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Abstract: We consider a variant of the online semi-definite programming problem (OSDP). Specif-
ically, in our problem, the setting of the decision space is a set of positive semi-definite matrices
constrained by two norms in parallel: the L∞ norm to the diagonal entries and the Γ-trace norm,
which is a generalized trace norm with a positive definite matrix Γ. Our setting recovers the original
one when Γ is an identity matrix. To solve this problem, we design a follow-the-regularized-leader
algorithm with a Γ-dependent regularizer, which also generalizes the log-determinant function. Next,
we focus on online binary matrix completion (OBMC) with side information and online similarity
prediction with side information. By reducing to the OSDP framework and applying our proposed
algorithm, we remove the logarithmic factors in the previous mistake bound of the above two prob-
lems. In particular, for OBMC, our bound is optimal. Furthermore, our result implies a better offline
generalization bound for the algorithm, which is similar to those of SVMs with the best kernel, if the
side information is involved in advance.

Keywords: online semi-definite programming; log-determinant; sparse loss matrix; side information;
online binary matrix completion

MSC: 68W27

1. Introduction

Online binary matrix completion (OBMC) is standing on the frontier of research to
online matrix completion, which is currently an active field in the machine learning com-
munity [1–4]. Intuitively, the OBMC problem is a sequential game of predicting the given
entries from an unknown m× n target binary matrix. More specifically, the problem can be
formulated as a repeated game between the algorithm and the adversarial environment
as described below: on each round t, (i) the environment confirms the location of an entry
in the target matrix (it, jt) ∈ [m]× [n], (ii) the algorithm predicts ŷt ∈ {−1, 1}, and then
(iii) the environment reveals the true label yt ∈ {−1, 1}. The goal of the algorithm is to
minimize the total number of mistakes ∑T

t=1 Iŷt 6=yt . This OBMC model is widely applied in
the real world, such as “Netflix Challenges” [5], where the rating matrix (target matrix) is
composed of rows representing the viewers and the columns corresponding to the movies.
The entry (i, j) is the rating of the viewer i to the movie j, concretely.

For convenience, we define an underlying matrix U, the comparator matrix, as a good
enough approximation matrix to the unknown target m× n matrix. To be more precise,
assume that U ∈ Rm×n can be factorized into U = PQ> for some matrices P ∈ Rn×d and
Q ∈ Rm×d for some d ≥ 1. Without loss of generality, we further assume that the rows of P
and Q are normalized such that ‖Pi‖ = ‖Qj‖ = 1 for all i and j, where Pi is the i-th row
vector of P (interpreted as a linear classifier associated with row i of U) and Qj is the j-th
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row vector of Q (interpreted as a feature vector associated with column j of U). Hence,
the sign of Ui,j can be viewed as a classification of the classifier Pi to the feature Qj. Next,
to quantify the predictiveness of the comparator matrix U, we involve the hinge loss as
[1− zt/γ]+ for a given margin parameter γ > 0, where [x]+ is x if x > 0 and 0 otherwise.
Note that zt = ytUit ,jt can be considered as the margin of the labeled instance (Qjt , yt) with
respect to a hyperplane Pit . On the other hand, the hinge loss converges to the 0–1 loss
function, if γ converges to 0.

Recently, Herbster et al. explored the OMBC problem by adding side information in
advance to the algorithm [2]. The side information brings some prior knowledge about the
target matrix, or more generally, about a comparator matrix U. Moreover, side information
is formally represented according to the columns and the rows of the comparator matrix
as two symmetric positive definite matrices M ∈ Rm×m and N ∈ Rn×n. To measure the
quality of the side information, Herbster et al. involved a concept quasi-dimension of a
comparator matrix U, defined as the minimum of D = Tr(P>MP) + Tr(Q>NQ) over all
the factorizations of U such that U = γPQ>. Then, they proved a mistake bound given by
the total hinge loss of U with an additional term expressed in terms of γ, m, n, and D. In
particular, Herbster et al. offered a bound O(D ln(m + n)/γ2), if the total hinge loss of U
is zero (in the realizable case). Moreover, they obtained a mistake bound O(kl ln(m + n)),
when U has a (k, l)-biclustered structure (see Appendix A for details) and side information
M, N are in accordance with this particular structure. Unfortunately, however, there still
remains a logarithmic gap from a lower bound of Ω(kl) [1].

In this paper, unlike the definition of quasi-dimension introduced by Herbster et al.,
we simplify the quasi-dimension in the following part as D = Tr(P>MP) + Tr(Q>NQ),
only the sum of the trace norms. Then, we obtain a mistake bound O(D/γ2), by improving
a logarithmic factor ln(m + n) in the mistake bound of Herbster et al.; further, our bound
recovers the lower bound at most by a constant when the comparator matrix has a (k, l)-
biclustered structure. The basic idea is to reduce the OBMC problem with side information
to an online semi-definite programming (OSDP) problem specified by Γ. In particular,
the symmetric positive definite matrix Γ is transformed from the side information (M, N)
in our reduction. Thus, the reduced OSDP problem is proposed as a repeated game based
on a sparse loss matrices space and a decision space, which is a set of symmetric and
positive semi-definite matrices W . Note that our decision set is constrained by the L∞-norm
of the diagonal entries of W and Γ-trace norm, Tr(ΓWΓ), simultaneously. Actually, our
reduced OSDP problem is a generalization of the standard OSDP problem [6,7], where in
the standard form, Γ = E. We design and analyze our algorithm for the generalized OSDP
problem under the follow-the-regularized-leader (FTRL) framework (see, e.g., [8–10]). Note
that to guarantee good performance of the proposed algorithm, we choose a specialized
regularizer as stated later.

The OSDP framework/problem solved by the FTRL approaching is a classical method
for various problems of online matrix prediction, such as online gambling [6,11], online
collaborative filtering [12–14], online similarity prediction [15], and especially a non-binary
version of online matrix completion with no side information [6,7]. To measure the per-
formance of the algorithm for the above problems, a new concept, regret, the difference
between the cumulative loss of the algorithm and the global optimal comparator matrix in
hindsight, is always involved.

For the aforementioned results about non-binary online matrix completion with no
side information, Hazan et al. [6] firstly proposed a reduction to the standard OSDP
problem, and then, they utilized the FTRL algorithm with an entropic regularizer, obtaining a
sub-optimal regret bound. Moridomi et al. [7] improved the regret bound by deploying a log-
determinant regularizer, while they noticed that the loss matrices are sparse in the reduction.

Next, for the OMBC problem with side information, Herbster et al. [2] reduced this
problem to another variant of the OSDP problem with different or fewer constraints to the
decision space than ours. Then they followed a similar FTRL-based algorithm with the
entropic regularizer as [6]. Note that instead of a general regret analysis for their OSDP
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problem, they only gave a particular analysis to the OSDP problem instance obtained from
the reduction. Due to the inspiration of the work of [7], the gap of the mistake bound is
from the choice of the entropic regularizer. As same as the case mentioned in [7], in our
reduction, the loss matrices are sparse, which implies that the log-determinant regularizer
can lead to better performance.

As mentioned previously, the OBMC problem with side information is reduced to
an OSDP problem, where the decision space is parameterized with the side informa-
tion. It requests a new form of the log-determinant regularizer since the standard log-
determinant regularizer R(W) = − ln det(W + εE) performs unsatisfactorily from our
examination. Meanwhile, we attempt to reduce our problem to the standard OSDP problem
in a straightforward and natural way. Unfortunately, this reduction fails, as we will show
a counterexample in the latter section since this trivial reduction damages the sparsity
of the loss matrices and the bound to the diagonal entries of the decision space. There-
fore, to solve our reduced OSDP problem, a generalized log-determinant regularizer,
R(W) = − ln det(ΓWΓ + εE), is required and this specified regularizer assists a successful
regret bound. Conclusively, our reduction and solution not only show the power of the not
well explored log-determinant regularizer compared with the entropic or Frobenius-norm
regularizer in the OSDP framework, but also demonstrate that an appropriate choice of
the regularizer, which is dependent on the form of the decision set, further on the side
information, and the loss space can effectively improve the performance of the algorithm
in theory. Note that although our derivation is similar to the analysis of Moridomi et al. [7],
it is in fact a non-trivial generalization.

