segment (Figure 3).

Figure 3. Exemplary representation of segment length T, offset δ and overlap for three successive
segmentation time steps j. Each of the three subplots represent the same sEMG signal (blue) and
corresponding elbow-joint angle θ (red) in each row. The gray boxes symbolically represent a segment
of the sEMG signal from which features were extracted in each segmentation time step j. Depending
on the feature extracted, segments of length T were reduced in dimensionality and mapped to a
corresponding predicted angle θ̂ (black dot) via the offset δ. The overlap of segments between successive
segmentation time steps j and j + 1 determines the frequency by which features were sampled.

As an additional segmentation parameter, the temporal overlap of segments in successive
time steps (Figure 3) was considered. The maximal possible overlap depends on the overall
sample frequency and is defined as being one data point less than the number of data
points N in a segment of length T. Therefore, the overlap can be viewed as a hyperparameter
controlling the frequency of feature signals. In all cases, the overlap was chosen such that
features were sampled with a frequency of 100 Hz.
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2.3. Signal Features for EMG-Based Movement Prediction

Different features were recently proposed for sEMG signal classification [19,21,22]
and limb movement prediction [30]. The features were categorized as either time-domain
(TD) or frequency-domain (FD) features and were used as single features or as feature sets
composed of multiple features, so-called multi-feature sets. In this work, features within
the three categories, time domain, frequency domain, and domain knowledge, were divided
into subcategories based on their similarity to each other. All features, except the ACT
feature (Section 2.3.1), were extracted after segmentation (Section 2.2) of the underlying
sEMG signals.

2.3.1. Muscle Activation Dynamics

The muscle-activation (ACT) feature is a domain-knowledge-based feature, as it represents
the biochemical cascade that relates the rate of change of muscle activation (i.e., calcium ion
concentration in muscle) to the muscle excitation (i.e., firing of motor units), according to

du(t)
dt

+

[
1

τact
· (β + [1− β]e(t))

]
· u(t) =

(
1

τact

)
· e(t), with 0 < β < 1, (2)

where τact is the activation time constant and β = τ
τdeact

is the ratio of activation to deactiva-
tion time constants, resulting in an asymmetric first-order low-pass filter [13,14]. τact and β
were set such that the step response matched the step response from the muscle-activation
dynamics as described in [31] (τact = 17.3 ms and β = 0.35). The resulting muscle activity u
is dimensionless and scaled between 0 (umin) and 1 (umax), corresponding to zero and maxi-
mal activation, respectively. The ACT feature was computed without prior segmentation
of the sEMG signals, unlike the other EMG features (Figure 4a), but was downsampled to
a frequency of 100 Hz in order to match the feature signal frequency due to the segment
overlap parameter described in Section 2.2.

2.3.2. Features with Low-Pass Filter Character

Features characterized by low-pass filter-like behavior of the underlying functions
were placed in a separate category: mean absolute value (MAV), root mean square (RMS),
standard deviation (SD), variance (VAR), and waveform length (WL). All features of this category
show similar temporal characteristics and differ mostly in magnitude.

Computing the root mean square from EMG signals is a standard procedure for ex-
tracting key information in diagnostics based on electromyography [32]. The RMS feature
(Figure 4b) has also been used both as a single feature [16,17,33] and as a feature in a multi-
feature set [19,22,30,34–38] for the myoelectric control of orthotic and prosthetic devices
according to

RMS =

√√√√ 1
N

N

∑
i=1

x2
i , (3)

where N is the number of data points i within the segment under consideration, and x is
the input data. The RMS feature is closely related to the MAV feature, which is part of the
commonly used time domain (TD) feature set [19,30,34–37] and is computed from sEMG data
segments (Figure 4c) according to

MAV =
1
N

N

∑
i=1
|xi|. (4)

As another feature from the TD feature set, the waveform length WL was computed from
sEMG data (Figure 4d), which is the cumulative length of the waveform over the time
segment according to

WL =
N−1

∑
i=1
|xi+1 − xi|. (5)
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WL is related to the waveform amplitude, frequency and time, and has been used in
multi-feature sets [19,20,30,35–38].

Figure 4. Exemplary representation of features extracted from an sEMG data signal segmented based
on three different segment lengths (blue: T = 0.15 s, orange: T = 0.225 s and green: T = 0.3 s; purple:
no segmentation), as well as the corresponding elbow-joint angle θ (red), recorded experimentally.
The features depicted were extracted from segments with no offset δ and an overlap corresponding to
a sample frequency of 100 Hz. Shown are the following features: (a) activation dynamics (ACT), (b) root
mean square (RMS), (c) mean absolute value (MAV), (d) waveform length (WL), (e) standard deviation (SD),
(f) variance (VAR), (g) signal slope change (SSC), (h) zero crossings (ZC), (i) Willison amplitude (WAMP),
(j) integrated EMG (iEMG), and (k) mean of signal frequencies (MNF).

