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Abstract: Community detection is a fundamental topic in network science, with a variety of appli-
cations. However, there are still fundamental questions about how to detect more realistic network
community structures. To address this problem and considering the structure of a network, we
propose an agglomerative community detection algorithm, which is based on node influence and the
similarity of nodes. The proposed algorithm consists of three essential steps: identifying the central
node based on node influence, selecting a candidate neighbor to expand the community based on the
similarity of nodes, and merging the small community based on the similarity of communities. The
performance and effectiveness of the proposed algorithm were tested on real and synthetic networks,
and they were further evaluated through modularity and NMI anlaysis. The experimental results
show that the proposed algorithm is effective in community detection and it is quite comparable to
existing classic methods.
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1. Introduction

Complex networks play an important role in representing complex systems in subject
areas such as social networks, biology, psychology, informatics, management, etc. [1].
Complex networks can be represented by a graph G = (V, E), where V and E represent the
set of nodes and edges in the network, respectively [2]. In real networks, nodes and edges
can represent various individuals and relationships. For example, identifying influential
nodes is one of the research hotspots in the study of complex networks, used to analyze
the network structure [3,4]. However, using only a group of influential nodes does not
enable one to grasp a network’s hidden information completely.The community structure
that exists in real networks can help us to analyze the network structure in depth [5]. It
is generally believed that community structure is a network subgraph with close internal
connections and sparse external connections, which may have a certain independent
structure or specific function [6]. In reality, community detection is useful in solving
numerous problems affecting human communities, such as analyzing networks of social
opinion [7], recommending products for customers [8], finding users displaying malicious
activity to protect system security [9], identifying influential nodes [10,11], and so on.

The question of how to detect a community is an important issue that attracts re-
searchers from all over the world. There are signs of great progress in the research on
community detection in complex networks, including GN [12], LPA [13], EM [14], and so
on. GN is based on edge betweenness; LPA is based on label propagation; and EM is a
clustering algorithm. However, these algorithms have certain limitations. The accuracy
of the GN algorithm is high, but its complexity costs are much higher. LPA runs quickly,
but its accuracy is unstable. EM displays a better ability to cluster, but it is unable to detect
highly modular communities. Therefore, it is necessary to detect communities accurately
and stably.
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To address this problem, we propose a community detection algorithm named NINS
(a community detection algorithm based on node influence and the similarity of nodes). In
this paper, the NINS algorithm consists of three parts: identifying the central node, selecting
a candidate neighbor to expand the community, and merging the community. The proposed
algorithm is stable, and can detect modular and realistic communities. Experiments on
real and LFR networks show that the proposed NINS is effective and quite comparable to
existing community detection algorithms.

The structure of this paper is as follows: Section 2 reviews the related work. In
Section 3, the proposed algorithm is introduced, including the detailed steps of the algo-
rithm, complexity analysis, and a description of the implementation process. The network
data descriptions and numerical results based on various methods applied to real and
synthetic networks, respectively, are shown in Section 4. Moreover, the experimental results
are discussed in Section 5. Finally, our conclusions are presented in Section 6.

2. Related Work

Community detection is a hot topic in network science. The earliest study on this
subject was reported in 1970 [15]. Next, Girvan and Newman proposed the network
community structure [12]. From that time until now, research on community detection
has gradually developed. It has been proven that community detection is an NP-hard
problem [16,17]. Some classic algorithms are listed in Table 1, where N is the number of
nodes in the network, M is the number of edges in the network, and m is the number
of iterations.

Table 1. Comparison of some classic community detection algorithms.