Furthermore, we apply our online algorithm in the statistical (batch) learning setting
by the standard online-to-batch conversion framework (see, for example, the work of
Mohri et al. [16]) and derive a generalization error bound with side information. Our
generalized error bound is similar to the known margin-based bound of SVMs (e.g.,
Mohri et al. [16]) with the best kernel when the side information is vacuous. It is re-
markable that we can not only obtain such a bound without knowing the best kernel, but it
also implies that the error bound in the batch learning setting can be improved when the
side information is given to the learner in advance.

Our main contribution is summarized as follows:

1. Firstly, we generalize the OSDP problem by parameterizing a symmetric and positive
definite matrix Γ in the decision set. This generalization definitely extends the standard
OSDP problem and offers a more wildly applicable framework. Next, we design an
FTRL-based algorithm with a generalized log-determinant regularizer depending on
the matrix Γ from the decision set. Our result recovers the previously known bound [7]
in the case where Γ is the identity matrix.

2. We obtain refined mistake bounds to the OBMC problem with side information and
the online similarity prediction with side information under the umbrella of the above
results. We reduce these problems to the OSDP framework and parameterize the side
information into a symmetric positive definite matrix in the setting of decision space.
Compared with the analysis of Herbster et al. [2], our reduction is explicit and easy to
follow. Due to the achievement of the generalized OSDP problems, we improve the
previously known mistake bounds by logarithmic factors for both of the problems. In
particular, for the former problem, our mistake bound is optimal.

3. In addition, we added the online–offline conversion method to the OBMC problem
with side information compared with the preliminary version [17]. We offer a standard
online-to-batch conversion framework, which guarantees that our online algorithm
can perform not worse than the traditional offline algorithm (SVM with the best
kernel). As we demonstrated in the following section, our error bound recovers the
best margin-based bound when the side information is vacuous. With the assistance
of the ideal side information, our proposed algorithm performs even better than the
previous one. On the one hand, we improve the error bound to the OBMC with side
information in batch setting; on the other hand, our result implies that there might be
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a more effective algorithm for batch setting if the algorithm can make good use of the
side information.

This paper is organized as follows. In Section 2, we give some basic notations and
formally formulate the generalized OSDP. Then with a toy example, we show that a naive
reduction from our problem to the standard OSDP can even lead to a worse regret bound.
It yields the necessity of our generalized log-determinant regularizer. The main algorithm
with its regret bound for the generalized OSDP is given in Section 3. In Section 4, we give
the reductions of the OBMC problem and online similarity prediction with side information
to our demonstrated OSDP problems, respectively. Moreover, we show that the mistake
bound for the OMBC problem is optimal in the realizable case where the comparator matrix
has a biclustered structure. In Section 5, we derive the batch setting to the OBMC problem
with side information. In Appendix A.1, we describe some necessary lemmata for proof of
our results. Further, we define the (k, l)-biclustered structure in Appendix A.2.

2. Preliminaries

For any positive integer T, a subset of N, {1, 2, · · · , T} ⊆ N is denoted by [T]. Let SN×N ,
SN×N
+ and SN×N

++ denote the sets of N × N symmetric matrices, symmetric positive semi-
definite matrices and symmetric strictly positive definite matrices, respectively. The identity
matrix is denoted as E. For an m× n matrix X ∈ Rm×n and (i, j) ∈ [m]× [n], we denote
the i-th row vector of X and the (i, j) entry of X by Xi and Xi,j respectively. Furthermore,
vec(X) is an mn-dimensional vector according to X and arranges all entries Xi,j, i ∈ [m] and
j ∈ [n], in some order. For any matrices X, Y ∈ Rm×n, X • Y = Tr(X>Y) = vec(X)>vec(Y)
denotes the Frobenius inner product of them. The trace norm of matrix X ∈ SN×N

+ is
defined as Tr(X) = ∑N

i=1 |λi(X)|, where λi(X) denotes the i-th largest eigenvalue of X.
Meanwhile, Tr(X) = ∑N

i=1 Xi,i. In addition, we generalize the trace norm of matrix X to the
Γ-trace norm of X as Tr(ΓXΓ), for some Γ ∈ SN×N

++ . Note that the Γ-trace norm recovers the
trace norm when Γ = E. For a vector x, the Lp-norm of x is denoted by ‖x‖p.

2.1. Generalized OSDP Problem with Bounded Γ-Trace Norm

Our generalized OSDP problem specified with a symmetric positive definite matrix
Γ ∈ SN×N

++ is formulated by a pair (K,L), where

K = {W ∈ SN×N
+ : Tr(ΓWΓ) ≤ τ ∧ ‖vec(W)‖∞ ≤ β} (1)

is called the decision space/set, and

L = {L ∈ SN×N : ‖vec(L)‖1 ≤ g} (2)

is called the loss space, where τ > 0, β > 0 and g > 0 are parameters. The generalized
OSDP problem (K,L) is a repeated game between the algorithm and the adversarial
environment as described below: On each round t ∈ [T], we have the following:

1. The algorithm predicts a matrix Wt ∈ K.
2. The algorithm receives a loss matrix Lt ∈ L, returning from the environment.
3. The algorithm incurs the loss on round t: Wt • Lt.

The goal of the algorithm is to minimize the following regret

RegretOSDP(T,K,L) =
T

∑
t=1

Wt • Lt − min
W∈K

T

∑
t=1

W • Lt. (3)

Note that the standard OSDP problem corresponds to the special case of our setting
that Γ = E.

Due to the definition of the OSDP above, this problem is categorized to online linear
optimization framework, since the convexity of the decision space and the Frobenius
production is linear. Therefore, as Moridomi et al. [7] did for the standard OSDP problem,
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we can apply a standard FTRL algorithm. The FTRL algorithm outputs a matrix Wt
according to

Wt = arg min
W∈K

(
R(W) + η

t−1

∑
s=1

Ls •W

)
, (4)

where R : K → R is a strongly convex function, and called regularizer. Entropy and
Euclidean norm are classical regularizers in online linear optimization [9]. In particular,
Moridomi et al. chose the log-determinant regularizer, which is not well studied, defined as

R(W) = − ln det(W + εE), (5)

where ε > 0 is a parameter and derived the following regret bound for the standard
OSDP problem.

Theorem 1 ([7]). For the standard OSDP problem (K,L) with Γ = E, The FTRL algorithm with
the log-determinant regularizer achieves

RegretOSDP(T,K,L) = O(g
√

τβT). (6)

In the next sub-section, we show that the standard log-determinant regularizer per-
forms unsatisfactorily to our generalized OSDP, even if our generalized OSDP can be
reduced to the standard OSDP.

2.2. A Naive Reduction

Define a generalized OSDP (K,L) as in Equations (1) and (2), naturally, there is a
reduction to a standard OSDP problem (K̃, L̃) where

K̃ = {W̃ ∈ SN×N
+ : Tr(W̃) ≤ τ∧‖vec(W̃)‖∞ ≤ β′}, L̃ = {L̃ ∈ SN×N : ‖vec(L̃)‖1 ≤ g′},

for some parameters β′ > 0 and g′ > 0. For convenience, we denote A as a FTRL-based
algorithm with the log-determinant regularizer.

The reduction consists of two transformations: one is to transform the decision matrix
W̃t ∈ K̃ produced from A to the decision matrix Wt = Γ−1W̃tΓ

−1 for OSDP (K,L).
The other one is to transform the loss matrices Lt ∈ L from the environment of (K,L)
to L̃t = Γ−1LtΓ

−1, which is fed to the algorithm A. Note that the loss is preserved
under this reduction, that is, Wt • Lt = Tr(WtLt) = Tr(Γ−1W̃tΓ

−1ΓL̃tΓ) = Tr(W̃t L̃t) =
W̃t • L̃t. Moreover, the Γ-trace norm of Wt is the trace norm of W̃t, i.e., Tr(ΓWtΓ) = Tr(W̃t).
Therefore, setting β′ and g′ appropriately such that for any W ∈ K and L ∈ L, ΓWΓ ∈ K̃
and Γ−1LΓ−1 ∈ L̃, respectively, we have that RegretOSDP(T,K,L) ≤ RegretOSDP(T, K̃, L̃).

Hence, according to the regret bound to (K̃, L̃) with log-determinant regularizer [7],
we immediately have

RegretOSDP(T,K,L) = O(g′
√

τβ′T).

by Theorem 1.
In the following part, we give an example, which implies that the above reduction

yields a worse regret bound than our proposed algorithm.