The SD feature (i.e., the standard deviation of an input signal; Figure 4e),

SD =

√√√√√ N

∑
i=1
|xi − x̄|2

N
, (6)
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which is defined as the square root of the variance of an input signal (i.e., VAR feature:
Figure 4f)

VAR =
1
N

N

∑
i=1

(xi − x̄)2, (7)

is considered as an alternative feature rather used in multi-feature sets [21,22,38,39].

2.3.3. Event-Based Features

Functions used for feature extraction in this subcategory depend on the occurrence of
certain signal characteristics in a given segment of length T. Such event-based features used
were signal slope changes SSC and zero crossings ZC, which both are members of the TD
feature set [19,30,34–37] and are named based on the signal characteristic they represent, as
well as the Willison amplitude (WAMP) [19,40].

The SSC feature (Figure 4g) depends on the number of occurrences of signal changes
from a rising to falling slope and vice versa in the given data segment of length T
according to

SSC =
N−1

∑
i=2

fSSC(xi), (8)

fSSC(xi) =

{
1 if (xi − xi−1)(xi − xi+1) > 0
0 otherwise

. (9)

The ZC feature (Figure 4h) depends on the number of occurrences of sign changes
between data points according to

ZC =
N−1

∑
i=1

fZC(xi), (10)

fZC(xi) =

{
1 if xixi+1 < 0
0 otherwise

. (11)

The WAMP feature (Figure 4i) depends on the number of occurrences of how often
a predefined threshold σ (=±50µV; [40]) exceeds the difference among two successive
amplitudes and, therefore, marks areas with wide amplitude ranges:

WAMP =
N−1

∑
i=1

fWAMP(xj), (12)

fWAMP(xi) =

{
1 if |xi+1 − xi| > σ

0 otherwise
. (13)

2.3.4. Integral-Based Features

The integral-based feature category consists of the integrated EMG (IEMG) feature
(Figure 4j), which is defined as the absolute integral of the signal according to

IEMG =
N

∑
i=1
|xi|. (14)

In general, the IEMG is used as an index for the onset of muscle activity and is
associated with the firing timing of the sEMG signal sequence [40].

2.3.5. Frequency Domain Features

The last subcategory is defined by features which are based on the distribution of
power of the signal frequency components. The mean of signal frequencies MNF (Figure 4k)
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was proposed to be used as a single feature in classification by [19] and is computed
according to

MNF =

n

∑
i=0

Ii · fi

n

∑
i=0

Ii

, (15)

where n is the number of frequency bins in the spectrum of an applied fast Fast Fourier
transform (FFT) to a segment of the number of data points N in a segment of length T. In
this case, i is the index of the frequency bin instead of a step in time. I is the intensity of the
spectrum at a given bin and f is the frequency at a given bin.

Though the MNF feature yielded rather inferior results compared to other features
in recent classification tasks [19], it was not discarded in this paper, as frequency do-
main features potentially yield relevant information for movement prediction and might
supplement time domain features in multi-feature sets.

2.4. Feedforward Neural Network

In order to compare the influence of different sEMG signal features and segmentation
parameters for the prediction of elbow-joint movement, a simple feedforward neural network
(FFNN) was used. The network was implemented using the data stream oriented machine
learning library TensorFlow (version 2.5.0; [41]) in Python (version 3.9.5; [42]). To ensure the
comparability of models with different numbers of feature inputs, the structure of the FFNN
was fixed depending on the number of features used (Figure 1). Each model consisted of
two hidden layers. The number of neurons N of the input layer Ninput was defined as the
product of the number of input channels Nchannels, corresponding to the number of muscle
heads recorded (Section 2.1.2) and the number of features N f eatures used depending on
whether single- or multi-feature sets were used for the performance evaluation according to

Ninput = Nchannels · N f eatures. (16)

The hidden layer consisted of a fixed number of neurons Nhidden equal to the number
of input channels Nchannels:

Nhidden = Nchannels. (17)