Name Classification Parameters Complexity Pros and Cons

GN [12] divisive - O(NM2)
High modularity

but high complexity

LPA [13] agglomerative m O(N)
Fast but needs the exact

algorithm iteration number m

EM [14] agglomerative m O(mN3)
High complexity and

low modularity

Louvain [18] agglomerative - O(NlogN)
Higher modularity

but unstable

From the perspective of detecting community structure, some algorithms (e.g., GN [12],
Louvain [18], and CDIA [19]) detect non-overlapping communities, where each node only
belongs to one community; other algorithms (e.g., CPM [20] and ONES [21]) can detect
overlapping communities, where one node can belong to two or more communities. From
the perspective of hierarchical clustering, these types of algorithms can be divided into
two categories [16,22]. Some of them are agglomerative algorithms, where each node
assigns as a community and iteratively merges the smaller communities according to
their similarities [18,23,24]. Other hierarchical clustering algorithms are divisive methods,
where the network is taken as a community and is divided into some smaller communities.
GN [12] is the most popular divisive algorithm, assessing the central edges based on their
shortest path centrality. However, it only accurately detects small or medium networks of
10,000 nodes at most. Thus, Arasteh et al. [25] proposed a fast divisive algorithm based
on edge degrees.Chen et al. [26] detected communities in complex networks using an
edge-deleting algorithm with restrictions.

From another perspective, the label propagation algorithm (LPA) [13] is also a famous
community detection algorithm. In LPA, each node has a unique label, which is updated
based on the most common labels among its neighbors. The complexity of LPA is O(N).
The convergence of LPA is provable mathematically but it requires the exact algorithm
iteration number, which is always dependent on the network parameters (e.g., node and
edge numbers) [27]. In 2019, Basuchowdhuri et al. [27] proposed a community detection
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algorithm named LINCOM, which involves two steps: selecting the broker node by means
of an objective function and merging this node into the community with the majority of
its neighbors.

From the perspective of deep learning, Al-Andoli et al. [28] introduced a deep-learning
algorithm for community detection. To decrease the trainable parameters needed for the
deep-learning model, they first divided the network into some smaller parts and proposed
a novel similarity constraint function that improved the algorithm’s effectiveness. Agrawal
and Patel [29] proposed a community detection algorithm named SAG based on topological
structure and node attributes. Tsitseklis et al. [30] proposed a scalable community detection
method for complex data graphs via hyperbolic network embedding and graph databases.
He et al. [31] used the modularity function to sample node sequences and learn node
representation by using the skip-gram model to detect communities.

In recent years, some other algorithms have been proposed to detect communities.
For example, Feng et al. [32] proposed a community detection algorithm based on node
betweenness and structure similarity. Majid Arasteh [33] proposed a gravity algorithm to
detect the communities of large-scale networks; the proposed algorithm runs quickly but
its accuracy is not ideal. Pourabbasi [34] proposed a new single-chromosome evolutionary
algorithm for community detection in complex networks by combining content and struc-
tural information. Newman [35] proposed an information-theoretic method for discovering
the building blocks in specific networks to show the consistency of community structure
in complex networks. Cauteruccio et al. [36] proposed an algorithm to identify virtual
communities based on user stereotypes. Mengoni et al. [37] proposed an algorithm to iden-
tify hidden communities based on history analysis and session analysis of co-occurrence
of activities.

In a bid to further support and enhance the study, discussion, and understand-
ing of community detection, systematic literature reviews have been performed to an-
alyze community detection approaches. Naik [38] surveyed parallel and distributed
paradigms for community detection in social networks. Yassine et al. [39] reviewed com-
munity detection methods using social network analysis in online learning environments.
Attea et al. [40] performed a review of heuristics and metaheuristics for community de-
tection. Huang et al. [41] summarized the community detection methods in multilayer
networks. Calderer [42] reviewed community detection in large-scale bipartite biological
networks. Gasparetti et al. [43] reviewed community detection in social recommender
systems. Rosvall [44] provided a focused review of community detection methods with dif-
ferent motivations, including the cut-based perspective, clustering perspective, stochastic
equivalence perspective, and dynamical perspective. Dao et al. [45] conducted a compara-
tive evaluation of community detection methods.

