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Abstract: In this paper, we studied the continuous dependence result for the Boussinesq equations.
We considered the case where Ω was a bounded domain in R2. Temperatures T and C satisfied
reaction boundary conditions. A first-order inequality for the differences of energy could be derived.
An integration of this inequality produced a continuous dependence result. The result told us that the
continuous dependence type stability was also valid for the Boussinesq coefficient λ of the Boussinesq
equations with reaction boundary conditions.
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1. Introduction

Recently, many researchers have began to study the results of continuous dependence
for different types of constructive coefficients. These stabilities are usually reffered to as
structural stability. Unlike the studies of the traditional stability, they do not focus on
the change of initial data, and they mainly focus on the change of the model itself. Let
us introduce some papers explaining the nature of this structural stability. Ames and
Straughan in their monograph [1] explained the the natural of the stability. In continuum
mechanics, it is very important to establish the structural stability for different models. For
example, in [2], the authors obtained some results about the structural stability for different
equations and showed the importance of this stability. It is meaningful to discuss structural
stability, for we wonder if a tiny variation in the coefficient may lead to a sharp change in
the solution. What is more is that many errors exist in each step of establishing a model.
We want to know whether the errors will affect the correctness of the model. The study of
the structural stability can solve this problem.

Many papers in the literature have studied the behavior of solutions of fluid equations
in porous media. In the book of [3], some models in porous media were introduced in
detail and their properties were studied. In paper [4], the authors studied the spatial
behavior of the solution for a class of Brinkman and Forchheimer-type equations in porous
media, and they obtained results for the spatial decay estimates of the solutions. Some
recent research results on the structural stability of fluid equations in porous media can be
observed in [5–15]. For a more detailed understanding of the structural stability, readers
should refer to [16–23]. In these papers, the fluid models were widely studied. Other
studies about the stability for wave equations may be found in [24–33].

The studies of the structural stability are famous for the Brinkman, Forchheimer and
Darcy equations in porous media. Little attention has paid to the study of the Boussinesq
equations. The nonlinear term in the Boussineq equations is different from the Brinkman
and Forchheimer-type equations. The methods used in previous cannot be applicable. The
Boussinesq equations have many applications in reality. We want to know if a small error
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can cause a big perturbation of the solution. What is more is that the problem we studied
in this paper has the same nonlinear item, ujui,j ,as the Navier–Stokes equation; thus, the
method proposed in this paper can be useful in studying the properties of the solution of
the Navier–Stokes equation. In this sense, our paper is interesting and involved. In [34],
the authors studied the Boussinesq equations. They obtained structural stability results
for the constructive coefficient. The region they discussed was a bounded region in R2.
In [22], Liu studied the same equations and obtained a result of structural stability. They
considered the same problem as [34], but the region they discussed was a bounded region
in R3. The result of the the continuous dependence type was obtained for the Boussinesq
coefficient λ. In this paper, we want to continue to study the continuous dependence for
these equations in a bounded domain in R2. We suppose that temperatures T and C satisfy
the reaction boundary conditions. Under these conditions, we cannot obtain the bounds for
T and C, and the methods proposed in [22,34], which are based on the maximum bounds
of T and C, cannot be used in the present paper. The main difficulty is how to tackle the
convection terms. Additionally, the boundary conditions are different from [22,34]. It is
difficult to deal with the terms on the boundary. With the aid of the L4 bounds for T and
C and some useful inequalities, we can overcome this difficulty. In our opinion, we can
overcome this difficulty and obtain the bound for

∫ t
0

∫
Ω ui,jui,jdxdη by using the methods

proposed by the paper in the literature. Using these methods, we cannot obtain the bound
for
∫

Ω ui,jui,jdx. The biggest innovation of this paper is that we follow a new method to
obtain the bound for

∫
Ω ui,jui,jdx. The energy method is widely used in these studies.

In this paper, the comma is used to denote partial differentiation. The symbol ui,k

denotes ∂ui
∂xk

. The repeated Latin subscripts denote summation. Hence, ui,i =
2
∑

i=1

∂ui
∂xi

, and

dx = dx1dx2.
The fundamental model we study is based upon the equations of balance of mo-

mentum, balance of mass, conservation of energy and conservation of salt concentration
(see [34]). Let (ui, T, C, p) denote velocity, temperature, salt concentration and pressure
in Ω, where Ω is a bounded star-shaped domain in R2. We will study the following
Boussinesq equations (see [22]).