Example 1. Define Γ ∈ SN×N
++ as

Γ =


N −1 · · · −1
−1 N · · · −1

...
...

. . .
...

−1 −1 · · · N

 with Γ−1 =


2

N+1
1

N+1 · · · 1
N+1

1
N+1

2
N+1 · · · 1

N+1
...

...
. . .

...
1

N+1
1

N+1 · · · 2
N+1


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and let τ = N3 + N2 − N, β = 1 and g = 4 so that E ∈ K. Next we define loss matrix L ∈ L,
where Li,j ≤ 1 if (i, j) ∈ {1, N} × {1, N} and 0 otherwise, as follows:

L =


L1,1 0 · · · L1,N

0 0 · · · 0
...

...
. . .

...
LN,1 0 · · · LN,N

.

Then, with a simple calculation, we obtain |ΓEΓ|i,i = N2 + N − 1 for all i ∈ [N], which
implies that we need β′ ≥ N2 + N − 1. Meanwhile, we have that ‖vec(Γ−1LΓ−1)‖1 = L1,1 +
L1,N + LN,1 + LN,N ≤ 4, which suggests that g′ ≥ 4. In other words, the regret bound we obtained
must be larger than the order of 4N

√
τT, if we only process the a naive reduction. Parallel, the regret

bound to above example is O(
√

τT), if we directly utilize our proposed algorithm in the next section,
since ρ = maxi,j |(Γ−1Γ−1)i,j| ≤ 1. Thus, our algorithm can improve the FTRL-based algorithm
with the standard log-determinant regularizer significantly.

3. Algorithm for the Generalized OSDP Problem

In this section, we give the main algorithm and regret bound to the generalized OSDP
problem (K,L) specified by (1) and (2), with respect to some Γ ∈ SN×N

++ . We propose the
FTRL algorithm (4) with the Γ-calibrated log-determinant regularizer:

R(W) = − ln det(ΓWΓ + εE), (7)

where ε > 0 is a parameter.
The following theorem gives a regret bound of our algorithm.

Theorem 2 (Main Theorem). Given Γ ∈ SN×N
++ . For the generalized OSDP problem specified

with Equations (1) and (2), denoting ρ = maxi,j |(Γ−1Γ−1)i,j|, running the FTRL algorithm with
the Γ-calibrated log-determinant regularizer for T times, the regret is bounded as follows:

RegretOSDP(T,K,L) = O
(

g2(β + ρε)2Tη +
τ

εη

)
.

In particular, letting η =
√

τ
g2(β+ρε)2εT and ε = β/ρ, we have

RegretOSDP(T,K,L) = O
(

g
√

βρτT
)

. (8)

Note that we can recover the same regret bound of Theorem 1, when Γ = E.
Before we give the proof of our main theorem, we need to introduce strong convexity,

which will play a central role in our proof. The definition of strong convexity is as follows.

Definition 1. For a decision space K and a real number s ≥ 0, a regularizer R : K → R is said to
be s-strongly convex with respect to the loss space L if for any α ∈ [0, 1], any X, Y ∈ K and any
L ∈ L, the following holds

R(αX + (1− α)Y) ≤ αR(X) + (1− α)R(Y)− s
2

α(1− α)|L • (X − Y)|2. (9)

This is equivalent to the following condition: for any X, Y ∈ K and L ∈ L,

R(X) ≥ R(Y) +∇R(Y) • (X − Y) +
s
2
|L • (X − Y)|2. (10)

Note that the notion of strong convexity defined above is quite different from the
standard one: usually, the strong convexity is defined with respect to some norm ‖ · ‖ in
decision set [9], but now it is defined with respect to the decision space and the loss space.
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A direct reason is that our decision set is constrained by two norms simultaneously, and the
same definition is involved by [18].

The following lemma from [7] states a general form between the regret bound to the
OSDP problem and the strongly convex regularizer of the FTRL-based algorithm.

Lemma 1 ([7]). Let R : K → R be an s-strongly convex regularizer with respect to a decision
space L for a decision space K. Then the FTRL with the regularizer R applied to (K,L) achieves

RegretOSDP(T,K,L) ≤ H0

η
+

η

s
T, (11)

where H0 = maxW ,W ′∈K(R(W)− R(W ′)).

Due to the lemma above, it suffices to analyze the strong convexity of our Γ-calibrated
log-determinant regularizer with respect to our decision space (1) and loss space (2). We
show the result in the main proposition.

Proposition 1 (Main proposition). The Γ-calibrated log-determinant regularizer R(W) =
− ln det(ΓWΓ + εE) is s-strongly convex with respect to L for K with s = 1/(576

√
e(β +

ρε)2g2), where ρ = maxi,j |(Γ−1Γ−1)i,j|.

We prove this proposition in the next sub-section. Based on this proposition, we firstly
give a proof sketch of our main Theorem. The details are in the next sub-section.

Proof Sketch of Theorem 2. According to Proposition 1 and Lemma 1, the only gap of
proving this theorem is the bound of H0. As we show in the following subsection, H0 ≤ τ

ε ,
due to the definition of R. Obviously, the size of the matrix N has no effect on our regret
bound in Theorem 2.

Proof for Main Proposition and Theorem

Before we prove Theorem 2, we need to involve some lemmata and notations.
Given a distribution P over RN , the negative entropy function in respect of P is de-

fined by H(P) = Ex∼P[ln(P(x))]. We define the characteristic function of P by φ(u) =

Ex∼P[eiuT x] where i is the imaginary unit. For two distributions P and Q overRN , 1
2

∫
x |P(x)−

Q(x)|dx denotes the total variation distance between P and Q.

Lemma 2. Let G1 and G2 be two zero mean Gaussian distributions with covariance matrix ΓXΓ

and ΓYΓ, where X, Y , Γ ∈ SN×N
++ , respectively. If there exists (i, j) such that

|Xi,j − Yi,j| ≥ δ(Xi,i + Yi,i + Xj,j + Yj,j), (12)

for some δ > 0, then the total variation distance between G1 and G2 is at least 1
12e1/4 δ.

Proof. Given φ1(u) and φ2(u) as characteristic functions of G1 and G2, respectively, due to
Lemma A1, we have ∫

x
|G1(x)− G2(x)|dx ≥ max

u∈RN
|φ1(u)− φ2(u)|, (13)

so we only need to show the lower bound of maxu∈RN |φ1(u)− φ2(u)|.
Then we set that characteristic function of G1 and G2 are φ1(u) = e

−1
2 uTΓT XΓu and

φ2(u) = e
−1
2 uTΓTYΓu, respectively. Let that α1 = (Γv)TX(Γv), α2 = (Γv)TY(Γv) and Γu =

Γv√
α1+α2

for some v ∈ RN . Moreover we define that given Γ, for any v̄ ∈ RN such that

v̄ = Γv, there exists v ∈ RN . ū = Γu in the same way.
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Now, let us show the lower bound of maxu∈RN |φ1(u)− φ2(u)|.

max
u∈RN

|φ1(u)− φ2(u)|

= max
u∈RN

∣∣∣e−1
2 uTΓXΓu − e

−1
2 uTΓYΓu

∣∣∣
= max

u∈RN

∣∣∣e−1
2 (Γu)T X(Γu) − e

−1
2 (Γu)TY(Γu)

∣∣∣
≥ max

v̄∈RN

∣∣∣∣e −α1
2(α1+α2) − e

−α2
2(α1+α2)

∣∣∣∣
≥ max

v̄∈RN

∣∣∣∣ 1
2e1/4

α1 − α2

α1 + α2

∣∣∣∣.

(14)

Then second inequality is due to Lemma A4, since min{ α1
α1+α2

, α2
α1+α2

} ∈ (0, 1
2 ].

Due to the assumption in the Lemma, we obtain for some (i, j) that

δ(Xi,i + Yi,i + Xj,j + Yj,j) ≤ |Xi,j − Yi,j|

=
1
2
|(ei + ej)

T(X− Y)(ei + ej)− eT
i (X − Y)ei − eT

j (X − Y)ej|
(15)

It implies that one of (ei + ej)
T(X − Y)(ei + ej), eT

i (X − Y)ei and eT
j (X − Y)ej has

absolute value greater that 2δ
3 (Xi,i + Yi,i + Xj,j + Yj,j).