The number of output layer neurons was determined by the dimensionality of the
predicted elbow joint angle θ̂ and consequently was set to Noutput = 1. Within the hidden
layer, all neurons used a hyperbolic tangent function (tanh) as the activation function; hence,
the input signals were normalized to a range of −1 to 1. During training, the mean square
error (MSE) was used as a loss function to determine whether a model was over- or underfit.
As a model optimizer, the RMSprop algorithm from the Tensorflow toolkit [41] was chosen
with a learning rate of 0.001. Each model was initialized with random weights and biases
and then trained for 1000 epochs. Learning terminated early if no improvement occurred
for 20 epochs. Three models per experimental condition and subject combination were trained
with 70% of the entire data set and tested with the remaining 30%. In total, 10% of the
training set was used as a validation set during training. The data was not shuffled during
the training test split to ensure that the model did not see at least one period of arm motion
during training. The feedforward model architecture used was limited in the number
of hidden layers and neurons per hidden layer to allow for the execution of a variety
of different model evaluations and the time required to train one model per evaluation.
Further, more complex models might have run the risk of overfitting due to a larger number
of trainable hyperparameters [43].

2.5. Comparative Rating Metric

A normalized version of the mean absolute error (MAE), namely nMAE (Equation (19)),
was used to compare the prediction accuracy of the models trained with different sEMG
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signal features and segmentation parameters. The MAE on which the nMAE is based is
defined as

MAE =
∑N

i=1 |θ̂ − θ|
N

, (18)

where θ̂ is the predicted elbow-joint angle and θ is the corresponding experimentally recorded
elbow-joint angle. In this case, N is the total number of evaluated predicted angles.

The normalization in nMAE was achieved by

nMAE =
MAE

max(θ)−min(θ)
. (19)

The nMAE was calculated for model predictions using the test data set (nMAE) as well
as the train data set (nMAEtrain). The prediction error nMAE was used in the evaluation of
all feature configurations and segmentation tests described in Sections 3.1–3.3 and was com-
pared with the nMAEtrain to evaluate the model fitting. To evaluate the model performance
for different feature configurations (single and multi-features) and segmentations, the mean
nMAE of all models that differ in terms of experimental conditions or subjects was used.

3. Results

The performance of the elbow-joint movement prediction using the FFNN architecture
described in Section 2.4 was determined via a comparative rating metric (Section 2.5). The
accuracy of the FFNN models with respect to single features was evaluated (Section 3.1)
by comparing their predictive performance based on feature subcategories described in
Section 2.3. Subsequently, single features that resulted in the highest predictive accuracy
were used to determine the influence of different segmentation parameters (Section 3.2)
on model performance. Finally, the predictive power of different multi-feature sets was
compared based on a forward selection (Section 3.3). In all evaluations, a single model per
experimental condition and subject combination was trained and evaluated.

3.1. Single Features

The performance of models trained with individual single feature sets was compared
to determine the features that yielded the best prediction accuracy, thereby presumably
providing the most relevant information for motion prediction using the FFNN architecture
described in Section 2.4. One feature out of each feature category (Section 2.3) was selected
initially. It should be noted that although the IEMG feature (Equation (14)) was placed in a
separate feature category (integral-based features; Section 2.3.4) due to its offset characteristics,
it effectively equals the MAV feature (Equation (4)) due to the normalization inherent to
the model architecture of the FFNN (Section 2.4). Hence, the IEMG feature was selected
representatively for both groups (features with low-pass filter character and integral-based
features), as it lacks one scaling operation, compared to the MAV feature and, therefore,
is less prone to rounding errors. Out of the group categorizing event-based features, the
SSC feature was chosen because it is less prone to drifts of the DC portion of the sEMG
signal than the ZC feature, and the WAMP feature with its threshold σ (Equation (12))
has an additional hyperparameter which increases the complexity. From the remaining
subcategories, the MNF and ACT features were selected. Single features were compared
using three distinct segment lengths T = [0.15 s, 0.225 s, 0.3 s]. This range of segment
lengths was chosen based on previous findings, which used a mean segment length of
(T=) 0.2265 s [17–21,35,37,40].