∂ui
∂t
− ∆ui + λuj

∂ui
∂xj

+ giT − hiC +
∂p
∂xi

= 0, in Ω× [0, τ],

∂ui
∂xi

= 0, in Ω× [0, τ],

∂T
∂t

+ ui
∂T
∂xi

= ∆T, in Ω× [0, τ],

∂C
∂t

+ ui
∂C
∂xi

= ∆C + LT − kC, in Ω× [0, τ].

(1)

In Equation (1), gi and hi denote gravity functions. For the sake of simplicity, we
provide bounds for gi and hi: | g |= (gigi)

1
2 ≤ 1 and | h |= (hihi)

1
2 ≤ 1. ∆ denotes

the Laplacian operator. L and k are non-negative coefficients. λ denotes the Boussinesq
coefficient. τ is a nonnegative constant. Equation (1) follows in practice by employing a
Boussinesq approximation, which accounts for variable C, allowing the incompressibility
condition to hold (see [32,34]).

The following boundary conditions are satisfied:

ui = 0,
∂T
∂n

= k1T,
∂C
∂n

= k2C, on ∂Ω× [0, τ], (2)

for the prescribed positive reaction boundary coefficients k1 and k2, and ni is the unit-
outward normal. We impose the following conditions on t = 0:

ui(x, 0) = fi(x), T(x, 0) = T0(x), C(x, 0) = C0(x), in Ω, (3)
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where fi, T0 and C0 are prescribed functions.
The structure of the article is as follows. In Section 2, some lemmas will be obtained.

In Section 3, the main result of this paper will be obtained. In the last Section, some
conclusions are provided.

2. Some Important Bounds

In this section, we will obtain some important bounds that will be used in proving our
main results.

Lemma 1. For an arbitrary differentiable function H = H(x, t), we have the following estimates:

∫
∂Ω

H2dS ≤
[

2
m

+
2d2ε0

m2

] ∫
Ω

H2dx +
1

2ε0

∫
Ω

H,i H,idx, (4)

where m and d are positive constants, and ε0 is a positive constant.

Proof. From the divergence theorem, we have the following.∫
∂Ω

H2x · −→n dS =
∫

Ω
div(H2x)dx = 2

∫
Ω

H2dx + 2
∫

Ω
H(x · ∇H)dx.

Since Ω is a strictly convex domain, we set the following.

m = min
∂Ω

xini > 0, d2 = max
Ω

xixi.

We have the following.

m
∫

∂Ω
H2dS ≤

∫
∂Ω

H2x · −→n dS ≤ 2
∫

Ω
H2dx + 2

∫
Ω

H(x · ∇H)dx.

We can easily obtain the following.

∫
∂Ω

H2dS ≤
[

2
m

+
2d2ε0

m2

] ∫
Ω

H2dx +
1

2ε0

∫
Ω

H,i H,idx.

The proof is complete.

Lemma 2. For temperature T and concentration C, we have the following estimates:∫ t

0

∫
Ω
(T2 + C2)dxdη ≤ k1(t), (5)

and the following is the case: ∫ t

0

∫
Ω
(T,iT,i + C,iC,i)dxdη ≤ k2(t), (6)

where k1(t) and k2(t) are positive functions defined later.

Proof. Multiplying (1)3 by 2T and integrating over Ω× [0, t], we have the following.∫
Ω

T2dx + 2
∫ t

0

∫
Ω

T,iT,idxdη ≤
∫

Ω
T2

0 dx + 2k1

∫ t

0

∮
∂Ω

T2dSdη. (7)

We can also obtain the following.

∫
Ω

C2dx + 2
∫ t

0

∫
Ω

C,iC,idxdη ≤
∫

Ω
C2

0dx +
L2

2k

∫ t

0

∫
Ω

T2dxdη + 2k2

∫ t

0

∮
∂Ω

C2dSdη. (8)
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Combining (7) and (8), we obtain the following∫
Ω
(T2 + C2)dx + 2

∫ t

0

∫
Ω
(T,iT,i + C,iC,i)dxdη ≤

∫
Ω
(T2

0 + C2
0)dx

+
L2

2k

∫ t

0

∫
Ω

T2dxdη + 2
∫ t

0

∮
∂Ω

(k1T2 + k2C2)dSdη.
(9)

Using (4) and choosing ε0 = 2k1, we have the following.

2k1

∮
∂Ω

T2dS ≤
[

2
m

+
4d2k1

m2

] ∫
Ω

T2dx +
1
2

∫
Ω

T,iT,idx. (10)

Similarly, we can obtain the following.