3. Algorithm

In this paper, based on node influence and the similarity of nodes, an agglomerative-
based community detection algorithm named NINS is proposed to detect modular commu-
nities by producing groups of densely connected nodes. The proposed algorithm works
on unweighted and undirected networks and detects non-overlapping communities, the
numbers of which do not need to be set before the execution of the algorithm. NINS consists
of the following three essential steps: identifying the central node based on node influ-
ence, selecting a candidate neighbor to expand the community based on the similarity of
nodes, and merging the small community based on the similarity of communities. Table 2
summarizes the symbols and notations used in the paper.
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Table 2. Symbols and variables used herein.

Notation Description

G a graph represents network
V set of nodes
E set of edges

Γ(i) neighbor set of node i
ki degree of node i
Sij the similarity of nodes i and j

aveS(., i) the average similarity of node i with its neighbors
Γ(i) ∩ Γ(j) common neighbor set of node i and j

S maximum number of nodes in the small community
Ci the i-th community

nq
the number of nodes that belong to the community Cj

and are connected to the community Ci
N number of nodes in the network
M number of edges in the network
t number of the small community
〈k〉 average degree of node
m number of iterations
〈d〉 average distance of nodes
D network diameter
C clustering coefficient of the network
r assortative coefficient of the network
Q modularity

aij
represents whether nodes i and j are connected or not: if nodes i and j

are not connected, aij = 0; otherwise, aij = 1

δ(Ci, Cj)
represents whether nodes i and j are in the same community or not:

If δ(Ci, Cj) = 1, Ci = Cj; if δ(Ci, Cj) = 0, Ci 6= Cj

3.1. Three Essential Steps of the Algorithm
3.1.1. Step 1: Identifying the Central Node Based on Node Influence

The central node has the highest influence in the network, which can attract its
neighbors. In the network, the greater the degree of a node, the lesser it can be affected
by one of its neighbors. For example, in the rumor-spreading process, the more neighbors
a node has, the lesser it will be affected/influenced by one of its neighbors. Thus, 1/k j
is used to represent node i’s influence on its neighbor j. The influence of node i can be
calculated as the sum of the influence on its neighbors:

I(i) = ∑
j∈Γ(i)

1
k j

(1)

where Γ(i) is the neighbor set of node i and k j is the degree of node j.
In step 1, we sort the nodes by node influence and choose the first node as the central

node of the community.

3.1.2. Step 2: Expanding the Community Based on the Similarity of the Nodes

It is known that nodes within a community are more closely connected than those
outside a community. In step 2, the similarity of the nodes and the average similarity of
each node with its neighbors are used to select a candidate neighbor, which is used to
expand the community. The AA [46] algorithm is selected to measure the similarity of
the two nodes, which can better reflect the degree of node connection than the other node
similarity algorithm based on local structure information:
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S(i, j) = ∑
t∈Γ(i)∩Γ(j)

1
log kt

(2)

where t is the common neighbor of nodes i and j.
The average similarity is proposed as a measure to reflects the average similarity of

each node with its neighbors, which can be calculated as follows:

aveS(., i) =
1
ki

∑
j∈Γ(i)

S(i, j) (3)

In step 2, node i’s neighbor j is added to the community when aveS(., j) < S(i, j). The
reason for this is that the similarity among nodes in the same community is larger than
that of others that do not belong to that community. A higher similarity would ensure
that the community consists of nodes with a more dense connection. The central node’s
neighbors may not always belong to the same community as it is the node with the highest
similarity. The similarity of connected nodes in the same community is generally larger
than the average similarity.