In general, models trained with the widest segment length (T = 0.3 s) yielded the
lowest prediction error (nMAE) for all features when predicting elbow-joint movements
as compared to shorter segment lengths (Figure 5). As the ACT feature does not depend
on the segment length (Section 2.3.1), only a single prediction error could be computed.
When trained with the IEMG feature, the prediction accuracy of the FFNN model yielded
the lowest prediction error (nMAE) across all experimental conditions for all segment
lengths and, hence, the highest accuracy in predicting the elbow-joint angle θ̂. The lowest
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prediction error of (nMAE=) 0.1567, and thus the highest prediction accuracy, was achieved
when using the IEMG feature and a segment length of (T=) 0.3 s. The ACT feature provided
the second-best prediction accuracy with a prediction error of (nMAE=) 0.1757. The SSC
feature yielded the lowest prediction accuracy with a prediction error of (nMAE=) 0.2093
using the shortest tested segment length of (T=) 0.15 s. A comparison of the mean of
prediction errors for the training (nMAEtrain) and test data sets (nMAE) shows that models
generally fitted well. Neither significant under- nor over-fitting occurred, as the prediction
of previous unseen data resulted in a similar mean of prediction error (nMAE = 0.1848)
values, compared to the seen data (nMAEtrain = 0.1521). This implies that the chosen
model structure is suitable for predicting elbow-joint movements based on the sEMG data
as described above.

Figure 5. Performance of FFNN models in predicting elbow-joint movements based on different
single features extracted from sEMG signals with no offset δ and an overlap corresponding to a
100 Hz feature signal frequency. (a) Mean absolute errors for elbow-motion prediction based on
different segment lengths (blue: T = 0.15 s, orange: T = 0.225 s, and green: T = 0.3 s; purple: no
segmentation). The different symbols depict the prediction error (nMAE) using the test data set (black
plus sign), the corresponding minimum (nMAEmin; white arrow) and maximum (nMAEmax; black
arrow) prediction errors, as well as the prediction errors for the training data set (nMAEtrain; white
plus sign). (b) Normalized frequency distribution of prediction errors for all single features (light
gray bars) and the IEMG feature with a segment length of (T=) 0.3 s (dark gray bars), which yielded
the highest predictive accuracy (dark green color in (a)). (c–e) Exemplary plots of an experimentally
recorded elbow-joint angle θ (blue) and the corresponding model prediction θ̂ (orange) based on the
IEMG feature with a segment length of (T=) 0.3 s, which yielded the highest prediction performance:
(c) prediction with the highest prediction error (nMAEmax = 0.3804), (d) model prediction closest to
the mean prediction error (nMAE = 0.1610) and (e) model prediction with the lowest prediction error
(nMAEmin = 0.0460).

3.2. Segmentation

Based on the IEMG feature, which provided the best prediction accuracy in the eval-
uation of prediction performance based on single features, the influence of the segment
length T and the offset δ on the prediction performance of the FFNN model was analyzed
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subsequently. Special consideration was given to the fact that the two different movement
speeds at which the subjects performed the exercises resulted in different period lengths
of the elbow-joint angle θ (fast: 2.5 s, slow: 5 s; Section 2.1). The choice of segment lengths T
in this context was therefore based on the assumption that for periodic movements with
a fixed frequency, segment lengths with up to half a period in length result in a higher
prediction accuracy since they have the greatest information content retrospectively to
make a prediction about the future course of the signal. To test this assumption, segments
with a zero offset (δ = 0), based on half a period (2.5 s) of a slow movement condition,
were systematically varied in the length of segment T and evaluated with regard to their
predictive accuracy. Subsequently, the boundary Tend (see Figure 3) of segments with
the segment length that gave the highest prediction accuracy was systematically shifted,
leading simultaneously to (a) an offset δ of the segment as well as (b) to a further decrease in
segment length T corresponding to the step size of the shift of the boundary value (T − δ).
The predictive accuracy of the model was then re-evaluated with respect to the shift of the
segment boundary Tend.

3.2.1. Evaluation of Segment Length

As a first step in the evaluation of segmentation parameters, the length of sEMG data
segments with no offset (δ = 0) was varied between T = [0.2 s. . . 4.0 s] with a step width
of 0.2 s. With a segment length of (T=) 0.6 s the lowest prediction error (nMAE = 0.1532)
and thus the best prediction accuracy was achieved after training the FFNN (Figure 6).
Starting from this segment length, both increments and decrements of the segment length
T led to a deterioration of the prediction accuracy, corresponding to a prediction error
of (nMAE=) 0.1619 for the shortest segment length (T = 0.2 s) and a prediction error
of (nMAE=) 0.3481 for the widest segment length (T = 4.0 s) tested. This observation
persisted, even if the prediction accuracy was plotted separately based on the movement
speed by which exercises were performed (see Figure 6b). Thus, a segment length of (T=)
0.4 s resulted in the lowest prediction error (nMAE = 0.1535) for the slow condition and a
segment length of (T=) 0.6 s resulted in the lowest prediction error (nMAE = 0.1513) for
the fast condition. However, it can be observed that the prediction accuracy as a function of
motion speed deteriorated more strongly with a wider segment length when the exercises
were performed with a fast movement speed as compared to when performed with a slow
movement speed. This results in the highest prediction error, and thus the lowest prediction
accuracy, for a segment length of (T=) 4.0 s, for both the slow (nMAE = 0.3174) and fast
(nMAE = 0.3787) conditions.