2k2

∮
∂Ω

C2dS ≤
[

2
m

+
4d2k2

m2

] ∫
Ω

C2dx +
1
2

∫
Ω

C,iC,idx. (11)

Inserting (10) and (11) into (9), we have the following.∫
Ω
(T2 + C2)dx +

1
2

∫ t

0

∫
Ω
(T,iT,i + C,iC,i)dxdη ≤

∫
Ω
(T2

0 + C2
0)dx

+ m1

∫ t

0

∫
Ω
(T2 + C2)dxdη,

(12)

with m1 = max
{

L2

2k + 2
m + 4d2k1

m2 , 2
m + 4d2k2

m2

}
.

An integration of (12) provides the following.∫ t

0

∫
Ω
(T2 + C2)dxdη ≤ em1tt

∫
Ω
(T2

0 + C2
0)dx = k1(t). (13)

An insertion of (13) into (12) provides the following.∫ t

0

∫
Ω
(T,iT,i + C,iC,i)dxdη ≤ 2

∫
Ω
(T2

0 + C2
0)dx + 2m1k1(t)

= k2(t).
(14)

Lemma 3. We suggest that ui is a solution of Equation (1) and satisfies the initial boundary
conditions (2) and (3). The following estimates can be obtained:∫

Ω1

uiuidx ≤ k3(t), (15)

where k3(t) is a positive function defined later.

Proof. By multiplying (1)1 by ui and integrating, we obtain the following.

1
2

d
dt

∫
Ω

uiuidx +
∫

Ω
ui,jui,jdx ≤ 1

2

∫
Ω

T2dx +
1
2

∫
Ω

C2dx +
∫

Ω
uiuidx. (16)

An integration of (16) provides the following.∫
Ω

uiuidx ≤ e2t
(∫

Ω
ui0ui0dx + k1(t)

)
= k3(t). (17)

The proof is complete.
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Lemma 4. We suggest that T and C are the solutions of Equation (1) and satisfy boundary
conditions (2) and (3). The following estimates can be obtained:∫

Ω
T4dx +

∫
Ω

C4dx ≤ k4(t), (18)

where k4(t) = (γeγtt + 1)
∫

Ω(T4
0 + C4

0)dx.

Proof. Multiplying (1)3 by 4T3 and integrating over Ω× [0, t], we have the following.∫
Ω

T4dx + 3
∫ t

0

∫
Ω
(T2),i(T2),idxdη ≤

∫
Ω

T4
0 dx + 4k1

∫ t

0

∮
∂Ω

T4dSdη. (19)

Multiplying (1)4 by 4C3 and integrating over Ω× [0, t], we have the following.∫
Ω

C4dx + 3
∫ t

0

∫
Ω
(C2),i(C2),idxdη ≤

∫
Ω

C4
0dx + 4k2

∫ t

0

∮
∂Ω

C4dSdη

+ 4L
∫ t

0

∫
Ω

C3Tdxdη

≤
∫

Ω
C4

0dx + 4k2

∫ t

0

∮
∂Ω

C4dSdη

+ 3L
∫ t

0

∫
Ω

C4dxdη + L
∫ t

0

∫
Ω

T4dxdη.

(20)

A combination of (19) and (20) provides the following.∫
Ω
(T4 + C4)dx + 3

∫ t

0

∫
Ω
((T2),i(T2),i + (C2),i(C2),i)dxdη ≤

∫
Ω
(T4

0 + C4
0)dx

+ (4k1 + 4k2)
∫ t

0

∮
∂Ω

(T4 + C4)dSdη + 3L
∫ t

0

∫
Ω
(T4 + C4)dxdη.

(21)

Using (4), we obtain the following:

∫
∂Ω

T4dS ≤
[

2
m

+
2d2ε0

m2

] ∫
Ω

T4dx +
1

2ε0

∫
Ω

T2
,i T2

,i dx, (22)

and the following is the case.

∫
∂Ω

C4dS ≤
[

2
m

+
2d2ε0

m2

] ∫
Ω

C4dx +
1

2ε0

∫
Ω

C2
,iC

2
,idx. (23)

Inserting (22) and (14) into (21) and choosing ε0 = k1 + k2, we have the following:∫
Ω
(T4 + C4)dx ≤

∫
Ω
(T4

0 + C4
0)dx + γ

∫ t

0

∫
Ω
(T4 + C4)dxdη, (24)

with γ = (4k1 + 4k2)
[

2
m + 2d2(k1+k2)

m2

]
+ 3L.