Due to the positive definiteness of X and Y , we have that for all v ∈ {ei + ej, ei, ej}

vT(X + Y)v ≤ 2(X + Y)i,i + 2(X + Y)j,j. (16)

and therefore we have that

max
v̄∈RN

∣∣∣∣ 1
2e1/4

α1 − α2

α1 + α2

∣∣∣∣ ≥ max
v̄∈{ei+ej ,ei ,ej}

∣∣∣∣ 1
2e1/4

vT(X − Y)v
vT(X + Y)v

∣∣∣∣ ≥ δ

6e1/4 (17)

Lemma 3. Let X, Y ∈ SN×N
+ be such that

|Xi,j − Yi,j| ≥ δ(Xi,i + Yi,i + Xj,j + Yj,j), (18)

and Γ is a symmetric strictly positive definite matrix. Then the following inequality holds that

− ln det(αΓXΓ + (1− α)ΓYΓ)

≤ −α ln det(ΓXΓ)− (1− α) ln det(ΓYΓ)− α(1− α)

2
δ2

36e1/2 .
(19)

Proof. Let G1 and G2 be zero mean Gaussian distributions with covariance matrix ΓXΓ

and ΓYΓ. The total variation distance between G1 and G2 is lower bounded by δ
12e1/4 , since

the assumption in this Lemma and the result in Lemma 2. Consider the entropy of the
following probability distribution of v with probability α that v ∼ G1 and v ∼ G2 otherwise.
Its covariance matrix is αΓXΓ + (1− α)ΓYΓ.

Due to Lemma A3, we obtain that

− ln det(αΓXΓ + (1− α)ΓYΓ) ≤ 2H(αG1 + (1− α)G2) + ln(2πe)V .
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By Lemma A2, we further have that

2H(αG1 + (1− α)G2) + ln(2πe)V .

≤ 2αH(G1) + 2(1− α)H(G2) + ln(2πe)V − 2α(1− α)
δ2

144e1/2

≤ 2αH(G1) + 2(1− α)H(G2) + ln(2πe)V − α(1− α)
δ2

72e1/2 ,

where the second inequality is due the fact that δ ≥ 0. At last, from the assumption in
this Lemma, G1 and G2 are Gaussian distributions, due to the statement in Lemma A3, we
have that

2αH(G1) + 2(1− α)H(G2) + ln(2πe)V − α(1− α)
δ2

72e1/2

= −α ln det(ΓΣΓ)− (1− α) ln det(ΓΘΓ)− α(1− α)
δ2

72e1/2 .
(20)

Thus, we have our conclusion.

Lemma 4 (Lemma 5.4 [7]). Let X, Y ∈ SN×N
++ be such that for all i ∈ [N] |Xi,i| ≤ β

′
and

|Yi,i| ≤ β
′

Then for any L ∈ L = {L ∈ SN×N
+ : ‖vec(L)‖1 ≤ g} there exists that

|Xi,j − Yi,j| ≥
|L • (X − Y)|

4β
′g

(Xi,i + Yi,i + Xj,j + Yj,j). (21)

Proposition 2 (Main proposition). For Γ ∈ SN×N
++ , the generalized log-determinant regu-

larizer R(X) = − ln det(ΓXΓ + εE) is s-strongly convex with respect to L for K with s =
1/(576

√
e(β + ρε)2g2). Here E is identity matrix.

Proof. Since the assumption of the proposition that Γ is positive definite then we have that
ΓXΓ + εE = Γ(X + Γ−1εEΓ−1)Γ.

For any X ∈ K, we obtain that

max
i,j
|(X + Γ−1εEΓ−1)i,j| ≤ max

i,j
|Xi,j|+ ερ = β + ερ,

where ρ = maxi,j |(Γ−1Γ−1)i,j|.
Setting β′ = β + ερ in Lemma 4, combining Lemma 3 and Definition 1, our conclusion

follows.

The proof of the main theorem is given as follows:

Proof of Theorem 2. Due to Lemma 1 (in main part) we obtain that

RegretOSDP(T,K,L, W∗) ≤ H0

η
+

η

s
T. (22)

Due to the main proposition in main part we know that s = 1/(576(β + ρε)2√eg2).
Thus we need only to show H0 ≤ τ

ε . Denoting W0 and W1 as the minimizer and
maximizer of R, respectively, then we obtain that

max
W ,W ′∈K

(R(W)− R(W
′
)) = R(W1)− R(W0)

= − ln det(ΓW1Γ + εE) + ln det(ΓW0Γ + εE)

=
N

∑
i=1

ln
λi(ΓW0Γ) + ε

λi(ΓW1Γ) + ε
,



Mathematics 2022, 10, 1055 10 of 22

where the last equality is due to the fact that det(A) = ∏N
i=1 λi(A), for any A ∈ SN×N

++ .
Further, we have that

N

∑
i=1

ln
λi(ΓW0Γ) + ε

λi(ΓW1Γ) + ε
=

N

∑
i=1

ln
(

λi(ΓW0Γ)

λi(ΓW1Γ) + ε
+

ε

λi(ΓW1Γ) + ε

)

≤
N

∑
i=1

ln
(

λi(ΓW0Γ)

ε
+ 1
)

≤
N

∑
i=1

λi(ΓW0Γ)

ε
=

Tr(ΓW0Γ)

ε
≤ τ

ε
,

where the first inequality is from the inequality ln(1 + x) ≤ x. Plugging s, we obtain that

RegretOSDP(T,K,L, W∗) = O
(

g2(β + ρε)2Tη +
τ

εη

)
. (23)

4. Application to OBMC with Side Information

We demonstrate an explicit reduction from OBMC with side information to our afore-
mentioned OSDP problem (K,L) in the following part. The reduction is two-fold. In the
first step, we reduce OBMC with side information to an online matrix prediction (OMP)
problem with side information by involving hinge loss function and mistake-driven tech-
nique. In the second step, we reduce OMP with side information to the OSDP problem,
while representing the side information into the Γ-trace norm.

Before we show the reductions, we need define some necessary notations and the
OBMC problem with side information formally.

4.1. The Problem Statement

In principle, our problem statement simplifies the settings in work of Herbster et al. [2].
Given m, n ∈ N+, let the pair (M, N) be the side information given to the algorithm,

where M ∈ Sm×m
++ and N ∈ Sn×n

++ .
The online binary matrix completion (OBMC) problem is a repeated game between

the the algorithm and the adversarial environment formulated as follows: On each round
t ∈ [T]:

1. The environment selects (it, jt) ∈ [m]× [n].
2. The algorithm returns a prediction ŷt ∈ {−1,+1}.
3. The environment reveals the true label yt ∈ {−1, 1}.

The target of the algorithm is to minimize the mistake number during the whole
learning process M = ∑T

t=1 Iyt 6=ŷt . Particularly, with the assistance of the side information
(M, N), the mistake bound is supposed to be refined in the case that the side information
is constructive.

Equivalently, if we describe the selections and true labels from the environment as
a sequence S = {(it, jt), yt}T

t=1 ⊆ ([m]× [n]× {−1, 1})T . The problem can be seen as a
sequential prediction of the entries in an underlying m× n target matrix. On each single
round t, the environment confirms the location of the entry (it, jt) and the algorithm is
required to predict the label of the entry. However, we release the consistence of such
unknown target matrix, that is, it can happen yt 6= yt′ even if (it, jt) = (it′ , jt′).

Instead of the 0–1 loss in the OBMC problem, we firstly need introduce a convex
surrogate loss function for the FTRL framework. Specifically, for a positive parameter γ,
we define a hinge loss hγ : R→ R with respect to γ as follows:

hγ(x) =

{
0 if γ ≤ x,
1− x/γ otherwise,
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where γ is also named the margin parameter.
Then for the sequence S we factorize the comparator matrix with PQ> ∈ Rm×n, where

P ∈ Rm×d and Q ∈ Rn×d for some d. Combing the definition of the hinge loss, we define
the hinge loss of the sequence S as

hloss(S , (P, Q), γ) =
T

∑
t=1

hγ

(
ytPit Q

>
jt

‖Pit‖2‖Qjt‖2

)
, (24)

in terms of the factorization pair (P, Q) and margin parameter γ. This hinge loss can be
interpreted as a measurement for the predictions in terms of the comparator matrix PQ> to
the true label yt. In the following part, we can, without loss of generality, assume that each
row of P and Q is normalized as ‖Pi‖2 = ‖Qj‖2 = 1 for every (i, j) ∈ [m]× [n]. Moreover,
we sometimes call the pair (P, Q) the comparator matrix. Moreover, in the following part,
we involve the row normalized matrix X̄, according to any matrix X, such that

X̄ = diag
(

1
‖X1‖2

, · · · ,
1

‖Xk‖2

)
X.