Evaluation of the prediction errors for the training (nMAEtrain) and test (nMAE) data
sets as shown in Figure 6 makes clear that the chosen model structure tended to overfit at
larger segment lengths and without offsets, as the difference between the prediction errors of
the training nMAEtrain and test data sets nMAE starts to increase with increasing segment
length T. This effect can be attributed to the fact that with larger segment lengths T, the
number of total data samples per experiment decreased and the training data sets became
too small for the model to generalize.

3.2.2. Evaluation of the Segment Boundary Offset

Following the evaluation of the segment length, the shift of the segment boundary Tend
was assessed with respect to the prediction accuracy of the FFNN. A segment length of
(T=) 0.6 s was used as a basis, which in the previous performance evaluation provided the
lowest prediction error (nMAE) under consideration of the IEMG feature. Based on this
parameter combination, the segment length was successively decreased by shifting the
segment boundary Tend, introducing an offset δ between the predicted elbow-joint angle θ̂
and the segment boundary Tend, as well as a decrease in segment length (T − δ).
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Figure 6. Average prediction performance of FFNN models trained with different segment lengths
T using the IEMG feature with no offset δ and an overlap corresponding to a 100 Hz feature signal
frequency. (a) Mean absolute errors for elbow motion prediction based on different segment lengths
T = [0.2 s. . . 4.0 s] with a step size of 0.2 s. The different symbols depict the prediction error (nMAE)
using the test data set (black plus sign), the corresponding minimum (nMAEmin; white arrow) and
maximum (nMAEmax; black arrow) prediction errors, as well as the prediction errors for the training
data set (nMAEtrain; white plus sign). (b) Mean absolute errors as in (a), but separated based on slow
(purple bars) and fast (brown bars) movement speed condition. Minimum and maximum prediction
errors are depicted via symbols as described in the corresponding legend. (c) Normalized frequency
distribution of prediction errors using the IEMG feature for all segment lengths T (light gray bars)
and a segment length of (T=) 0.6 s (dark gray bars), which yielded the highest predictive accuracy
(dark gray color in (a)). (d–f) Exemplary plots of an experimentally recorded elbow-joint angle θ

(blue) and the corresponding model prediction θ̂ (orange) based on the IEMG feature with a segment
length of (T=) 0.6 s: (d) prediction with the highest prediction error (nMAEmax = 0.4384), (e) model
prediction closest to the mean prediction error (nMAE = 0.1534) and (f) model prediction with the
lowest prediction error (nMAEmin = 0.0449).

In a parameter variation, the segment boundary was shifted with a step size of 0.05 s
in the range of [0.05 s. . . 0.55 s], and the prediction accuracy of the model after training with
this feature combination was determined. The lowest prediction error (nMAE = 0.1496)
was achieved with a shift of the segment boundary (and thus an offset δ) of 0.3 s and a
resulting segment length of (T=) 0.3 s (Figure 7), which represents an improvement in the
prediction accuracy compared to no shift of the segment boundary Tend (Section 3.2.1).
However, when comparing the prediction performance based on the shift of the segment
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boundary Tend for the offsets δ and corresponding segment length T tested in Figure 7, there
is little difference in terms of the prediction accuracy, as prediction errors show only a
small variance (σ = 0.00825). It should be noted that with a smaller segment length T (and,
correspondingly, larger offset δ) the prediction error increased, resulting in a maximum
prediction error of (nMAE=) 0.1789 with an offset of (δ=) 0.55 s and a corresponding
segment length of (T=) 0.05 s. Examining the prediction accuracy with respect to the
training and test data sets shows that the difference between the prediction errors nMAE
and nMAEtrain is larger if smaller offsets are used; hence, larger segment lengths T led to a
stronger tendency of the model to overfit.