Integrating (24), we obtain the following.∫ t

0

∫
Ω
(T4 + C4)dxdη ≤ eγtt

∫
Ω
(T4

0 + C4
0)dx. (25)

Inserting (25) into (24), we obtain the following.∫
Ω
(T4 + C4)dx ≤ (γeγtt + 1)

∫
Ω
(T4

0 + C4
0)dx. (26)

The proof is finished.
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Lemma 5. We suggest that ui is a solution of Equation (1) and that it satisfies the initial boundary
conditions (2) and (3). The following estimates can be obtained.

∫
Ω

ui,jui,jdx ≤ (k3(t))
1
2

(∫
Ω

ui,tui,tdx
) 1

2
+ 2(k1(t))

1
2 (k3(t))

1
2 . (27)

Proof. Multiplying (1)1 by ui and integrating over Ω, we have the following.∫
Ω

ui,tuidx = −
∫

Ω
ui,jui,jdx +

∫
Ω

giuiTdx−
∫

Ω
hiuiCdx.

Using the Schwarz’s inequality, we have the following.

∫
Ω

ui,jui,jdx ≤
(∫

Ω
ui,tui,tdx

) 1
2
(∫

Ω
uiuidx

) 1
2
+

(∫
Ω

T2dx
) 1

2
(∫

Ω
uiuidx

) 1
2

+

(∫
Ω

C2dx
) 1

2
(∫

Ω
uiuidx

) 1
2
.

(28)

Inserting (5) and (15) into (28), we have the following.

∫
Ω

ui,jui,jdx ≤ (k3(t))
1
2

(∫
Ω

ui,tui,tdx
) 1

2
+ 2(k1(t))

1
2 (k3(t))

1
2 . (29)

Thus, the proof is complete.

Lemma 6. We suggest that ui is a solution of Equation (1) and that it satisfies the initial boundary
conditions (2) and (3). The following estimates can be obtained:

d
dt

∫
Ω

ui,tui,tdx ≤
λ2νk

1
2
3 (t)

2

(∫
Ω

ui,tui,tdx
) 3

2
+ k5(t)

∫
Ω

ui,tui,tdx

+
∫

Ω
T2

,tdx +
∫

Ω
C2

,tdx−
∫

Ω
ui,jtui,jtdx,

(30)

where k5(t) is a positive function determined later.

Proof. By multiplying (1)1 by ui,t and integrating over Ω, we have the following.

d
dt

∫
Ω

ui,tui,tdx = 2
∫

Ω
ui,tui,ttdx

= 2
∫

Ω
ui,t(−λujui,j − p,i + ui,jj − giT + hiC),tdx

= −2
∫

Ω
ui,jtui,jtdx− 2λ

∫
Ω

ui,tuj,tui,jdx− 2
∫

Ω
giui,tT,tdx

+ 2
∫

Ω
hiui,tC,tdx

≤ −2
∫

Ω
ui,jtui,jtdx + 2λ

(∫
Ω
(ui,tui,t)

2dx
) 1

2
(∫

Ω
ui,jui,jdx

) 1
2

+ 2
∫

Ω
ui,tui,tdx +

∫
Ω

T2
,tdx +

∫
Ω

C2
,tdx.

(31)

The following Sobolev inequality in R2(see [34] (41)) is valid:∫
Ω
|F|4dx ≤ ν

∫
Ω
|F|2dx

∫
Ω
|∇F|2dx, (32)

with ν as a positive constant.
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If we choose F = ui,t in (32), we have the following.∫
Ω
(ui,tui,t)

2dx ≤ ν
∫

Ω
ui,tui,tdx

∫
Ω

ui,jtui,jtdx. (33)

A combination of (31) and (33) provides the following.

d
dt

∫
Ω

ui,tui,tdx +
∫

Ω
ui,jtui,jtdx ≤ λ2ν

2

∫
Ω

ui,tui,tdx
∫

Ω
ui,jui,jdx + 2

∫
Ω

ui,tui,tdx

+
∫

Ω
T2

,tdx +
∫

Ω
C2

,tdx.
(34)

Inserting (27) into (34), we obtain the following:

d
dt

∫
Ω

ui,tui,tdx +
∫

Ω
ui,jtui,jtdx ≤

λ2νk
1
2
3 (t)

2

(∫
Ω

ui,tui,tdx
) 3

2
+ k5(t)

∫
Ω

ui,tui,tdx

+
∫

Ω
T2

,tdx +
∫

Ω
C2

,tdx,

(35)

with k5(t) = λ2νk
1
2
1 (t)k

1
2
3 (t) + 2.

Thus, the proof is complete.