3.1.3. Step 3: Merging Small Communities Based on Community Similarity

In step 3, the community Ci with the maximum number of S nodes would be selected
as a small community. It is known that the nodes within the same community are more
closely connected. Therefore, it is obvious that the small community is likely to merge
with the community with the highest similarity. Modularity maximization and label
propagation are two methods used as community similarity measures, which are often
used in optimization methods for detecting community structures in networks. However,
it has been shown that modularity suffers from a resolution limit [47]; therefore, it is unable
to detect small communities [46]. Thus, label propagation [13] is introduced to measure the
similarity between small communities and the other communities:

S(Ci, Cj) = nq(q ∈ Cj ∩ Γ(t, t ∈ Ci)) (4)

where nq represents the number of nodes that belong to the community Cj and are connected
to community Ci.

3.2. The Proposed Algorithm and Complexity

Firstly, the proposed algorithm calculates node influence and chooses the most influen-
tial node as the central node. Then, it selects a candidate neighbor to expand the community
based on the similarity of nodes and average similarity (if the neighbor has one neighbor, it
should be merged into the community). The process runs iteratively. Next, according to
the number of nodes in the community, the initial community is divided into small and
large communities. Finally, the small community is merged to the community with the
highest number of neighbors. The algorithm is stopped when the number of nodes of each
community in the network is greater than S. In this paper, S = 3. The pseudo-algorithm
of NINS is shown in Algorithm 1. A real network, Karate [48], was selected to illustrate
the algorithm.

The NINS algorithm takes O(N〈k〉) to calculate node influence and repeats this process
N times in steps 1 and 2. According to the changes in the network, choosing the central
node and selecting a candidate neighbor at each iteration takes O(1 + log N). In step 3,
beginning with t small communities and merging these small communities into other
communities (t ≤ N) takes O(t〈k〉) time. The algorithm does not stop until the node
number of communities is larger than S.

The complexity cost of the proposed algorithm is O(N〈k〉+ N(1 + log N) + St〈k〉).
When nlogn > M, the complexity of NINS is O(NlogN); otherwise, it is O(M). The
complexity cost of GN [12] is O(NM2), that of Louvain [18] is O(N log N), LPA [13] is
O(N), CDIA [19] is O(M), and EM [14] is O(mN3), where m is the number of iterations.
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Algorithm 1: NINS Algorithm.
Input: Network G = (V, E), maximum number of nodes in the small community S
Output: communities
for each i in G.nodes do

Calculate I(i) by Equation (1)
end
Sort in descending order (V,key = I(i))
for each i in G.nodes that does not belong to a community do

choose i with the highest influence as the central node
for each j in i.neighbors that does not belong to a community do

Calculate the nodes similarity S(i, j) by Equation (2)
Calculate average nodes similarity aveS(., j) by Equation (3)
if node j has one neighbor or S(i, j) > aveS(., j) do

Merge node j into the community Ci that node i belongs to
for each b in j.neighbors that does not belong to a community do

iterate 8–12
end

end
end

communities.append(Ci)
end
for each Ci in communities do

if n(Ci) ≤ S do
Calculate similarities of Ci with its neighbor communities by Equation (4)

Merge Ci into the community with the highest similarity with Ci
Remove Ci from communities and update communities

end
end

3.3. Example of the Algorithm

A real network, Karate, was selected to illustrate the algorithm. The network of Karate
is shown in Figure 1. The central node was first selected by sorting node influence based
on Equation (1). Node 34 was the most influential node and its influence value was 5.767.
Next, the similarity of the node and its neighbors was calculated. Then the community was
expanded. The initial communities are shown in Table 3. Small and large communities
were distinguished based on whether the node number of a community was greater than
three or not. If the community node number was greater than three, it was considered
a large community; otherwise, it was considered a small community. The initial results
showed two small communities [10,17]. For node 10, only node 34 was its neighbor. It
should thus be merged into the community C1, to which node 34 belongs. For node 17, its
neighbors were node 6 and node 7. Both nodes 6 and 7 were in the community C2, and
node 17 would be merged into community C2 accordingly. The final community result of
Karate offered by the proposed algorithm is shown in Figure 2, which was the same as the
real community structure. It is worth noting that the size of nodes in the figure is positively
correlated with node influence; that is, the greater influence of the node, the larger the node
in the figure.