Figure 7. Average prediction performance of FFNN models trained with different offsets δ and
segment length T corresponding to a shift of the segment boundary Tend using the IEMG feature and
an overlap corresponding to a 100 Hz feature signal frequency. (a) Mean absolute errors for elbow
motion prediction based on different offsets δ = [0.05 s. . . 0.55 s] and corresponding segment lengths
T = [0.55 s. . . 0.05 s] with a step size of 0.05 s. The different symbols depict the prediction error (nMAE)
using the test data set (black plus sign), the corresponding minimum (nMAEmin; white arrow) and
maximum (nMAEmax; black arrow) prediction errors, as well as the prediction errors for the training
data set (nMAEtrain; white plus sign). (b) Normalized frequency distribution of prediction errors using
the IEMG feature for all offsets δ and corresponding segment lengths T (light gray bars) and an offset
of (δ=) 0.3 s and a segment length of (T=) 0.3 s (dark gray bars), which yielded the highest prediction
accuracy (dark gray color in (a)). (c–e) Exemplary plots of an experimentally recorded elbow-joint
angle θ (blue) and the corresponding model prediction θ̂ (orange) based on the IEMG feature with an
offset of (δ=) 0.3 s and a segment length of (T=) 0.3 s: (c) prediction with the highest prediction error
(nMAEmax = 0.3726), (d) model prediction closest to the mean prediction error (nMAE = 0.1497) and
(e) model prediction with the lowest prediction error (nMAEmin = 0.0526).
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3.3. Multi-Feature Sets

Based on the determination of single features and segmentation parameters that led to the
highest predictive performance of the model, a further step was taken to investigate whether
combinations of single features, via so-called multi-feature sets, led to a further improvement
in predictive performance. Hence, the IEMG feature that yielded the best predictive
performance of the model as a single feature was systematically combined in a forward
selection with the remaining features of the single-feature selection (see Section 3.1). In this
process, the segmentation parameters were chosen to correspond to the parameters that
provided the highest prediction accuracy in the segmentation parameter selection (δ = 0.3 s
and T = 0.3 s; see Section 3.2). Subsequently, based on the feature combination yielding
the highest prediction accuracy in each forward selection step, the number of features was
increased. This resulted in sets of twofold, threefold and fourfold multi-feature combinations,
which were evaluated regarding the predictive performance of the model based on the
mean absolute prediction error (Figure 8). Further, the TD feature set (including MAV, ZC,
WL and SSC features; [19,30,34–37]) was also tested using the segmentation parameters,
yielding the best predictive performance of the FFNN in Section 3.2 as a reference.

When comparing the predictive accuracy of the model for twofold multi-feature com-
binations (i.e., IEMG-SSC, IEMG-MNF and IEMG-ACT; Figure 8), the combination of an
integral-based and a frequency-domain feature (IEMG-MNF) resulted in the lowest prediction
error of the model (nMAE = 0.1262). In contrast, the feature combination of the integral-
based and event-based feature (IEMG-SSC) resulted in the highest prediction error of the
model (nMAE = 0.1428). It should be noted that the twofold multi-feature sets tested
generally resulted in an improvement of the predictive performance of the model compared
to the single IEMG feature with an offset of (δ=) 0.3 s and a segment length of (T=) 0.3 s as
described in the previous section (Section 3.2).

In the subsequent combinations of the IEMG-MNF feature to threefold feature sets
during forward selection, it was found again that a combination with the event-based feature
(IEMG-MNF-SSC) led to the lowest prediction performance (nMAE = 0.1310). However,
a combination with the domain knowledge-based feature (IEMG-MNF-ACT) led to a further
improvement in the prediction performance (nMAE = 0.1143, Figure 8) as compared to
the prediction performance based on twofold feature sets as described above.

Perhaps unsurprisingly, the combination of the IEMG-MNF-ACT feature set with
the event-based SSC feature, which already provided the worst prediction performance in
the previous forward selection steps, did not result in any further improvement of the
prediction error (nMAE = 0.1195). However, the prediction accuracy for this fourfold
multi-feature set (IEMG-SSC-MNF-ACT) still outperformed the accuracy of the FFNN model
trained with the commonly used TD feature set (nMAE = 0.1243, Figure 8) using the
segmentation parameters, yielding the best prediction accuracy as described in Section 3.2.
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Figure 8. Average prediction performance of FFNN models trained with different multi-feature combi-
nations using an offset of (δ=) 0.3 s, a segment length of (T=) 0.3 s and an overlap corresponding to
a 100 Hz feature signal frequency. (a) Mean absolute errors for elbow-motion prediction based on
twofold (orange), threefold (green), fourfold (red) feature combinations, and the TD feature set (yellow).
The different symbols depict the prediction error (nMAE) using the test data set (black plus sign), the
corresponding minimum (nMAEmin; white arrow), and maximum (nMAEmax; black arrow) prediction
errors, as well as the prediction errors for the training data set (nMAEtrain; white plus sign). (b) Nor-
malized frequency distribution of prediction errors for all multi-feature combinations (light gray bars)
and the IEMG-MNF-ACT feature (dark gray bars), which yielded the highest predictive accuracy
(dark green color in (a)). (c–e) Exemplary plots of an experimentally recorded elbow-joint angle θ (blue)
and the corresponding model prediction θ̂ (orange) based on the IEMG-MNF-ACT feature with an
offset of (δ=) 0.3 s and a segment length of (T=) 0.3 s: (c) prediction with the highest prediction error
(nMAEmax = 0.3376), (d) model prediction closest to the mean prediction error (nMAE = 0.1144),
and (e) model prediction with the lowest prediction error (nMAEmin = 0.0387).