We suggest that T and C are the solutions of Equation (1) and that they satisfy bound-
ary conditions (2) and (3). The following estimates can be obtained:

d
dt

∫
Ω

T2
,tdx ≤

(
2k1

[
2
m

+
2d2k1

m2

]
+ 1
) ∫

Ω
T,tT,tdx

+ 2k4(t)ν2
∫

Ω
ui,tui,tdx +

1
2

∫
Ω

ui,jtui,jtdx,
(36)

and the following is the case.

d
dt

∫
Ω

C2
,tdx ≤

(
2k2

[
2
m

+
2d2k2

m2

]
+ 1
) ∫

Ω
C,tC,tdx

+ 2k4(t)ν2
∫

Ω
ui,tui,tdx +

1
2

∫
Ω

ui,jtui,jtdx +
L2

k

∫
Ω

T,tT,tdx.

(37)

Proof. Multiplying (1)4 by C,t and integrating over Ω× [0, t], we have the following.

d
dt

∫
Ω

C2
,tdx = 2

∫
Ω

C,tC,ttdx

= 2
∫

Ω
C,t(−uiC,i + C,jj + LT − kC),tdx

= −2
∫

Ω
Cj,tCj,tdx + 2

∮
∂Ω

C,t
∂C,t

∂n
dS + 2

∫
Ω

Ci,tui,tCdx

+ 2L
∫

Ω
C,tT,tdx− 2k

∫
Ω

C,tC,tdx

≤ −2
∫

Ω
Cj,tCj,tdx + 2k2

∮
∂Ω

C,tC,tdS +
L2

k

∫
Ω

T,tT,tdx− k
∫

Ω
C,tC,tdx

+ 2
(∫

Ω
C4dx

) 1
4
(∫

Ω
(ui,tui,t)

2dx
) 1

4
(∫

Ω
C,itC,itdx

) 1
2
.
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Using (4) and (18), we obtain the following.

d
dt

∫
Ω

C2
,tdx ≤ −

(
2− k2

ε0

) ∫
Ω

Cj,tCj,tdx + 2k2

[
2
m

+
2d2ε0

m2

] ∫
Ω

C,tC,tdx

+ 2(k4(t))
1
2

(∫
Ω
(ui,tui,t)

2dx
) 1

2
+

L2

k

∫
Ω

T,tT,tdx +
∫

Ω
C,tC,tdx.

(38)

If we choose ε0 = k2, we obtain the following.

d
dt

∫
Ω

C2
,tdx ≤ −

∫
Ω

C,jtC,jtdx + 2k2

[
2
m

+
2d2k2

m2

] ∫
Ω

C,tC,tdx

+ 2(k4(t))
1
2

(∫
Ω
(ui,tui,t)

2dx
) 1

2
+

L2

k

∫
Ω

T,tT,tdx +
1
2

∫
Ω

C,itC,itdx.

(39)

Using (33) again, we obtain the following.

d
dt

∫
Ω

C2
,tdx ≤

(
2k2

[
2
m

+
2d2k2

m2

]
+ 1
) ∫

Ω
C,tC,tdx

+ 2k4(t)ν2
∫

Ω
ui,tui,tdx +

1
2

∫
Ω

ui,jtui,jtdx +
L2

k

∫
Ω

T,tT,tdx.

(40)

Following the same procedures, we can obtain the following.

d
dt

∫
Ω

T2
,tdx ≤

(
2k1

[
2
m

+
2d2k1

m2

]
+ 1
) ∫

Ω
T,tT,tdx

+ 2k4(t)ν2
∫

Ω
ui,tui,tdx +

1
2

∫
Ω

ui,jtui,jtdx.
(41)

Thus, the proof is complete.

Lemma 7. We suggest that ui, T and C are the solutions of Equation (1) and satisfy boundary
conditions (2) and (3). The following estimates can be obtained:∫

Ω
ui,tui,tdx +

∫
Ω

T,tT,tdx +
∫

Ω
C,tC,tdx ≤ k8(t), (42)

where k8(t) is a positive function .

Proof. We define a new function G(t) by the following.

G(t) =
∫

Ω
ui,tui,tdx +

∫
Ω

T,tT,tdx +
∫

Ω
C,tC,tdx.

A combination of (30), (36) and (37) provides the following:

d
dt

G(t) ≤ k6(t)G
3
2 (t) + k7(t)G(t), (43)

with k6(t) =
λ2νk

1
2
3 (t)

2 and k7(t) = k4(t)(1 + 4ν2) +
(

2k1

[
2
m + 2d2k1

m2

])
+
(

2k2

[
2
m + 2d2k2

m2

]
+ 1
)

.
We can also obtain the following.

d
dt

G(t) ≤ k6(τ)G
3
2 (t) + k7(τ)G(t). (44)
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Integrating (44) from 0 to t, we obtain the following.