Table 3. The initial community structure of Karate.

Initial Result Nodes of the Initial Community

C1 34, 9, 31, 33, 24, 28, 34, 15, 16, 19, 21, 23, 27, 29, 30, 32, 25, 26
C2 1, 2, 3, 4, 14, 5, 6, 7, 8, 11, 12, 13, 18, 20, 22
C3 10
C4 17
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Figure 1. The Karate network.
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Figure 2. The final community structure of Karate according to the NINS algorithm.

4. Experiment

In this section, first, we describe the datasets used in our experiments. Then, we
explain the evaluation criteria, referred to as modularity Q [23] and normalized mutual
information (NMI) [49]. The results are explained at the end.

4.1. Data Description

To test the performance of NINS, seven real networks with different sizes were used for
comparison with several classic methods. Dolphin [50] is a social network of 62 dolphins.
Karate [48] is a real social network containing the network of friendships among the
34 members of a karate club at a US university. Football [12] is a network of American
football games among Division IA colleges during the regular season of fall 2000. Course
registration [19] is a record of college students at Northeastern University. NS [51] is a
co-authorship network of scientists working on network science. Power [52] is the power
grid of the western United States. Router [53] is a symmetrized snapshot of the structure of
the Internet at the level of autonomous systems. Table 4 summarizes the key properties of
the selected datasets.
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Nine LFR networks [54] were generated and used to test the performance of NINS.
The mixed parameter of the fixed network was 0.5, and the size of the community was
minc = 10 and maxc = 20. The nodes of these LFR networks were 1000–9000, respectively.

Table 4. The basic topological features of five real networks.

Networks N M 〈k〉 〈d〉 D C r

Dolphin 62 159 2.5645 3.3570 8 0.2590 −0.0436
Karate 34 78 4.5882 2.4082 5 0.57.6 −0.4756

Football 115 613 10.6609 2.5082 4 0.4032 0.1624
Course registration 47 125 5.3191 3.2812 7 0.4883 0.1354

NS 379 914 4.8232 6.0419 17 0.7412 −0.0817
Power 4941 6594 2.6691 18.9892 46 0.0801 0.0035
Router 5022 6258 2.4922 6.4488 15 0.0116 −0.1384

4.2. Evaluation Criterion

The modularity Q [23] was used as one of the evaluation criteria to compare the
performance of NINS with different algorithms on the considered real datasets.

Q =
1

2M ∑
i 6=j

(aij −
kik j

2M
)δ(Ci, Cj) (5)

where −1 ≤ Q ≤ 1; M is the number of edges, aij represents whether nodes i and j are
connected or not. If they are not connected, aij = 0; otherwise, aij = 1. Ci is the community
that node i belongs to. δ(Ci, Cj) represents whether nodes i and j are in the same community
or not. If δ(Ci, Cj) = 1, this means that nodes i and j are in the same community, that is,
Ci = Cj; if δ(Ci, Cj) = 0, Ci 6= Cj.

The normalized mutual information (NMI) [47] was the other evaluation criterion
used to determine the performance of the proposed NINS. It can be calculated as follows:

NMI(A, B) =
−2 ∑CA

i=1 ∑CB
j=1 Nijlog(

Nij N
Ni Nj

)

∑CA
i=1 Nilog(Ni

N ) + ∑CB
j=1 Njlog(

Nj
N )

(6)

where A is the real partition, B is the detected partition, CA is the number of real communi-
ties, CB is the number of detected communities, Nij represents the number of nodes shared
by real community i and the detected community j, the number of nodes is denoted as N,
Ni is the sum over row i of matrix Nij, and Nj is the sum over column j of matrix Nij.