4. Discussion

In this paper, various single features, combinations of single features and segmentation
parameters of sEMG data were evaluated with respect to the accuracy of a simple FFNN
model for the prediction of elbow-joint angles. It was shown that certain single features
provide higher model performance in terms of prediction accuracy than others (Section 3.1).
Thereby, the accuracy of the prediction also depends on the segment length T and the
offset δ (with respect to the predicted elbow-joint angle θ̂) of the segments from which
features are extracted (Section 3.2). By combining individual features into multi-feature
sets, the prediction accuracy can further be increased (Section 3.3). The sEMG features and
segmentation parameters found using the method described above outperform the TD
feature set commonly used in the literature in terms of predictive accuracy for the task at
hand. Further, sEMG signal features, such as SSC, could be identified, which might not be
suitable for the prediction of elbow-joint angles using FFNN, as they deteriorate predictive
performance when used in multi-feature sets (Figure 8).
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It should be noted, however, that within the procedure presented here, the selection
of features and parameters that provided the highest prediction accuracy was always
based on the previous selection step. For example, for the IEMG feature, which provided
the highest prediction accuracy in the single feature selection (see Figure 5), the optimal
segment length T (Figure 6), the segment offset δ (Figure 7), as well as the optimal additional
features for combination (IEMG-MNF-ACT; Figure 8) could be determined, but the validity
of those parameters for the other features considered here cannot be derived from this.
Furthermore, a statement about the prediction accuracy can only be made in connection
with the investigated experimental conditions and the architecture of the neural network
used. Thus, it cannot be excluded and is also plausible that, for example, other segment
lengths, for different features or motion speed paradigms than the ones used here might
provide better results in terms of prediction accuracy since they control, for example, for
low-pass-like features the smoothing of the signal as well as the frequency content of the
individual segments.

Nevertheless, the present evaluation shows that a prior feature and parameter selection
can provide better prediction accuracy with respect to limb movement prediction based
on sEMG data than by using feature sets that are commonly used in the literature. Thus,
when using the same segmentation parameters, the IEMG-MNF-ACT feature identified
here provided a higher prediction accuracy than the TD feature set (see Figure 8), which
was established for sEMG-based limb movement prediction in previous studies. Since
this multi-feature set is a combination of individual features from the time-, frequency-,
and domain-knowledge-based categories, it can be concluded that a selection of features
representing different sEMG signal properties can be beneficial in terms of the predictive
accuracy of a model. Still, the combination with features from other categories can also
worsen the prediction performance. For example, a combination of the IEMG-MNF-ACT
feature set with the SSC feature from the event-based category, which also had the lowest
prediction accuracy in the single feature selection, resulted in a slight deterioration of the
prediction performance of the model used here (see Figure 8). This is possibly due to the
fact that the number of signal slope changes, as represented by the SSC feature in a segment,
has little predictive power over the continuous waveform of a sEMG signal. Accordingly,
when selecting features, care should be taken to determine whether they encode relevant
signal properties.

Interestingly, with respect to the segmentation parameters yielding the highest predic-
tive accuracy for the IEMG feature (δ = 0.3 s, T = 0.3 s), it was found that the offset of the
segment and, thus, the time window for the prediction of the elbow-joint angle (δ̂) from
the sEMG data was outside the range of latency values of 50 to 100 ms reported in the
literature [28,29]. This latency, however, is attributed to the time constant of the muscle acti-
vation dynamics and therefore covers the time span from EMG onset to the onset of muscle
force and, consequently, to the onset of joint torque. However, besides the (biochemical)
time constant of the muscle activation dynamics, the offset δ also has to cover additional
time constants, for instance, of the biomechanical properties of the limb to generate move-
ment from torque. Additionally, during the experimental acquisition of the sEMG data,
additional time constants, such as those attributed to the slack of the retaining strap of
the measurement orthosis, were introduced. Latency measurements performed in our
laboratory with different measurement orthoses confirm this assumption (not published).