G ≤

 k6(τ)
√

G(0)

k6(τ)
√

G(0)
(

e−
1
2 k7(τ)t − 1

)
+ k7(τ)e−

1
2 k7(τ)t

2

= k8(t).

(45)

Inequality (45) is valid when t ≤
2 ln k6(τ)

√
G(0)+k7(τ)

k6(τ)
√

G(0)

k7(τ)
.

If the initial data G(0) are small enough, we can obtain the result where inequality (45)
is valid for all t.

Thus, the proof is complete.

We suggest that ui is a solution of Equation (1) and satisfies the initial boundary
conditions (2) and (3). The following estimates can be obtained:∫

Ω
ui,jui,jdx ≤ k9(t), (46)

where k9(t) is a positive function defined later.

Proof. By inserting (42) into (27), we obtain the following.∫
Ω

ui,jui,jdx ≤ (k3(t))
1
2 (k8(t))

1
2 + 2(k1(t))

1
2 (k3(t))

1
2

= k9(t).
(47)

Thus, the proof is complete.

3. Main Result

We suggest that (ui, p, T, C) is the solution of the initial boundary problems for the
Boussinesq equations.

∂ui
∂t + λ1uj

∂ui
∂xj

= −p,i + ∆ui + giT − hiC (x, t) ∈ Ω× [0, τ],
∂ui
∂xi

= 0 (x, t) ∈ Ω× [0, τ],
∂T
∂t + ui

∂T
∂xi

= ∆T (x, t) ∈ Ω× [0, τ],
∂C
∂t + ui

∂C
∂xi

= ∆C + LT − kC (x, t) ∈ Ω× [0, τ],

(48)

ui = 0, ∂T
∂n = k1T, ∂C

∂n = k2C (x, t) ∈ ∂Ω× [0, τ], (49)

ui(x, 0) = ui0(x), T(x, 0) = T0(x), C(x, 0) = C0(x) x ∈ Ω. (50)

Furthermore, we suggest that (u∗i , p∗, T∗, C∗) satisfies the following problems.

∂u∗i
∂t + λ2u∗j

∂u∗i
∂xj

= −p∗,i + ∆u∗i + giT∗ − hiC∗ (x, t) ∈ Ω× [0, τ],
∂u∗i
∂xi

= 0 (x, t) ∈ Ω× [0, τ],
∂T∗
∂t + u∗i

∂T∗
∂xi

= ∆T∗ (x, t) ∈ Ω× [0, τ],
∂C∗
∂t + u∗i

∂C∗
∂xi

= ∆C∗ + LT∗ − kC∗ (x, t) ∈ Ω× [0, τ],

(51)

u∗i = 0, ∂T∗
∂n = k1T∗, ∂C∗

∂n = k2C∗ (x, t) ∈ ∂Ω× [0, τ], (52)

u∗i (x, 0) = ui0(x), T∗(x, 0) = T0(x), C∗(x, 0) = C0(x) x ∈ Ω. (53)

We introduce some new functions—ωi, π, θ , S and λ:

ωi = ui − u∗i , π = p− p∗, θ = T − T∗, S = C− C∗, λ = λ1 − λ2. (54)
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Then, we can obtain the result where (ωi, π, θ, S, λ) satisfies the following equations.
∂ωi
∂t + λuj

∂ui
∂xj

+ λ2uj
∂ωi
∂xj

+ λ2ωj
∂u∗i
∂xj

= −π,i + ∆ωi + giθ − hiS (x, t) ∈ Ω× [0, τ],
∂ωi
∂xi

= 0 (x, t) ∈ Ω× [0, τ],
∂θ
∂t + ωi

∂T
∂xi

+ u∗i
∂θ
∂xi

= ∆θ (x, t) ∈ Ω× [0, τ],
∂S
∂t + ui

∂S
∂xi

+ ωi
∂C∗
∂xi

= ∆S + Lθ − kS (x, t) ∈ Ω× [0, τ],
(55)

ωi = 0, ∂θ
∂n = k1θ, ∂S

∂n = k2S (x, t) ∈ ∂Ω× [0, τ], (56)

ωi(x, 0) = 0, θ(x, 0) = 0, S(x, 0) = 0, x ∈ Ω . (57)

In this paper, we want to obtain the following main result.