4.3. Experimental Performance of NINS
4.3.1. Experiment on Real Networks

The proposed algorithm was compared with several classic algorithms in seven real
networks in terms of modularity Q and runtime. The results of the proposed NINS
algorithm are shown in Table 5. For the Karate, Dolphin, Football and Course registration
networks, the community results of the proposed algorithm are shown in Figures 2–5,
respectively. The greater the influence of the node, the larger the node in the figure.

To verify the performance of NINS, comparison experiments were conducted with
five different algorithms in five real networks. The modularity and runtime of six methods
in five real networks are shown in Figures 6 and 7, respectively. As shown in Figure 6,
the performance of the proposed NINS modularity was better than that of LPA [13] and
EM [14] in five real networks, close to that of CDIA [19], and lower than that of GN [12] and
Louvain [18]. As shown in Figure 7, the time complexity of the proposed NINS was better
than that of the GN and EM algorithms, and close to that of the Louvain, LPA, and CDIA
algorithms. The NMI of the communities found in the Karate network determined using
our method was 1, that of GN was 0.0819, Louvain was 0.6782, LPA was 0.4213, CDIA
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was 0.8372, and EM was 0.8372. The results obtained for the real networks indicate hat the
proposed NINS is effective in community detection and it is quite comparable to existing
classic methods.

Table 5. The experimental results derived from performing NINS on real networks.

Networks Q Runtime(s)

Dolphin 0.4707 0.01
Karate 0.3715 0.007

Football 0.5684 0.095
Course registration 0.5005 0.012

NS 0.7774 0.092
Power 0.7586 3.4076
Router 0.8073 1.5912
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Figure 6. The modularity of NINS and five classic algorithms in five real networks.

Two large networks(Router and Power) were selected to verify the performance of
NINS, along with three different algorithms (LPA [13], EM [14], and Louvain [18]). The
results of the three classic algorithms are shown in Table 6. As shown in Tables 5 and 6, it
is obvious that the modularity of Louvain was higher than that of NINS, but its runtime
was higher than that of NINS; the runtime of LPA was lower than that of NINS, but its
modularity was lower than that of NINS; the modularity and runtime of EM were the
worst. The results obtained in large real networks also indicate that NINS is effective in
community detection and it is quite comparable to existing classic methods.

Table 6. The experimental results obtained using three classic methods in large real networks.

Networks Q(LPA) Runtime Q(EM) Runtime Q(Louvain) Runtime

Power 0.5948 0.1753 0.2093 71.8072 0.9319 3.3282
Router 0.3715 0.6967 0.0846 44.14 0.894 2.7594
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Figure 7. The run-time of NINS and five different algorithms in five real networks.

4.3.2. Experiment on LFR Benchmark Networks

To verify the performance of NINS, comparison experiments were conducted with
three classic algorithms (LPA [13], EM [14], and Louvain [18]) in nine LFR networks. Due
to the high complexity of GN [12], we did not choose GN as a competitor in this section.
The NMI and runtime of four methods in nine LFR networks are shown in Table 7 and
Figure 8, respectively. A higher NMI value reflects better performance by the algorithm,
which indicates the detection of a more realistic community.

As shown in Table 5, the performance of the proposed NINS was better than that of
the other three algorithms when it comes to the detection of realistic communities. As
shown in Figure 8, the runtime of the proposed NINS was close to that of the Louvain
algorithm with the increase in the number of nodes, which is better than the EM algorithm
but worse than the LPA algorithm. The results obtained in LFR networks also indicate that
the proposed NINS is effective and quite comparable to existing classic methods.

Table 7. The NMI of four methods in nine LFR networks.

Networks LPA Louvain EM NINS

LFR-1000 0.99519 0.90853 0.26917 0.99546
LFR-2000 0.99912 0.8901 0.23378 0.99582
LFR-3000 0.99818 0.87236 0.22015 0.99915
LFR-4000 0.99488 0.0.85703 0.20711 1
LFR-5000 0.99701 0.8473 0.20171 1
LFR-6000 0.99664 0.83594 0.19725 0.99973
LFR-7000 0.9975 0.79139 0.189 0.99978
LFR-8000 0.9986 0.83138 0.18918 0.99937
LFR-9000 0.99854 0.83057 0.18648 1
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Figure 8. The runtime of NINS and three classic algorithms in LFR networks.