For the purposes of comparability of single features and multi-feature combinations as
well as segmentation parameters, the neural network architecture was fixed with respect to
the number of neurons involved. The predictive accuracy of different model architectures
was explicitly not investigated in this work. Furthermore, one network was trained for each
experimental condition and for each subject. For a further investigation of the predictive
ability with respect to limb movement based on sEMG data, it would accordingly be
interesting to investigate more complex model architectures and, based on larger data
sets, to evaluate these models based on their ability to generalize with respect to different
movement paradigms and/or multiple subjects. Furthermore, the features examined here
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represent only a small selection of possible features used in the literature. For a more
thorough investigation, the feature selection method used here could be extended with
other features, such as autoregressive coefficients, which potentially yield relevant information
for the prediction of limb movement based on sEMG data.

Author Contributions: Conceptualization, D.L., N.G. and A.S.; methodology, D.L., N.G., M.M. and
A.S.; software, D.L.; validation, D.L., N.G., H.G.M. and A.S.; formal analysis, D.L.; investigation,
D.L. and N.G.; data curation, N.G., M.M. and H.G.M.; writing—original draft preparation, D.L.;
writing—review and editing, H.G.M.; visualization, D.L.; supervision, N.G., H.G.M. and A.S.; project
administration, A.S.; funding acquisition, A.S. All authors have read and agreed to the published
version of the manuscript.

Funding: This work has been supported by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation)—ref. no. SCHN 1339/3-1, and in part by the research training group “Datan-
inja” funded by the German federal state of North Rhine-Westphalia, and by the Federal Ministry
of Education and Research (BMBF) within the project ITS.ML—ID 01IS18041 A. The publication
cost was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—
490988677—and the University of Applied Sciences Bielefeld.

Institutional Review Board Statement: The study was conducted according to the ethical guidelines
of the German Society for Psychology (DGPs) and the German Psychologists Association (BdP), and
approved by the Ethics Committee of the University of Bielefeld (EUB 2017-156 2 August 2017).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available because they are based on subject data that
should not be made generally available for ethical reasons.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

EMG electromyography
sEMG surface electromyography
TD time domain
FD frequency domain
FFNN feed forward neural network
RMS root mean square
MAV mean absolute value
ZC zero crossings
SSC slope sign changes
VAR variance
SD standard deviation
WL waveform length
WAMP Willison amplitude
IEMG integrated EMG
AR autoregressive coefficients
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Appendix A

Table A1. Overview of all subjects. Ages are given in whole years. All information is based on the
statements of the individual subject. Maxima are marked in bold and minima in bold and italic.

Age Sex Height in m Weight in kg

subject_20 23 female 1.64 68.00
subject_21 25 male 1.76 75.00
subject_22 25 male 1.90 85.00
subject_24 24 male 1.83 60.00
subject_25 25 - 1.93 85.00
subject_26 25 male 1.80 65.00
subject_28 22 male 1.83 73.00
subject_29 26 male 1.76 80.00
subject_30 25 male 1.90 130.00
subject_31 26 - 1.77 67.00
subject_32 29 male 1.78 110.00
subject_33 25 male 1.87 90.00
subject_34 23 male 1.75 63.00
subject_36 26 female 1.75 67.00
subject_37 29 male 1.84 70.00
subject_38 24 male 1.80 75.00
subject_39 24 male 1.86 82.00
subject_40 25 male 1.82 68.00
subject_41 23 male 1.67 69.00
subject_42 23 male 1.87 81.00
subject_43 22 male 1.76 58.00
subject_44 25 male 1.86 85.00
subject_45 34 male 1.90 90.00
subject_46 27 - 1.96 105.00
subject_47 24 male 1.91 86.00
subject_48 28 male 1.86 98.00
subject_49 22 male 1.89 85.00
subject_51 24 male 1.94 79.00
subject_52 32 male 1.90 74.00
subject_53 23 female 1.60 47.00

mean 25.27 - 1.82 79.00
standard deviation 2.76 - 0.09 16.46

Table A2. Listing of all experimental conditions per subject.

posture speed load
upper curls lower curls f ast slow 2 kg 4 kg

x - x - x -
x - x - - x
x - - x x -
x - - x - x
- x x - x -
- x x - - x
- x - x x -
- x - x - x
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