Now for each pair of the comparator matrix, we define the quasi-dimension, measuring
the quality of the side information. Specifically, the quasi-dimension of a comparator matrix
(P, Q) with respect to the side information (M, N), is defined as

DM,N(P, Q) = αMTr
(

P>MP
)
+ αNTr

(
Q>NQ

)
,

where αM = maxi∈[m](M−1)i,i and αN = maxj∈[n](N−1)j,j. Note that M and N are set as
identity matrices, when the side information is empty. In this case, the quasi-dimension is
m + n for any comparator matrix. Nevertheless, the quasi-dimension will be smaller, if the
rows of P and/or the columns of Q are correlated to M and/or N, which implies that the
side information is appropriate and reflects the useful information to the comparator matrix.

Note that the notion of quasi-dimension is defined in a different way in [2].

4.2. Reduction from OBMC with Side Information to an Online Matrix Prediction (OMP)

We formulate an OMP problem, to which our problem is firstly reduced. The OMP
problem is specified by a decision space X ⊆ [−1, 1]m×n and a margin parameter γ > 0,
and again it is described as a repeated game between the algorithm and adversary. On each
round t ∈ [T],

1. The algorithm predicts a matrix Xt ∈ Rm×n.
2. The adversary returns a triple (it, jt, yt) ∈ [m]× [n]× {−1, 1}, and
3. the algorithm suffers the loss defined by hγ(ytXt,(it ,jt)).

The goal of the algorithm is to minimize the regret:

RegretOMP(T,X , X∗) =
T

∑
t=1

hγ(ytXt,(it ,jt))− min
X∗∈X

T

∑
t=1

hγ(ytX∗it ,jt),

supX∗∈X RegretOMP(T,X , X∗) = RegretOMP(T,X ). Note that unlike the standard setting
of online prediction, we do not require Xt ∈ X

Below we reduce the OBMC problem with side information (M, N) to the OMP
problem with the following decision space:

X = {P̄Q̄> : PQ> ∈ Rm×n,DM,N(P̄, Q̄) ≤ D̂},

where D̂ is an arbitrary parameter. Assume that we have an algorithm A for the OMP
problem (X , γ). In this reduction, we involve the mistake-driven technique, that is the
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algorithm A will be only launched when the prediction error appears. The reduced
algorithm is as follows.

Run the algorithm A and receive the first prediction matrix X1 from A. Then, in each
round t ∈ [T], we do the following:

1. Observe an index pair (it, jt) ∈ [m]× [n].
2. Predict ŷt = sgn(Xt,(it ,jt)).
3. Observe a true label yt ∈ {−1, 1}.
4. If ŷt = yt then Xt+1 = Xt, and if ŷt 6= yt, then feed (it, jt, yt) to A to let it proceed and

receive Xt+1.

Note that due to the mistake-driven technique, we run the algorithm A for at most
M = ∑T

t=1 Iŷt 6=yt rounds, where M is the number of mistakes of the reduction algo-
rithm above.

The next lemma shows the performance of the reduction.

Lemma 5. Let RegretOMP(M,X , X∗) denote the regret of the algorithm A in the reduction above
for a competitor matrix X∗ ∈ X , where M = ∑T

t=1 I(ŷt 6= yt). Then,

M ≤ inf
P̄Q̄T∈X

(RegretOMP(M,X , P̄Q̄T) + hloss(S , (P, Q), γ))

≤ RegretOMP(M,X ) + hloss(S , γ),
(25)

where we define
hloss(S , γ) = min

P̄Q̄T∈X
hloss(S , (P, Q), γ). (26)

Remark 1. If M and N are identity matrices, then we have DM,N(P̄, Q̄) = m + n, and thus the
decision space is an unconstrained set X = {P̄Q̄> : PQ> ∈ Rm×n}.

Proof. Let P and Q be arbitrary matrices such that P̄Q̄> ∈ X . Since I(sgn(x) 6= y) ≤
hγ(yx) for any x ∈ R and y ∈ {−1, 1}, we have

M =
T

∑
t=1

I(ŷt 6= yt) ≤ ∑
{t:ŷt 6=yt}

hγ(ytXt,(it ,jt))

= RegretOMP(M,X , P̄Q̄>) + ∑
{t:ŷt 6=yt}

hγ(yt(P̄Q̄>)it ,jt)

≤ RegretOMP(M,X , P̄Q̄>) +
T

∑
t=1

hγ(yt(P̄Q̄>)it ,jt)

= RegretOMP(M,X , P̄Q̄>) + hloss(S , (P, Q), γ),

where the second equality follows from the definition of regret, and the third equality
follows from the fact that (P̄Q̄>)i,j = PiQ>j /(‖Pi‖2‖Qj‖2). Since the choice of P and Q is
arbitrary, the following inequality holds:

M ≤ inf
P̄Q̄T∈X

(RegretOMP(M,X , P̄Q̄T) + hloss(S , (P, Q), γ)). (27)

Now, let P and Q be the matrices that attain (26). Hence, our lemma follows from

M ≤ RegretOMP(M,X , P̄Q̄>) + hloss(S , γ) ≤ sup
X∗∈X

RegretOMP(M,X , X∗) + hloss(S , γ).
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4.3. Reduction from OMP to the Generalised OSDP Problem

Throughout this sub-section, we reduce the OMP with side information to the OSDP
problem parameterized with Γ. Our reduction is similar to the work of [1,6]. For conve-
nience, we denote N = m + n in the following part.

First of all, we formulate the side information M ∈ Sm×n
++ , N ∈ Sn×n

++ into Γ ∈ SN×N
++

for our generalized OSDP problem in the following equation:

Γ =

[√
αM M 0

0
√

αN N

]
. (28)

Next we define the decision space K. For any comparator matrix (P, Q) such that
PQ> ∈ Rm×n, we define

WP,Q =

[
P̄
Q̄

][
P̄> Q̄>

]
=

[
P̄P̄> P̄Q̄>

Q̄P̄> Q̄Q̄>

]
.

Trivially, WP,Q is an N × N symmetric and positive semi-definite matrix. Intuitively,
any comparator matrix (P, Q) such that P̄Q̄> ∈ X , is embedded into the upper right block
in WP,Q. In addition, since the normalization of P̄ and Q̄, (WP,Q)i,i ≤ 1 for all i ∈ [N].
Hence, we need to find a convex decision space K ⊆ SN×N

++ which satisfies

K ⊇ {WP,Q : P̄Q̄> ∈ X}.

First, we involve the following Lemma:

Lemma 6 (Lemma 8 [2]). For any pair of side information matrices (M, N), where M ∈ Sm×m
++

and N ∈ Sn×n
++ , and Γ is induced as in Equation (28).

Tr(ΓWP,QΓ) = αMTr
(

P̄>MP̄
)
+ αNTr

(
Q̄>NQ̄

)
. (29)

Due to this lemma and the definition of X , we can directly define K as follows:

K = {W ∈ SN×N
++ : ‖vec(W)‖∞ ≤ 1∧ Tr(ΓWΓ) ≤ D̂} ⊇ {WP,Q : P̄Q̄> ∈ X}. (30)

Then, we describe the loss matrix class L. We first define a sparse matrix Z〈i, j〉 ∈
SN×N
+ with any pair (i, j) ∈ [m]× [n] such that only entries (i, m + j) and (m + j, i) are 1,

others are 0. More formally,

Z〈i, j〉 = 1
2

(
eie>m+j + em+je>i

)
,

where ek is the k-th orthogonal basis vector of RN . Note that due to the definition of the
Frobenius product, we have that

WP,Q • Z〈i, j〉 = (P̄Q̄>)i,j,

which is what we focus on. Thus, L is defined as

L = {cZ〈i, j〉 : c ∈ {−1/γ, 1/γ}, i ∈ [m], j ∈ [n]}. (31)

Now we state the reduction from the OMP problem with side information to the OSDP
problem (K,L) specified by Γ. Assume that there is an algorithm A for the OSDP problem.