5. Discussion

There are some algorithms that are similar to our method. These algorithms all include
identifying the central node, expanding communities, and merging small communities,
but the specific methods are different. For example, reference [32] proposes a community
detection algorithm that chooses central nodes based on the betweenness and average
betweenness, and expands the community by adding the node into the community to
which its most similar neighbor belongs.In general, measuring the influence of nodes using
betweenness does involve a high time complexity, as well as a low accuracy. The sum
of a node’s influence on its neighbors better reflects a node’s influence. The similarity of
connected nodes in the same community is generally larger than the average similarity.
Thus, the NINS algorithm proposed in this paper first identifies the central node by cal-
culating the influence of each node, and then expands the community by computing the
similarity of nodes and average similarity, and thereafter merges the small communities
into the community with the highest similarity. The complexity of NINS is smaller than the
algorithm proposed in [32].

Comparing the experiments on the Karate, Dolphin, and Football networks, where
the networks represent real communities, the NMI values of the proposed NINS and the
algorithm proposed in [32] are (1, 0.2767), (0.603, 0.4699), and (0.8921, 0.8677), respectively;
the modularity values of the proposed NINS and the algorithm proposed in [32] are (0.3715,
0.2018), (0.4907, 0.4346), and (0.5684, 0.5857), respectively. The proposed NINS algorithm
performs better than the algorithm proposed in [32] in the detection of more realistic and
modular communities.

The performance and effectiveness of the proposed algorithm were tested on real
and synthetic networks. First, the proposed algorithm was compared with five different
algorithms in five small real networks based on modularity and runtime. As shown in
Figures 6 and 7, the modularity of the proposed NINS was better than that of LPA [13] and
EM [14], close to that of CDIA [19], and lower than that of GN [12] and Louvain [18]. The
time complexity of the proposed NINS was better than that of the GN and EM algorithms,
and close to that of the Louvain, LPA, and CDIA algorithms. Next, two large real networks
were selected to test the performance of NINS. As shown in Table 6, the modularity of
NINS was higher than that of LPA and EM but lower than that of Louvain. The runtime
of NINS was better than that of EM and Louvain but worse than that of LPA. Finally, the
proposed algorithm was compared with three different algorithms in nine LFR networks
based on NMI and runtime. As shown in Table 7 and Figure 8, NINS was effective in
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detecting more realistic communities when compared with three classic methods (Louvain,
EM, and LPA). Although inferior to LPA in terms of time complexity of LPA, it was also
quite competitive. In general, the experimental results show that the proposed algorithm is
effective in community detection and it is quite comparable to existing classic methods.

6. Conclusions

In this paper, considering node influence and the similarity of nodes, we propose
a community detection algorithm named NINS. The proposed algorithm detects non-
overlapping communities in unweighted and undirected networks. NINS consists of the
following three essential steps: first identifying the central node based on node influence,
selecting a candidate neighbor to expand the community based on the similarity of nodes,
and then merging the small communities into the community with the most similarity.
We compared the proposed algorithm with several classic algorithms in five small real
networks and two large real networks, analyzing their modularity and runtime. To show the
algorithm’s performance and efficiency in networks that have a real community structure,
the proposed algorithm was compared with three different algorithms in nine LFR networks,
with 1000–9000 nodes, respectively. The results show that NINS performs well in detecting
more realistic communities, with a lower computational cost.

Furthermore, during the process of detecting communities, the influential nodes can
be obtained, which is a great benefit for better understanding the network. At present, the
algorithm detects only non-overlapping communities. It cannot detect overlapping com-
munities. In the future, we will pay attention to the detection of overlapping communities.
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