Theorem 1. We suggest that (ui, T, C, P) is the classical solution that satisfies conditions (48)–(50).
We also suggest that (u∗i , T∗, C∗, p∗) is the classical solution that satisfies conditions (51)–(53). The
difference (ωi, θ, S, π) satisfies (55)–(57). We obtain the result where solution (ui, T, C, p) can
converge to solution (u∗i , T∗, C∗, P∗) when the Boussinesq coefficient λ1 tends to λ2. Additionally,
the norm of (ωi, θ, S, π) satisfies the following estimates:∫

Ω ωiωidx +
∫

Ω θ2dx +
∫

Ω S2dx ≤ 4λ2e
∫ t

0 k12(s)ds ∫ t
0 e−

∫ s
0 k12(η)dηk10(s)ds. (58)

where k10(t) and k12(t) are positive functions.

The proof of the theorem will be divided into the following Lemmas.

Lemma 8. Let ui be solution of Equation (55) satisfying boundary conditions (56) and (57); we
can obtain the following estimates:

d
dt‖ω‖

2 ≤ 4λ2k10(t) + k11(t)‖ω‖2 + ‖θ‖2 + ‖S‖2 − 1
2‖∇ω‖2, (59)

where k10(t) and k11(t) are positive functions defined later.

Proof. We multiply both sides of (55)1 by wi and integrate over Ω; we can obtain the
following:

d
dt

1
2‖ω‖2 = −λ

∫
Ω ujui,jωidx− λ2

∫
Ω ujωi,jωidx− λ2

∫
Ω ωju∗i,jωidx− ‖∇ω‖2

+
∫

Ω giθωidx−
∫

Ω hiSωidx
= λ

∫
Ω ujuiωi,jdx− λ2

∫
Ω ωjωiu∗i,jdx− ‖∇ω‖2 +

∫
Ω giθωidx−

∫
Ω hiSωidx

≤ λ‖u‖2
4‖∇ω‖+ λ2‖ω‖2

4‖∇u∗‖ − ‖∇ω‖2 + ‖θ‖‖ω‖+ ‖S‖‖ω‖
≤ λ2ε1‖u‖4

4 +
1
ε1
‖∇ω‖2 + λ2ν

1
2 ‖∇u∗‖‖ω‖‖∇ω‖ − ‖∇ω‖2

+‖θ‖‖ω‖+ ‖S‖‖ω‖
≤ λ2ε1ν[‖u‖2 + ‖∇u‖2]2 + 1

ε1
‖∇ω‖2 +

λ2
2ε2ν
2 ‖∇u∗‖2‖ω‖2 + 1

2ε2
‖∇ω‖2

+‖θ‖‖ω‖+ ‖S‖‖ω‖ − ‖∇ω‖2,

(60)

where ε1 and ε2 are constants no lesser than zero.
If we choose ε1 = 4, ε2 = 2, we obtain the following.

d
dt‖ω‖

2 ≤ 8λ2ν[‖u‖2 + ‖∇u‖2]2 + (2λ2
2ν‖∇u∗‖2 + 2)‖ω‖2

+‖θ‖2 + ‖S‖2 − 1
2‖∇ω‖2.

(61)

Following the same procedures in deriving (46), we can also obtain the following:∫
Ω

u∗i,ju
∗
i,jdx ≤ k̃9(t), (62)

where k̃9(t) is a positive function.
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Inserting (15), (46) and (62) into (61), we obtain the following:

d
dt‖ω‖

2 ≤ 4λ2k10(t) + k11(t)‖ω‖2 + ‖θ‖2 + ‖S‖2 − 1
2‖∇ω‖2, (63)

where k10(t) = 8k2
1(k3(t) + k9(t))2 and k11(t) = 2λ2

2k̃9(t) + 2.
Thus, the proof is complete.

Lemma 9. We suggest that θ and S are solutions of Equation (55) and satisfy boundary conditions
(2) and (3). The following estimates can be obtained:

d
dt
(
‖θ‖2 + ‖S‖2) ≤ − 1

2

∫
Ω(|∇S|2 + |∇θ|2)dx + M

∫
Ω(θ2 + S2)dx

+2
(∫

Ω(ωiωi)
2) 1

2
(
k̃4(t)

) 1
2 ,

(64)

where M is a positive constant, and k̃4(t) is a positive function.

Proof. We multiply both sides of (55)3 by 2θ and integrate over Ω; we have the following.

d
dt‖θ‖

2 = 2
∫

Ω θ(4θ − uiθ,i −ωiT∗,i )dx
= −2

∫
Ω |∇θ|2dx + 2k1

∮
∂Ω θ2dS + 2

∫
Ω θ,iωiT∗dx

≤ −2
∫

Ω |∇θ|2dx + 2k1
∮

∂Ω θ2dS +
∫

Ω θ,iθ,idx

+
(∫

Ω(ωiωi)
2) 1

2
(∫

Ω T∗4
) 1

2 .