Run the algorithm A and receive the first prediction matrix W1 ∈ K from A.
In each round t,

1. let Xt be the upper right m× n component matrix of Wt.
// Xt,(i,j) = Wt • Z〈i, j〉
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2. observe a triple (it, jt, yt) ∈ [m]× [n]× {−1, 1},
3. suffer loss `t(Wt) where `t : W 7→ hγ(yt(W • Z〈it, jt〉)),

4. let Lt = ∇W `t(Wt) =

{
− yt

γ Z〈it, jt〉 if ytXt,(i,j) ≤ γ

0 otherwise
,

5. feed Lt to the algorithm A to let it proceed and receive Wt+1.

Due to the convexity of `t, a standard linearization argument ([9]) gives

`t(Wt)− `t(W∗) ≤Wt • Lt −W∗ • Lt

for any W∗ ∈ K. Moreover, according to our reduction that `t(Wt) = hγ(ytXt,(it ,jt)) and
`t(WP,Q) = hγ(yt(P̄Q̄>)it ,jt), the following lemma immediately follows.

Lemma 7. Let RegretOSDP(T,K,L, WP,Q) = ∑T
t=1(Wt −WP,Q) • Lt denote the regret of the

algorithm A in the reduction above for a competitor matrix WP,Q and RegretOMP(T,X , P̄Q̄>) =
∑T

t=1(hγ(ytXt,(it ,jt)) − hγ(yt(P̄Q̄>)it ,jt) denote the regret of the reduction algorithm for P̄Q̄>.
Then,

RegretOMP(T,X , P̄Q̄>) ≤ RegretOSDP(T,K,L, WP,Q).

Combining Lemmas 5 and 7, we have the following corollary.

Corollary 1. There exists an algorithm for the OBMC problem with side information with the
following mistake bounds.

M ≤ inf
P̄Q̄>∈X

(RegretOSDP(M,K,L, WP,Q) + hloss(S , (P, Q), γ))

≤ RegretOSDP(M,K,L) + hloss(S , γ).

4.4. Application to Matrix Completion

Combining previous two reductions, our ultimate reduction immediately follows.
We reduce OBMC with side information to OSDP specified with Γ. Compared with the
analysis of Herbster et al. [2], our reduction is explicit and easy to follow. Note that in our
reduction, the side information M and N for OBMC is parameterized by Γ. Again, the Γ

is the identity matrix if the side information is vacuous. Finally, running our proposed
FTRL-based algorithm with the Γ-calibrated log-determinant regularizer, we improve the
logarithmic factor in the previous mistake bound [2]. Particularly, our mistake bound
is optimal.

Remark 2. Since the definition of Γ in Equation (28), we have that ρ = 1.

According to our analysis, the parameters in the reduced OSDP problem (K,L) with
Γ defined in Equation (28), can trivially be set as g = 1/γ, β = ε = ρ = 1, τ = D̂, then
utilizing Theorem 2, we obtain the following result

RegretOSDP(T,K,L, W∗) = O

(
Tη

γ2 +
D̂
η

)
. (32)

Next, we give our main algorithm for the OBMC problem with side information M, N
in Algorithm 1. Putting the two reductions together and proceeding with the FTRL-based
algorithm (4), the main algorithm is as follows:
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Theorem 3. Running Algorithm 1 with parameter η =
√

γ2D̂/T, γ ∈ (0, 1], the hinge loss of
OBMC with side information is bounded as follows:

T

∑
t=1

hγ(yt · ŷt)−
T

∑
t=1

hγ(yt · (P̄Q̄>)it ,jt) ≤ O

√ D̂T
γ2

. (33)

Compared with [2], the logarithmic factor ln(m + n) is improved in our regret bound
to hinge loss. Meanwhile, since the mistake-driven technique is involved in our reduction,
the horizon T is replaced by M, the number of mistakes, which is unknown in advance.
Then, by choosing η independent of M, we can derive a good mistake bound due to above
theorem, resulting in Equation (32).

Algorithm 1 Online binary matrix completion with side information algorithm.

1: Parameters: γ > 0, η > 0, side information matrices M ∈ Sm×m
++ and N ∈ Sn×n

++ . Quasi
dimension estimator 1 ≤ D̂. Γ is composed as in Equation (28), and decision set K is
given as (30).

2: Initialize ∀W ∈ K, set W1 = W .
3: for t = 1, 2, . . . , T do
4: Receive (it, jt) ∈ [m]× [n].
5: Let Zt =

1
2 (eit e

T
m+jt + em+jt e

T
it ).

6: Predict ŷt = sgn(Wt • Zt) and receive yt ∈ {−1, 1}.
7: if ŷt 6= yt then
8: Let Lt =

−yt
γ Zt and Wt+1 = arg minW∈K − ln det(ΓWΓ + E) + η ∑t

s=1 W • Ls.
9: else

10: Let Lt = 0 and Wt+1 = Wt.
11: end if
12: end for

Theorem 4. Algorithm 1 with η = cγ2 for some c > 0 achieves

M =
T

∑
t=1

Iŷt 6=yt = O

(
D̂
γ2

)
+ 2hloss(S , γ). (34)

Proof. Combining Corollary 1 and the regret bound (32), we have

M = O

(
Mη

γ2 +
D̂
η

)
+ hloss(S , γ).

Choosing η = cγ2 for sufficiently small constant c, we get

M ≤ M
2

+ O

(
D̂
γ2

)
+ hloss(S , γ),

from which (34) follows.

Again if the side information is vacuous, which means that M, N are identity matrices,
from Remark 1 and Theorem 4, we can set that D̂ = m + n and obtain the mistake bound
as follows:

O
(

m + n
γ2 + 2hlossPQT∈Rm×n(S , (P, Q), γ)

)
.

Nevertheless, the side information indeed matters in non-trivial cases. When the
comparator matrix U contains some latter structure, specifically, when U is (k, l)-biclustered,
the quasi-dimension estimator D̂ ∈ O(k + l), which is strictly smaller than O(m + n), if the
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side information M, N is chosen as a special matrix according to the structure of (P, Q) (the
details are in Appendix A). According to this instance, the accuracy of the prediction can
be effectively improved when the side information is selected correlating to the structure of
the underlying matrix.

Note that our mistake bound performs better than previous bound especially in the
realizable case. Compared with the bound O

(
D̂
γ2 ln(m + n)

)
in [2], our mistake bound is

O
(
D̂
γ2

)
, which removes the logarithmic factor ln(m + n). In addition, our bound recovers

the known lower bound of Herbster et al. [1] up to a constant factor. If U contains a
(k, l)-biclustered structure (k ≥ l), by setting γ = 1√

l
, our mistake bound can become O(kl).

On the other hand, the lower bound of Herbster et al. is Ω(kl). Thus, the mistake bound of
Theorem 4 is optimal.

In the next subsection, we show an example, online similarity prediction with side
information, where the comparator matrix is (k, l)-biclustered. With the ideal side informa-
tion, we can effectively improve the mistake bound.

4.5. Online Similarity Prediction with Side Information

In this subsection, we show the application of our reduction method and generalized
log-determinant regularizer to online similarity prediction with side information.

Before we introduce the online similarity prediction problem, we need involve some
notations and basic concepts. Denote G = (V, E) be an undirected and connected graph,
where n = |V| and m = |E|. In graph G, if all the vertices are assigned into K different
classes, i.e., there is n-dimensional vector y = {y1, · · · , yn}, where yi ∈ {1, · · · , K}, and the
classification of each vertex vi is represented by yi in vector y, we denote this graph with
respect to the assignment y as (G, y).

Next we define the cut-edges of (G, y), ΦG(y) = {(i, j) ∈ E : yi 6= yj}, and ΦG in
abbreviation. The cardinality of |ΦG(y)| is the cut size. For each graph G, we denote the
adjacency matrix of G as A if Aij = Aji = 1 if (i, j) ∈ E(G) and Aij = 0, otherwise. The
degree matrix of G, D ∈ Rn×n is defined as a diagonal matrix where Dii is the degree
of vertex i. The Laplacian is defined as L = D − A. We define the PD-Laplacian L̃ =

L +
( 1

n
)( 1

n
)>

αL, where 1 is a n-dimensional vector that all entries are 1. Given a graph
G = (V, E) and its Laplacian L, assume that each edge of G is a unit resistor, the effective
resistance of any pair of vertices (i, j) ∈ V ×V, RG

i,j = (ei − ej)L+(ei − ej), where ei is the
standard basis in Rn, and L+ is the pseudo-inverse matrix of L.