(65)

Following the same procedures in deriving (18), we can also obtain the following:∫
Ω

T∗4dx +
∫

Ω
C∗4dx ≤ k̃4(t), (66)

where k̃4(t) is a positive function.
Inserting (66) into (65), we obtain the following.

d
dt‖θ‖

2 ≤ −
∫

Ω |∇θ|2dx + 2k1
∮

∂Ω θ2dS

+
(∫

Ω(ωiωi)
2) 1

2
(
k̃4(t)

) 1
2 .

(67)

We multiply both sides of (55)4 by 2S and integrate over Ω; we have the following.

d
dt‖S‖

2 = 2
∫

Ω S(4S− uiS,i −ωiC∗,i − kS + Lθ)dx
≤ −

∫
Ω |∇S|2dx + 2k2

∮
∂Ω S2dS + L

∫
Ω θ2dx + L

∫
Ω S2dx

+
(∫

Ω(ωiωi)
2) 1

2
(
k̃4(t)

) 1
2 .

(68)

Using (4) and combining (67) and (68), we obtain the following.

d
dt
(
‖θ‖2 + ‖S‖2) ≤ − 1

2

∫
Ω(|∇S|2 + |∇θ|2)dx + M

∫
Ω(θ2 + S2)dx

+2
(∫

Ω(ωiωi)
2) 1

2
(
k̃4(t)

) 1
2 ,

(69)

with M = max{2k1

[
2
m + 2d2k1

m2

]
+ L, 2k2

[
2
m + 2d2k2

m2 + L
]
}.

Thus, the proof is complete.

Lemma 10. We suggest that ωi, θ and S are solutions of Equation (55), and boundary conditions
(56) and (57) are also satisfied. We can obtain the following estimates:∫

Ω ωiωidx +
∫

Ω θ2dx +
∫

Ω S2dx ≤ 4λ2e
∫ t

0 k12(s)ds ∫ t
0 e−

∫ s
0 k12(η)dηk10(s)ds. (70)

with k12(t) as a positive function .
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Proof. We define a function

ζ(t) =
∫

Ω
ωiωidx +

∫
Ω

θ2dx +
∫

Ω
S2dx.

Combining (59) and (64); we thus have the following.

d
dt ζ(t) ≤ 4λ2k10(t) + (k11(t) + M + 1)ζ(t)− 1

2‖∇ω‖2

+2
(∫

Ω(ωiωi)
2dx
) 1

2
(
k̃4(t)

) 1
2 .

(71)

Using (32), we have the following.

2
(∫

Ω(ωiωi)
2dx
) 1

2
(
k̃4(t)

) 1
2 ≤ 8k̃4(t)ν‖ω‖2 + 1

2‖∇ω‖2. (72)

Inserting (72) into (71), we obtain the following:

d
dt ζ(t) ≤ k12(t)ζ(t) + 4λ2k10(t), (73)

with k12(t) = k11(t) + M + 1 + 8k̃4(t)ν.
Equation (73) can be rewritten as follows.

d
dt

(
e−
∫ t

0 k12(s)dsζ(t)
)
≤ 4e−

∫ t
0 k12(s)dsλ2k10(t). (74)

An integration of (74) provides the following.

ζ(t) ≤ 4λ2e
∫ t

0 k12(s)ds ∫ t
0 e−

∫ s
0 k12(η)dηk10(s)ds. (75)

Inequality (75) shows that when λ tends to zero, the differences of the solutions tend
to zero as the indicated norm.

Thus, the proof is complete.

Inequality (75) is the result we want to prove in the Theorem. Thus, we complete the
proof of the theorem.

4. Conclusions

In the present paper, the result of the continuous dependence type could be obtained
for the Boussinesq coefficient λ. An energy method was used. For the case when Ω ∈ R3,
the Poincaré inequality used in this paper was no longer applicable. There were difficulties
in obtaining the key bound for

∫
Ω ui,jui,jdx. We thought it would be an interesting topic to

study the case when Ω ∈ R3 in future. Additionally, if we changed the bounded domain,
Ω, by an unbounded domain, we thought the terms containing pressure p were difficult to
tackle. These terms could not be bounded by the prescribed data by using the same method
proposed in this paper. Some new methods might be developed in order to overcome these
difficulties. We are sure that some good results would be obtained if we studied the above
two problems. These studies would be new and interesting.
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