Now the online similarity prediction is formulated as follows. Given a K classified
graph G = (V, E). On each round t ∈ [T], we have the following:

1. The environment confirms a pair of vertices (it, jt) ∈ V ×V.
2. The algorithm predicts whether these two vertices belong to the same class. If they are

classified in the same class, the algorithm predicts ŷit ,jt = 1 and −1, otherwise.
3. The environment reveals the true answer yit ,jt . If they are in the same class, then

yit ,jt = 1; yit ,jt = −1 otherwise.

The target of the algorithm is to minimize the number of the prediction mistakes
M = ∑T

t=1 Iŷit ,jt 6=yit ,jt
. Due to this formulation of online similarity prediction, this problem

is a special case of an OBMC problem. We denote also a sequence S = {((it, jt), yt)}T
t=1 ⊆

([n]× [n], {−1, 1})T for our online similarity prediction problem.
The side information we defined for online similarity prediction is the PD-Laplacian L̃

of graph G in our paper. Note that the side information is restricted about only the graph G
itself, and irrelevant to the classification vector y. Gentile et al. [15] explored this problem
by involving the graph G as the prior information to the algorithm. It is equivalent to our
problem setting. The mistake bound from [15] is described in the following proposition:
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Proposition 3. Let (G, y) be a labeled graph. If we run Matrix Winnow with G as an input graph,
we have the following mistake bound:

MW = O

(
|ΦG| max

(i,j)∈V2
RG

i,j ln n

)
. (35)

From the definitions of the online similarity prediction with side information and
OBMC with side information, online similarity prediction is a special case of OBMC, by con-
sidering the comparator matrix U ∈ {1,−1}n×n, where Uij indicates the classifications
of vertices i and j. More specifically, if vertices i, j are in the same class, then Uij = 1,
and Uij = −1, otherwise. Meanwhile, the side information unifies the symmetric positive
definite matrices M, N into L̃.

Moreover, due to [2,15] (see details in Appendix A.2), the comparator matrix U is
actually a (K, K)-biclustered n× n binary matrix. According to the aforementioned result
from [2], there exists a matrix R ∈ Bn,k such that U = RU∗R>, where U∗ = 2IK − 11>,
denoting 1 as a K-dimensional vector for which all entries are 1.

As same as the previous reductions, the reduced Γ specified OSDP problem corre-
sponding to the online similarity prediction with side information is as follows. Firstly, we
define the side information L̃ parameterized Γ in the following matrix.

Γ =

√αL̃ L̃ 0

0
√

αL̃ L̃

, (36)

where αL̃ = maxi(L̃−1)ii.
Next the decision space K and the loss space L are defined as previously as in

Equations (30) and (31), respectively.
Thus, the following proposition demonstrates that the online similarity prediction

with side information L̃ can be reduced to an OSDP problem (K,L) parameterized with Γ.

Proposition 4. Given an online similarity prediction problem with graph (G, y), set the side
information as L̃. Then we can reduce this problem to a generalized OSDP problem (K,L) with
bounded Γ-trace norm such that

K =
{

X ∈ Sn×n
++ : ‖vec(X)‖∞ ≤ 1∧ Tr(ΓXΓ) ≤ D̂

}
L =

{
1
γ

Z〈i, j〉, −1
γ

Z〈i, j〉 : ∀i ∈ [n], j ∈ [n]
}

,

where Γ is defined as above, and

Z〈i, j〉 = 1
2
(eie>n+j + en+je>i ). (37)

Therefore, the mistake bound of online similarity prediction is bounded as follows:

M =
T

∑
t=1

Iŷit ,jt 6=yit ,jt
≤ RegretOSDP(M,K,L) + hloss(S , γ), (38)

where γ is the margin parameter.

According to [2], there exists P = RP∗, Q = RQ∗ where

P∗ = (P∗ij =
√

2Ii=j + Ij=k+1)i∈[k],j∈[k+1] and Q∗ = (Q∗ij =
√

2Ii=j − Ij=k+1)i∈[k],j∈[k+1]
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such that U = PQ>. It implies that the hinge loss hloss(S , γ) = 0, when γ ∈ O(1), more
specifically γ = 1

3 .

Remark 3. According to Theorem 3 and Section 4.2 in [2], and the characterization of online
similarity prediction with side information, the quasi-dimension estimator D̂ ≤ O

(
Tr(R>LR)αL

)
,

where L is the Laplacian of the corresponding graph G, if we set the side information is L̃.
Due to our Theorem 4 and running Algorithm 1 in main part, finally, we have the mistake

bound as follows:
M ≤ O

(
Tr(R>LR)αL

)
. (39)

Remark 4. In the work of Herbster et al. [2], the resulting mistake bound is O(Tr(R>LR)αL ln n),
which can recover the bound of O

(
|ΦG|max(i,j)∈V2 RG

i,j ln n
)

in [15] up to a constant factor.
Moreover, our bound improves the logarithmic factor ln n compared with [2].

5. Connection to a Batch Setting

In this section, we employ the well-known online-to-batch conversion technique (see,
for example, [16]) and obtain a batch learning algorithm with generalization error bounds.
The results imply that the algorithm performs nearly as well as the support vector machine
(SVM) running over the optimal feature space, although the side information is vacuous.
Moreover, with the assistance of the side information, a more refined mistake bound for
batch setting follows from our online version analysis.

First, we describe our setting formally. We consider the problem in the standard
probably approximately correct (PAC) learning framework [16,19,20]. The algorithm is
given the side information matrix M ∈ Sm×m

++ and N ∈ Sn×n
++ and a sample sequence S :

S = ((i1, j1, y1), (i2, j2, y2), . . . , (iT , jT , yT))

where each triple (it, jt, yt) is randomly and independently generated according to some
unknown probability distribution V over [m]× [n]× {−1, 1}. Then the algorithm outputs
a hypothesis f : [m]× [n]→ [−1, 1]. The goal is to find, with high probability, a hypothesis
f that has small generalization error

R( f ) = Pr
(i,j,y)∼V

(sgn( f (i, j)) 6= y).

In particular, we consider a hypothesis of the form

fW : (i, j) 7→W • Z〈i, j〉

where W ∈ K = {W ∈ SN×N
++ : ∀i ∈ [N], Wi,i ≤ 1∧ Tr(ΓWΓ) ≤ D̂}, where Γ is defined as

in Equation (28).
In Algorithm 2, we give the algorithm obtained by the online-to-batch conversion.

Algorithm 2 Binary matrix completion in the batch setting.

1: Parameter: γ > 0
2: Input: a sample S of size T.
3: Run Algorithm 1 over S and get its predictions W1, W2, · · · , WT .
4: Choose W from {W1, W2, · · · , WT} uniformly at random.
5: Output fW .

To bound the generalization error, we use the following lemma, which is straightfor-
ward from Lemma 7.1 of [16].
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Lemma 8. Let L : [−1, 1] × {−1, 1} → [−B, B] be a function and W1, · · · , WT and W be
the matrices obtained in Algorithm 2. Then, for any δ > 0, with probability at least 1− δ, the
following holds:

E(i,j,y)∼V ,W [L( fW (i, j), y)] =
1
T

T

∑
t=1

E(i,j,y)∼V [L( fW (i, j), y)]

≤ 1
T

T

∑
t=1

L( fWt(it, jt), yt) + B

√
2 ln 1/δ

T
.

Applying the lemma with the zero-one loss L(r, y) = 1(sgn(r) 6= y) combined with
the mistake bound (34) of Theorem 4, we have the following generalization bound.

Theorem 5. For any δ > 0, with probability of at least 1− δ, Algorithm 2 produces fW with the
following property:

EW [R( fW )] ≤
O
(
D̂
γ2 + hloss(S , γ)

)
T

+

√
2 ln 1/δ

T
. (40)

On the other hand, when applying the lemma with the hinge loss L(r, y) = hγ(ry)

combined with an O(
√
D̂T/γ2) regret bound of (32) with the minimizer η =

√
γ2D̂/T,

then we have

EW [R( fW )] ≤ E(i,j,y)∼V ,W [hγ(y fW (i, j))]

≤ O

√ D̂
γ2T

+
hloss(S , γ)

T

+ (1 + γ)

√
2 ln 1/δ

T
, (41)

which is slightly worse than (40). Note that D̂ = O(m), if the side information is vacuous.
Now we examine some implications of our generalization bounds. First, we as-

sume without loss of generality that m ≥ n, because otherwise, we can make every-
thing transposed.

As explained in the aforementioned sections, we can think of each Q̄j as a feature
vector of item j. Assume all feature vectors Q̄ ∈ Rn×k are given and consider the problem
of finding a good linear classifier P̄i for each user i independently. A natural way is to use
the SVM, which solves

inf
γ>0,Pi∈Rk

(
1/γ2 + C ∑

t:it=i
hγ(ytP̄iQ̄>jt )

)

for every i ∈ [m] for some constant C > 0. Now if we fix γ to be a constant for all i, then
the optimization problems above are summarized as

inf
P∈Rm×k

m

∑
i=1

(
1/γ2 + C ∑

t:it=i
hγ(ytP̄iQ̄>jt )

)
= inf

P∈Rm×k

(
m/γ2 + C ∑

t
hγ(ytP̄it Q̄

>
jt )

)
=

m
γ2 + C inf

P
hloss(S , (P, Q), γ).

So, if we further optimize feature vectors, we obtain

m
γ2 + C inf

PQ>∈Rm×n
hloss(S , (P, Q), γ) =

m
γ2 + C hloss(S , γ) (42)

which roughly is proportional to our generalization bound (40), when the side information
is vacuous (i.e., M and N are identity matrices). This result implies that our generalization
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bound is upper bounded by the objective function value of the SVM running over the
optimal choice of feature vectors. Meanwhile, we expect a more refined bound when the
side information is not vacuous for the batch setting.

Moreover, a well known generalization bound for linear classifiers (see, for exam-
ple, [16]) gives

Pr
(j,y)∼Vi

(sgn(P̄iQ̄>j ) 6= y) ≤ 1
Ti

∑
t:it=i

hγ(ytP̄it Q̄
>
jt ) + 2

√
1

γ2Ti
+

√
ln(1/δ)

2Ti

for every i ∈ [m], where Vi is the conditional distribution of V given that the first component
is i, and Ti is the number of t ∈ [T] that satisfies it = i. Assume for simplicity that
V(i) = ∑j,y V(i, j, y) = 1/m and Ti = T/m for every i. Then,

R( fWP,Q) =
m

∑
i=1
V(i) Pr

(j,y)∼Vi
(sgn(P̄iQ̄>j ) 6= y)

≤
m

∑
i=1
V(i)

 1
Ti

∑
t:it=i

hγ(ytP̄it Q̄
>
jt )) + 2

√
1

γ2Ti
+

√
ln(1/δ)

2Ti


=

1
T

hloss(S , (P, Q), γ) + 2
√

m
γ2T

+

√
m ln(1/δ)

2T
.

Minimizing R( fWP,Q) over all P and Q such that PQ> ∈ Rm×n, the bound obtained
is very similar to our bound (41). This observation implies that our hypothesis has gener-
alization ability competitive with the optimal linear classifiers P̄ over the optimal feature
vectors Q̄.

6. Conclusions

In this paper, on the one hand, we consider a variant of the OSDP problem, whose
constraint to the decision space is the bounded with Γ-trace norm, a generalization of the
trace norm in the standard OSDP problem. By involving an FTRL-based algorithm with a
Γ-calibrated log-determinant regularizer, we achieve a regret bound irrelevant to the size of
the matrix. On the other hand, we utilize our result to the online binary matrix completion
problem with side information, particularly. We reduce OBMC with side information to our
new OSDP framework and parameterize the side information into Γ. With our proposed
algorithm, combining the result to the generalized OSDP framework, we obtain a tighter
mistake bound than the previous work by removing the logarithmic factor. Furthermore,
our result in the off-line version is better than the traditional margin-based SVMs with the
best kernel, when the side information is not vacuous.
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Appendix A

Appendix A.1. Proof of Main Proposition and Main Theorem

Lemma A1 ([7]). Let P and Q be probability distributions over RN and φP(u) and φQ(u) be their
characteristic functions, respectively. Then

max
u∈RN

|φP(u)− φQ(u)| ≤
∫

x
|P(x)−Q(x)|dx, (A1)

the right hand side is the total variation distance between any distribution Q and P.

Lemma A2 ([18]). Let P and Q be probability distributions over RN with total variation distance
δ. Then

H(αP + (1− α)Q) ≤ αH(P) + (1− α)H(Q)− α(1− α)δ2, (A2)

where H(P) = Ex∼P[ln P(x)].

Lemma A3 ([7]). For any probability distribution P over RN with zero mean and covariance
matrix Σ, its entropy is bounded by the log-determinant of covariance matrix. That is,

− H(P) ≤ 1
2

ln(det(Σ)(2πe)N). (A3)

Note that the equality holds if and only if P is a Gaussian distribution.

Lemma A4 ([7]).

e
−x
2 − e−

1−x
2 ≥ e−1/4

2
(1− 2x), (A4)

for 0 ≤ x ≤ 1/2.

Appendix A.2. Definition of Biclustered Structure and Ideal Quasi Dimension

As in [2], we define the class of (k, l)-biclustered structure matrices as follows.

Definition A1. For m ≥ k and n ≥ l, the class of (k, l)-binary biclustered matrices is defined as

Bm×n
k,l = {U ∈ {−1,+1}m×n : r ∈ [k]m, c ∈ [l]n, V ∈ {1,−1}k×l , Ui,j = Vri ,cj , i ∈ [m], j ∈ [n]}.

Visually, if U ∈ Bm×n
k,l , there exists a permutation of rows and columns over U such

that after this permutation, U becomes a k× l block matrix where in each block, all the
entries are uniformly labeled −1 or +1. Formally, for any matrix U ∈ Bm,n

k,l we can
decompose U = RU∗C> for some U∗ ∈ {−1,+1}k×l , R ∈ Bm,k and C ∈ Bn,l , where
Bm,d = {R ⊂ {0, 1}m×d : ‖Ri‖2 = 1, i ∈ [m], rank(R) = d}.

In the following theorem, we demonstrate that in the OBMC problem with side
information, the quasi-dimension can be effectively bounded with an appropriate choice of
side information, if the underlying matrix U is biclustered.

Theorem A1 ([2]). If U ∈ Bm×n
k,l define Do

M,N(U) as

Do
M,N(U) = 2Tr(R>MR)αM + 2Tr(C>NC)αN + 2k + 2l, (A5)

where M, N are PD-Laplacian, as the minimum over all decompositions of U = RU∗C> for some
U∗ ∈ {−1,+1}k×l , R ∈ Bm,k and C ∈ Bn,l . Thus, for U ∈ Bm×n

k,l ,

Dγ
M,N(U) ≤ Do

M,N(U), (A6)

if ‖U‖max ≤ 1
γ .
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Moreover, we define the max-norm of a matrix U ∈ Rm×n as follows:

‖U‖max = min
PQ>=U

{
max

1≤i≤m
‖Pi‖ max

1≤j≤n
‖Qj‖

}
. (A7)

Furthermore we define the quasi-dimension of a matrix U with M ∈ Sm×m
++ and

N ∈ Sn×n
++ at margin γ as

Dγ
M,N(U) = min

P̄Q̄>=γU
αMTr(P̄>MQ̄) + αNTr(Q̄>NQ̄). (A8)

See Section 4.1 from [2]; if U is a (k, l)-biclustered structured matrix, they show an
example where Do

M,N(U) ∈ O(k + l) with ideal side information. It implies that in a
realizable case, such as that for the sequence S = ((it, jt), yt)T

t=1 where yt = (P̄Q̄>)it ,jt =

Uit ,jt for some U satisfying the conditions in [2], and (P̄, Q̄) = arg minP,QD
γ
M,N(U), with

appropriate side information, the the quasi-dimension estimator D̂ ∈ O(k + l). It follows
that with ideal side information, our proposed algorithm in the main part (Algorithm 1) is
effective when the binary comparator matrix U is (k, l)-biclustered.
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